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Preface

The understanding of aggregates of matter in terms of its elementary con-
stituents and their interactions is a problem of fundamental interest with far
reaching rami�cations in science and technology. Much like the electromag-
netic force between atomic nuclei and electrons gives rise to a rich variety
of macroscopic materials, the strong (nuclear) force is expected to generate
intricate matter structures and phases at the subatomic level, at densities of
about a trillion times larger than ordinary matter and beyond.

The theoretical foundation of the Strong Force, Quantum Chromodynam-
ics (QCD), is well established, as part of the Standard Model of Elementary
Particles, with quarks and gluons as the fundamental degrees of freedom.
However, key phenomena in strong interactions have evaded a profound un-
derstanding to date, most notably the con�nement of quarks and gluons into
hadrons and the generation of mass. These phenomena are believed to be
intimately related to phase changes in strongly interacting matter, which is
one of the main motivations for the research addressed in the present book. In
nature, hot decon�ned matter (the so-called Quark-Gluon Plasma) �lled the
early universe, just a few microseconds after the Big Bang, while present-day
compact stars may contain cold and baryon-rich quark matter in their inte-
rior. The prospect of creating and studying this fundamental form of matter
in modern-day laboratory experiments is truly fascinating. It enables a close
interplay of experimental data and theoretical interpretation which is piv-
otal for scienti�c progress in this �eld. Nearly forty years of nuclear collision
experiments, at laboratories across the world, have led to spectacular new
insights, including the discovery of new forms and novel properties of matter.

Some of these developments have identi�ed the regime of high baryon den-
sities as a particularly interesting one. This is the main motivation for the
proposed Compressed Baryonic Matter (CBM) experiment at the Facility for
Antiproton and Ion Research (FAIR) at GSI in Darmstadt. Closely related
science will be pursued in a complementary fashion in an �energy scan� at
the existing Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National
Laboratory. The ambitious goals of these projects have increased the need
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for a detailed, yet comprehensive, assessment of the current theoretical un-
derstanding of matter at high baryon densities, in order to help develop and
focus the capabilities of future detectors and accelerators. Such an assessment
constitutes the �rst main objective of the present �CBM Book�, and as such
is intended to render the latter a useful resource for experienced researchers
in the �eld. As the project evolved, the scope of the CBM Book expanded
from the originally envisaged more speci�c discussion of the physics of high
baryon density. The positive feedback and broad participation of contributors
suggested a more general presentation of the physics of strongly interacting
matter. The Editorial Board seized this opportunity to implement various
pedagogical components, including more elementary introductory sections
and intermediate summaries of the main Parts of the book. A rather general
overall introduction on �Facets of Matter� is intended to be accessible to an
interested non-expert. The pedagogic measures are aimed at realizing a sec-
ond main objective: to make the physics of hot and dense matter in heavy-ion
collisions accessible to entry-level graduate students starting their research
in this �eld.

The CBM Book is structured into �ve topical units (�Parts�). Part I sur-
veys the bulk properties of strongly interacting matter, including its equation
of state and phase structure. Part II discusses elementary (hadronic) excita-
tions of QCD matter, which, in particular, provide the conceptual basis for
�probing� its properties. Part III addresses the concepts and models regarding
the space-time dynamics of nuclear collision experiments � tools essential to
connect bulk-matter properties and its excitations to experimental data. A
compilation of relevant observables from current and past high-energy heavy-
ion facilities is presented in Part IV, augmented by theoretical predictions
speci�c to CBM. Part V �nally gives a brief description of the experimental
concepts and components underlying the CBM detector.

The o�cial start of the CBM-Book project may be associated with a �kick-
o�� meeting of approximately 30 world-leading scientists in June of 2005 at
GSI (Darmstadt). At this meeting four topical working groups were initiated,
one for each of the four original Parts of the book, in a process open to any-
one interested and willing to join. The �fth Part was added later to re�ect
progress in design studies of the detector. Each working group consisted of
up to a dozen scientists headed by two to three elected conveners. The con-
veners were entrusted with organizing the collection of the scienti�c material
and combining it into a topical unit for each Part of the book. The scien-
ti�c e�orts were further supported by several one-week workshops held at
the International Center for Theoretical Nuclear Physics and Related Areas
(ECT*) in Trento in 2006 and at GSI in the following years.

The CBM Book is based on an impressive number of high-quality contri-
butions authored by leading scientists in the �eld, as listed at the beginning of
each Part. These contributions represent forefront research on diverse aspects
of strongly interacting matter. While covering the topic from a broad per-
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spective as indicated above, CBM-speci�c connections have been stipulated
throughout.

The approximately 4-year process of putting together the �nal volume of
∼1000 pages required substantial organizational e�orts. About 2 years into
the project the necessity for another level of editorial work became evident,
which led to the formation of the Editorial Board (EB). Its members naturally
emerged as the leading conveners of each Part, S. Leupold (Part I), R. Rapp
(II), J. Knoll (III+technical editing), J. Randrup (III), P. Senger (IV+V),
C. Höhne (V), as well as B. Friman (executive summary). Their task was
to establish overall coherence of the material by suitable adjustments in the
structure of the various Parts, e.g. by incorporating umbrella paragraphs
to improve the connections of sections and chapters. Summaries of each Part
highlight the main points with topical foci that may serve as a quick reference.

The EB hopes that the large e�orts devoted by the many contributing
scientists toward completion of this book will stimulate further progress in the
�eld of strongly interacting matter in particular, and in the applications and
developments of concepts for describing strongly coupled systems, in general.
It ultimately remains with the reader to judge in how far the objectives of
this book have been realized. The EB expects that signi�cant parts of this
book will have to be rethought, rewritten and augmented when confronted
with the reality of experimental data. It will be exciting to witness these
developments in the years to come.

The combination of the primary research review character of this book
with components of a more pedagogical design may �t quite suitably the
format of �Lecture Notes in Physics�. The EB is very grateful to the editors
of Springer Verlag for the opportunity to publish the present volume in this
series.

The primary thanks go to all our scienti�c colleagues, listed below, who
have contributed in various ways to the completion of this book, be it as
contributing authors or as conveners collecting and distilling the material,
towards a well tuned presentation of the di�erent parts. Many thanks are also
in order to the numerous colleagues who contributed ideas, discussion or other
pertinent material, thereby opening valuable perspectives on various aspects
of this book. Further thanks are also in order to the students performing
simulations for the design study of the future detector. Without all their
help the book would not have developed into its present form. Despite the
broad authorship, the vast scope of the physics of strongly interacting matter
inevitably implies that possibly some important results have not got covered
in a complete fashion, or might have simply got overlooked. While thanking all
the authors for their valuable contributions, the EB apologizes to researchers
whose work was not appropriately covered or cited.

Finally, the EB thanks GSI, the CBM collaboration and the ECT* for
supporting the progress in compiling this book with pertinent scienti�c work-
shops and meetings.
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Why study compressed baryonic matter, or more generally strongly interact-
ing matter at high densities and temperatures? Most obviously, because it's
an important piece of Nature. The whole universe, in the early moments of the
big bang, was �lled with the stu�. Today, highly compressed baryonic matter
occurs in neutron stars and during crucial moments in the development of
supernovae. Also, working to understand compressed baryonic matter gives
us new perspectives on ordinary baryonic matter, i.e. the matter in atomic
nuclei. But perhaps the best answer is a variation on the one George Mal-
lory gave, when asked why he sought to scale Mount Everest: Because, as a
prominent feature in the landscape of physics, it's there. Compressed bary-
onic matter is a material we can produce in novel, challenging experiments
that probe new extremes of temperature and density. On the theoretical side,
it is a mathematically well-de�ned domain with a wealth of novel, challeng-
ing problems, as well as wide-ranging connections. Its challenges have already
inspired a lot of very clever work, and revealed some wonderful surprises, as
documented in this volume.

Despite � or rather because of � all this recent progress, I think the best
is yet to come. Central questions have not been answered. What is the phase
diagram? What is in the interior of a neutron star? And more broadly: How
can we make better use of QCD in nuclear physics? Its equations should,
in principle, contain all the answers; but in practice we struggle. With more
powerful accelerators and detectors, bigger and faster computers, and im-
proved insight, we are advancing on these issues. The latest investigations
also raise new questions: Why does quark-gluon plasma, near its crossover
temperature, behave remarkably like a perfect liquid, perhaps well described
by a simple strong-coupling theory? Does cold baryonic matter at ultra high
density really form the color-�avor locked state, where weak coupling meth-
ods borrowed from the theory of superconductivity describe the physics of
con�nement and chiral symmetry breaking? Can we build out from the pro-
found simplicity apparently discovered in those idealizations, to make them
more realistic and comprehensive?
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Part of the appeal of the study of compressed baryonic matter is that it
presents four distinct aspects: analytic theory, laboratory experiments, as-
trophysical observations, and last but certainly not least numerical �exper-
iments�. I'd like to make a few comments about each of these aspects, in
turn.

Analytic Theory

The foundation of QCD is uniquely secure. Once the numerical values of
quark masses and an overall coupling are given, the equations of QCD are
de�ned with mathematical precision1. Quantum theory, special relativity, and
the profound embodiment of those principles in gauge �eld theory, impose
such powerful consistency constraints that the theory does not allow any
signi�cant modi�cation nor additional parameters.

Indeed, the situation is even a little better than the preceding counting
of parameters indicates, due to the phenomenon of dimensional transmuta-
tion. Let me take a moment to elaborate on that profound feature of QCD.
Since we are discussing a theory wherein quantum mechanical �uctuations
and relativistic motion are all-pervasive, it is appropriate to adopt Planck's
constant ~ and the speed of light c as our units for action, so that ~ = c = 1.
In this system, the unit of any physical quantity is some power of mass, its
mass dimension. With that understanding, we can appreciate the power of
the dimensional transmutation principle, which is this:

Dimensional Transmutation Principle: If, in the formulation of QCD, one
re-scales all the quark masses by a common constant, and at the same time
makes an appropriate (nonlinear) change in the coupling constant, one ob-
tains a new theory in which all dimensionless � that is, numerical � quantities
retain the same values as in the original theory.

In other words, the new theory di�ers from the old only in an overall change
of the unit of mass, or equivalently length−1. The dimensional transmutation
principle is an immediate consequence of the fact that the coupling �constant�
is not simply a numerical quantity; its de�nition brings in a length scale. We
could, for instance, de�ne the coupling constant as the �charge� appearing
in the �Coulomb's law� for forces between quarks at short distances; but
since in QCD the analogue of Coulomb's law is not accurately valid, we
obtain a distance-dependent, running coupling constant. We can freely specify
some conventional value for g0 the coupling. The physically de�ned coupling
g(l), which depends on the distance l, takes this value at some length l0,
where g(l0) = g0. Thus we can trade the conventional, numerical quantity
g0 for the physical quantity l0(g0) it points to. But l0 has dimensions of
length, or inverse mass. So what might have appeared to be a freely speci�able
numerical quantity is actually another freely speci�able mass parameter, on
the same footing as the quark masses. If we rescale all the masses by a

1 If neither of the discrete symmetries parity P or time reversal T are imposed, one must
also specify the notorious θ term. Empirically, this term is known to be very nearly zero.
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common factor, we have merely changed the standard by which we measure
mass (or length). What might have appeared to be a one-parameter family of
essentially di�erent theories, with di�erent values of the coupling constant, is
actually just one theory, viewed through lenses of di�ering magni�cation. If
we discount that trivial di�erence, one additional parameter can be disposed
of.

QCD Lite is the version of QCD wherein the masses of the u, d, and s
quarks are taken to zero and the masses of the c, b and t quarks are taken
to in�nity (so that in e�ect the heavy quarks are neglected). We expect on
theoretical grounds that QCD Lite provides an excellent qualitative and a rea-
sonable semi-quantitative approximation to real-world QCD in many appli-
cations. In particular, QCD Lite supports con�nement and chiral symmetry
breaking and it yields, for baryon number |B| ≤ 1, an excellent approxima-
tion to the spectrum of real-world QCD2. Those expectations are borne out
by numerical studies of the two theories.

There are a handful of cases where we can make analytic prediction in
QCD. The most basic and most useful, by far, is in the regime of short-
distance or high-energy processes, where we can apply renormalization group
methods. We can exploit asymptotic freedom, and calculate short-distance or
high-energy behavior using ordinary perturbation theory around free quark
and gluon �elds [2]. It is not always obvious (to say the least) what aspects of a
complex process involving hadrons really re�ect short-distance behavior. Over
the years the scope of perturbative QCD has expanded enormously, from its
original base in deep inelastic scattering and other current-induced processes
(the Age of Operators) to include many aspects of jet physics, heavy quark
physics, and more. In the modern Age of Quarks and Gluons, the operating
principle is the Jesuit Credo, that it is more blessed to ask forgiveness than
permission. One starts by assuming tentatively that the quantity of interest,
such as (say) the probability of producing a jet within a given energy range
and solid angle, can be calculated by pretending that quarks and gluons are
the physical degrees of freedom of QCD, and then checks whether higher
orders in perturbation theory render that starting assumption untenable.
This principle has been extremely fruitful and successful, giving us valuable
and � so far � reliable guidance regarding the applicability of perturbation
theory. These ideas dominate the interpretation of accelerator experiments
at the high energy frontier; for example, experimenters routinely speak of
measuring cross-sections for producing quarks or gluons, meaning of course
the jets calculated using those concepts.

It's long been known that perturbation theory can also be applied to de-
scribe QCD at asymptotically high temperatures, to calculate such things as
the energy density and pressure. Intuitively, keeping in mind the Jesuit Credo,
this seems utterly reasonable: At high temperatures, taking noninteracting

2 However the quark-hadron continuity principle [1], which is closely connected to color-
�avor locking, suggests that �Nuclear Physics Lite�, for |B| > 1, is quite di�erent from real
nuclear physics.
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quarks and gluons as the starting point, the corrections to bulk properties
due to interactions seem likely to be small, since most of those quarks and
gluons will be highly energetic, and thus weakly interacting. Indeed, until
fairly recently it was widely anticipated that the temperatures required to
produce a nearly ideal gas of quarks and gluons might not be terribly large.
After all, in deep inelastic scattering approximate free-�eld behavior sets in
at remarkably low energies � this is the phenomenon of precocious scaling.
The truth is more interesting, as we'll discuss further below.

A di�erent regime of highly compressed baryonic matter supports a most
remarkable analytic theory [3]. This is the regime of large chemical potential,
or in other words high baryon number density, and low temperature. Here
methods borrowed from the BCS theory of superconductivity come into play.
Starting from free quarks, one derives large fermi surfaces. Therefore the
relevant low-energy excitations, involving transitions between occupied and
unoccupied states near the fermi surface, involve quarks with large momenta.
Such quarks can be expected to be weakly interacting, so we seem � at �rst
glance � to have a simple �quark soup�. There are two problems with that pic-
ture, however. First, it fails to consider the gluons. And the gluons are indeed
problematic. While their electric interactions are screened by the quarks, their
magnetic interactions are not screened, and the unscreened magnetic interac-
tions among gluons lead to infrared divergences, invalidating our hypothesis
of weak coupling. Second, it fails to take into account that there are many
low-energy quark-quark excitations with the same quantum numbers. This
means that we're doing degenerate perturbation theory among those states.
(This too is signaled by infrared divergences.) In degenerate perturbation
theory, even small perturbations can make qualitative changes. Speci�cally,
quark-quark pairs with equal and opposite 3-momenta ±p are subject to
the same Cooper pairing instability that leads, in ordinary condensed matter
systems, to superconductivity in metals or to super�uidity in liquid He3. Re-
markably, these two problems can be resolved analytically. The quarks have
an attractive interaction, which triggers a version of superconductivity for
the color gauge interaction, analogous to ordinary superconductivity for elec-
tromagnetism. In more detail: Quarks form a pairing condensate. For three
quarks with negligible masses a particularly simple and beautiful symmetry
breaking pattern, the so-called color-�avor locking, appears to be energeti-
cally favored. In this state the quarks pair as

〈qaαµL qbβνL 〉 = −〈qaαµR qbβνR 〉 (0.1)

= εµν
(
κ3̄(δ

aαδbβ − δaβδbα) + κ6(δaαδbβ + δaβδbα)
)

Here µ, ν are Dirac spinor indices, α, β are color indices, and a, b �avor indices,
κ3̄ � κ6 are coe�cients of pairing in antitriplet and sextet color channels,
and momentum dependence has been suppressed. This pairing has many
interesting features. It breaks the color gauge and chiral �avor symmetries
down to a diagonal global �avor group, according to
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SU(3)c × SU(3)L × SU(3)R → SU(3)∆ (0.2)

where the residual symmetry transformations are of the form (g, g∗, g∗). The
�spontaneous breaking� of color symmetry produces gaps in both the gluon
and the quark sector. The correlation between left-handed (L) and right-
handed (R) quark �elds breaks chiral symmetry. The modi�ed form of the
symmetry generators has as a consequence that the elementary excitations
around the new ground state have integer electric charge; and indeed the
whole spectrum of low-lying states resembles what one expects for the con-
�ned phase of this theory. So we have here a weak-coupling implementa-
tion of the main qualitative features that distinguish perturbative from non-
perturbative QCD! The deep point is that the color-�avor locked ground state
is constructed non-perturbatively, following the ideas of the Bardeen-Cooper-
Schrie�er (BCS) theory of superconductivity � here weak interactions, in the
context of degenerate perturbation theory, do indeed trigger drastic reorga-
nization of the ground state.

Very recently another front of analytic work on compressed QCD has
opened up [4]. This is inspired, on the theoretical side, by the AdS/CFT
correspondences of string theory. In the right circumstances, those corre-
spondences allow one to map strong coupling problems in four-dimensional
gauge �eld theory onto problems in �ve-dimensional classical general relativ-
ity. On the experimental side, we have indications that the initial �reball of
material produced in heavy ion collisions, which probably broadly resembles
QCD near equilibrium at T ∼ 150− 200 MeV, is characterized by strong ef-
fective coupling. The observed �reball behaves as a near-perfect ideal liquid,
rather than an ideal gas! Unfortunately QCD is not a case where AdS/CFT
applies directly, nor is it manifestly close to one, so considerable guesswork
is involved in application of AdS/CFT ideas to reality. It's still early days in
this �eld, however, and the possibility of connecting �ve-dimensional general
relativity to observations is so startling and deep that it must be pursued
vigorously.

Finally, there is another class of analytic theory that can be applied to
the QCD of condensed matter [5]. This is the theory of second-order critical
points. Both the strength and the weakness of this theory is that it is so
general (�universal�); it is largely independent of the microscopic dynamics.
Second-order critical points are associated with change in symmetry, and the
low-energy, long-wavelength behavior near such critical points is dominated
by critical �uctuations. Those modes and their interactions are described by
e�ective theories, which depend only on the symmetries (here: chiral symme-
try). The e�ective theories relevant to second-order transitions in QCD are
much simpler than QCD itself, but they can be exploited to make detailed
quantitative predictions that should also hold in QCD itself.

Cosmology and Astrophysics
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As I mentioned earlier, compressed baryonic matter �lled the early uni-
verse, and is the stu� of neutron stars and supernovae.

QCD and asymptotic freedom, by enabling us to extrapolate and draw
consequences from the laws of physics to the ultra-extreme conditions of the
early big bang with con�dence and precision, provide the intellectual foun-
dation for modern early universe cosmology. At present, however, the link
between cosmological or astrophysical observations and fundamental theory
is quite tenuous. In cosmology, I'm afraid this situation appears unlikely to
change3. The problem is that the evolution of the universe, even in its dy-
namic early stages, is very slow on strong-interaction time scales, so that
accurate equilibrium is likely to be maintained. If at any stage the equilib-
rium were inhomogeneous, due to phase separation at a �rst-order transition
or even �uctuations at a second-order transition, then one might hope that
some historical memory would be imprinted on nuclear abundances, or in
gravity waves. But the emerging consensus is that real-world QCD at very
small chemical potential, which is what we encounter in conventional cos-
mology, does not support either sharp phase transitions or large equilibrium
�uctuations. So, barring a very major deviation from orthodox expectations
(e.g., A�eck-Dine baryogenesis [6]) no observable relic of the early strong
dynamics seems likely to survive.

Astrophysics is, I think, much more promising. It's not entirely ridiculous
to think that in the foreseeable future we'll have mass-radius relations for a
good sample of neutron stars, rich measurements of neutrino emission in a
few supernova explosion, and measurements of gravity wave emission accom-
panying the �nal infall of binary systems that include neutron stars. These
signals, and perhaps others, will in coming years provide a rich �ow of infor-
mation from the world of compressed baryonic matter. We should get ready
for it!

There's also an ongoing revolution in the experimental study of high-
energy cosmic rays. Perhaps there are opportunities for extreme QCD here,
either in the description of the interactions of heavy nucleus primaries or
in modelling the sources; but these are complex subjects, where QCD con-
tributes to only a small share of the uncertainties.

Laboratory Experiments

I shall be very brief here, since the material on this topic in the body of
the book speaks ably for itself.

Although by now we almost take it for granted, it's important to remember
that the most fundamental prediction of QCD at high temperatures is both
simple and spectacular:

At low temperatures temperatures strongly interacting matter should be
well described using separate hadrons. In fact below T . 125 MeV or so,
it should be basically a gas of pions, with 3 bosonic degrees of freedom.

3 I'd love to be wrong about that!
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But at high temperatures, strongly interacting matter should be described
as a plasma of quarks and gluons, with 36 fermionic and 16 bosonic degrees
of freedom! (Three �avors and three colors of quarks and antiquarks, each
with two spin states; eight gluons each with two polarization states.) In fact
we �nd, both upon numerical solution of the theory and in experiments,
that within a remarkably narrow range of temperatures things do change
dramatically. By T & 170 MeV or so the energy density is pretty nearly that
of a gas of free quarks and gluons, with 36 fermionic and 16 bosonic degrees of
freedom! This enormous quantitative change, of course, serves to dramatize
the qualitative change that underlies it. Quarks and gluons, once famous for
being con�ned and elusive, have dropped their masks and come to center
stage.

While this zeroth-order success is gratifying, closer examination reveals
that the situation is far from straightforward. It's long been know, from the
numerical work, that while the energy density quickly approaches its pre-
dicted asymptotic value, the pressure lags. So the weak-coupling theory is
suspect near the transition temperature. (Though tour-de-force calculations
in perturbation theory, involving high orders and some resummations, work
signi�cantly better.) And here experiment produced perhaps its greatest sur-
prise: while the thermodynamic properties of the plasma near T ∼ 150 MeV
are not so di�erent from those of an ideal gas of quarks and gluons, the trans-
port properties point to very strong interactions. Indeed, the plasma appears
to have very small shear viscosity, so that it more resembles an ideal liquid.
Were to think in terms of standard kinetic theory � which is no doubt too
naive � this phenomenon would point to a tiny mean free path.

Clearly, it will be interesting to observe whether, or to what extent, these
surprising properties survive at the higher temperatures that will be explored
in heavy ion collisions at the LHC. Speaking more broadly, it will be highly
interesting to explore how the asymptotically free ultra-short distance and
ultra-high energy behavior of hadronic matter connects to the distinctly dif-
ferent intermediate-scale and overall transport behavior. At LHC there will
be enough phase space and luminosity to exploit c and even b quarks, and
very high energy photons, dimuons, and jets, with rich statistics, and really
engage these issues.

Another important goal of future experiments is to map out the phase
structure of hadronic matter, as a function of temperature and baryon num-
ber density. In this regard an interesting target is a possible true second-order
phase transition (a tricritical point). Such a transition should be accompa-
nied by critical �uctuations, which might leave signatures visible even within
the daunting environment around heavy ion �reballs. These possibilities will
be explored both at the Relativistic Heavy Ion Collider (RHIC) and the new
Facility for Antiproton and Ion Research (FAIR).

Finally, its appropriate to mention that the classic experimental probe of
hadronic structure, deep inelastic scattering, remains interesting and rele-
vant. The �gluonization� of hadrons, as they are analyzed by virtual photons
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of large Q2, is a fundamental phenomenon, that connects in important but
poorly understood ways to dominant interaction mechanisms between high-
energy hadrons (di�ractive scattering and di�ractive dissociation). These is-
sues can also be studied for nuclei, of course, and should give insight into
some fundamental questions. Is there a dynamically de�ned variety of quark,
in a piece of the nuclear wave function, that is shared among di�erent nucle-
ons, or are all of them, uniformly, strictly con�ned? I sense that this a domain
where accurate experimental work might connect with new analytical ideas.

Numerical Experiments

Numerical solution of the equations of QCD, usually called lattice gauge
theory, is a subject that has achieved major triumphs [7]. Con�nement and
spontaneous chiral symmetry breaking have been demonstrated convincingly.
Going far beyond those qualitative results, it has been demonstrated by direct
calculation that the rigid microscopic equations of QCD, based on quarks and
gluons, reproduces the rich spectrum of low-energy hadrons that is observed
in Nature. Numerical work also revealed the striking temperature dependence
of the energy density and pressure, mentioned earlier, well in advance of its
experimental con�rmation [8]. No other technique on the horizon comes close
to competing with the use of sophisticated discretisation techniques, clever
algorithms and powerful computers for addressing these and many other is-
sues (e.g., evaluating matrix elements of weak and electromagnetic currents,
heavy quark spectroscopy) quantitatively. Where lattice gauge theory can be
applied, it is generally unrivalled.

Unfortunately, however, lattice gauge theory is not well adapted to deal
with some other central questions and opportunities in QCD. All known al-
gorithms degrade badly for problems that cannot somehow be phrased as the
evaluation of positive-de�nite integrals � in gigantic spaces, to be sure. But
the partition function of QCD at �nite chemical potential is, when cast into
an integral, not positive de�nite; one has the notorious fermion sign (actually
phase) problem. The �nal answer is much smaller than the various, largely
cancelling, contributions to it. Existing numerical techniques thereby lose
most of their power, and today we have no meaningful ability to investigate
QCD at high baryon number density by direct solution of equations, even
though we know exactly what the equations are.

Di�erent but equally severe problems appear when we try to investigate
high-mass, high-spin resonances. That is a pity, because QCD exhibits re-
markably simple regularities in the high-spin regime, so it's tempting to con-
jecture that a good analytic or semi-analytic theory awaits discovery.

I'd like to take this opportunity to mention a pet idea of mine, that I
think merits attention. As just mentioned, known numerical techniques in
quantum �eld theory are extremely powerful when applied to positive-de�nite
integrals, though they founder for oscillatory ones. This di�culty creates a
barrier to direct simulation of nuclear matter or investigation of its phase
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diagram. There is, however, the possibility of dodging it, by pursuing what
I call �lattice lattice gauge theory�. That is, one can insert sources belonging
to real representation of the gauge group. These do not lead to sign or phase
problems. Thus lattices of �xed sources in real representations provide user-
friendly model systems. The spacing of the source lattice can and should be
varied independently of the spacing in the numerical grid; this is what I mean
by lattice gauge theory. We can vary the dimensionality, the type of lattice,
the gauge group(s), and the representation(s) present; we can also include
temperature or even (at a high price) dynamical fermions.

As a concrete example, we could consider putting octet sources on a cubic
lattice in pure glue QCD. At large separation these sources will induce a lat-
tice of individuated glueballs. At small separation, the glueballs will start to
overlap, and presumably there will be a transition to a screening �metallic�
state. This is an analogue of the Mott transition, which is a central research
area in today's condensed matter physics. There might also be an interme-
diate state with �ux directed between pairs of neighboring sources, in the
spirit of Anderson's resonating valence bond (RVB) hypothesis. The point is
we don't have to guess, we can calculate.

In QCD models of this kind could shed light on the nature of glueballs
or (with dynamical fermions) Gqq̄. They could also supply a very crude,
but tractable, caricature of nuclear matter, and it would be interesting to
compare their Mott transition density to the density of nuclear matter. For
exploring quasi-chemical questions, which might be the most fascinating, it
would probably be advisable to make do with �nite groups, and to invest
more heavily in some of the other bells and whistles I mentioned before.

Even were this program to prove wildly successful, it would of course only
be a stopgap. To get quantitative results for highly condensed baryonic mat-
ter, worthy of the challenges posed by Nature and the opportunities a�orded
by QCD, we will need fundamentally di�erent numerical methods. In conven-
tional lattice gauge theory the starting point is the no-particle, Fock vacuum.
Probably, as suggested by color-�avor locking, the key is to start with a bet-
ter approximation to the true ground state, generated numerically through
an appropriate variational principle.

As evidenced by this volume, the study of compressed baryonic matter is
paying o� handsomely. Old questions are being answered; but the answers
lead us to better, more ambitious questions, and leave us hungry for more.
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General Introduction

In this introductory part we �rst present a primer, �facets of matter�, which
is intended for non-experts and young students, who would like to enter this
research �eld. After a brief historical overview, the main physics concepts and
research objectives addressed in this book are elucidated, using illustrative
examples known from standard physics text books. For the more experienced
researcher, the subsequent executive summary reviews the main accomplish-
ments and physics goals presented in the �ve topical parts of the book.

Facets of matter

In the course of the past century, unprecedented progress has been achieved
in our understanding of the fundamental laws of nature and their implica-
tions for the complex structure of the world at all scales, ranging from the
substructure of elementary hadrons to the universe as a whole. The revo-
lutionary concepts of special and general relativity and quantum mechanics
have resolved many of the puzzling experimental �ndings that had accumu-
lated by the beginning of the 20th century, such as the particle-wave duality.
A new wave of enthusiasm inspired the physicists those days. New theoretical
frameworks for the basic laws of physics appeared. A wealth of novel so far
unknown phenomena were predicted, many of them later on experimentally
veri�ed. A famous example is the conjecture suggested from the relativis-
tic formulation of quantum mechanics that each elementary particle has an
antiparticle partner, a particle with the same mass and spin but opposite
attributes such as electric charge.

Together with the progress in technology, sophisticated devices were de-
veloped capable to accelerate elementary particles. Electrons, protons and
even heavy atomic nuclei could be boosted to higher and higher energies. It
permitted the exploration of the sub nanometer world of atoms and even the
femtometer scales (10−15 m) of atomic nuclei and their constituents. Probing

11
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the laws of nature at incessantly �ner scales has revealed the existence of a
surprisingly large number of elementary particles and provided the means to
study their interactions and thus to understand their relationships.

As a result two further interaction were identi�ed in addition to the fa-
miliar gravitational and electromagnetic forces. These are the strong inter-
action that causes nucleons to bind into atomic nuclei and the weak inter-
action responsible for certain radioactive transformation processes, such as
the β decay that turns a neutron into a proton. While essentially dormant
in our familiar terrestrial world, the strong interaction plays an active role
in stellar environments. It provides the energy that powers stars such as our
sun by causing individual nucleons to fuse into light nuclei. Ultimately the
evolution of the universe from the Big Bang to its current state with more
than one hundred billion of galaxies each containing billions upon billions
of stars, with associated (and possibly inhabited) planetary systems, is the
result of the subtle interplay of all four fundamental forces.

The combination of quantum mechanics with special relativity led to the
presently most powerful formulation of fundamental physics: Quantum Field
Theory. This conceptual framework forms the basis for the Standard Model of
Particle Physics, according to which nature at its fundamental level consists
of elementary �matter� particles (which all have half-integer intrinsic spin
and are categorised as fermions) that interact by the exchange of boson �eld
quanta (having integer spin).

A prominent part of the Standard Model is Quantum Electrodynamics
(QED) which governs the properties of the familiar matter surrounding us
in our daily life. The electromagnetic force is mediated by the photon, the
quantum of light. The photon itself is uncharged but carries one elementary
unit of intrinsic spin and has a vanishing mass, which gives rise to the long
range of the electric force. The most familiar elementary particles that in-
teract electromagnetically are the electron, which by convention carries one
negative unit of elementary charge, −e, and the proton carrying the posi-
tive elementary charge +e. Like the others, the neutron, though electrically
neutral, can be de�ected by a magnetic �eld due to its spin. Neutron and
proton are the building blocks of atomic nuclei. QED is by far the best es-
tablished physical theory, experimentally veri�ed to a precision of about 12
numerical digits. Because of this unrivalled success, this type of quantum �eld
theory, which contains so-called gauge �elds, was generalised to describe all
fundamental interactions. This framework then led to the successful formula-
tion of a uni�ed theory of the strong force, the electromagnetic force and the
weak force, while it has not yet been possible to encompass the fourth (and
weakest) force, gravity, into such a unifying scheme.

One of the most important advances in physics during the 20th century
arose from recognising the essential role played by symmetries (or invari-
ances). They govern the character of the fundamental interactions. In partic-
ular, invariances under temporal translation, spatial translation or spatial ro-
tation, which are all continuous transformations, imply the fundamental con-
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servation laws for energy, momentum and angular momentum, respectively.
Furthermore, the discrete symmetries associated with particle-antiparticle
conjugation and spatial re�ection (parity) allow us to organise the elementary
particles into certain groups and to characterise the features of their mutual
interactions. In particular, the existence of quarks as the fundamental entities
in strong-interaction physics was postulated on the basis of symmetry con-
siderations. Their invention and subsequent discovery brought a transparent
systematics into the increasing zoo of hadrons produced in high-energy colli-
sion experiments. There are two known categories of hadrons: Baryons (from
the Greek word βαρυσ meaning heavy), such as protons and neutrons, which
can be thought of as composed of three quarks, and mesons (from the Greek
word µεσo meaning medium), which contain a quark and an antiquark. The
strong interaction has the particular feature, called con�nement, that the
elementary constituents, namely the quarks, do not appear in isolation.

Like the electron, the quarks carry half a unit of intrinsic spin. As an un-
usual feature, however, they have fractional electric charges of 2

3e or −
1
3e. Ini-

tially just three di�erent types of quarks were needed to explain the hadrons
known those days: the very light u (for �up�) and d (for �down�) quarks with
masses of about 2 and 6 MeV4, forming e.g. protons and neutrons as (uud)
and (udd) bound states, and a somewhat heavier (≈ 95 MeV) s quark, ex-
plaining the so called strange hadrons. The property that distinguishes the
di�erent quark types is called �avour. The lightness of these quarks gives
rise to a special symmetry, called chiral symmetry. It coins the spectrum of
the very light hadrons by a very special mechanism, denoted as spontaneous
symmetry breaking, cf. p. 19.

It is fascinating to reconcile that the clue for the quark story was not
derived from studies of strong interacting physics. Rather weak interaction
processes delivered compelling arguments that further quark �avours must
exist. Two lepton families were known those days: the electron e together
with its associated neutrino, (e, νe), and the muon and its neutrino (µ, νµ),
respectively. These families should have corresponding partner families in
the quark sector, each consisting of two quark �avours. The missing link was
indeed soon provided by the observation of a very heavy meson with unex-
pected long lifetime: the famous �J/ψ meson�. It established the existence of
the c (�charm�) quark with a mass of about 1.2 GeV as the partner of the
s quark. The existence of an as yet unknown third quark-lepton family was
even postulated. The argumentation based on intricate symmetry consider-
ations in connection with certain symmetry violating weak-decay processes,
known as CP-violation5. Indeed both, a very heavy lepton, called �τ lepton�,

4 It became customary to quote the masses in terms of the energy needed to create that
mass, i.e. in MeV=106eV (mega electron volt) or GeV=109eV (giga electron volt). E.g. for
comparison the masses of electron, protron and neutron are 0.511, 938.3 and 939.6 MeV,
respectively.
5 The CP-symmetry refers to the symmetry with respect to the simultaneous particle-
antiparticle conjugation, normally referred to as �charge conjugation� (C), and the re�ec-
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as well as two further very heavy quark �avours, with symbols b (for �bottom�
or �beauty�) and t (for �top� or �truth�), were then experimentally veri�ed in
the following years. These theoretical and experimental successes, awarded
by several Nobel prices, founded the nowadays accepted Standard Model of
Particle Physics with its three quark-lepton families.

What is not directly manifest in the spectrum of hadrons, though, is the
way the quarks interact strongly with each other. Here again symmetry argu-
ments gave the hint: the strong charge has to come in three di�erent varieties,
referred to as colours (a term that has nothing to do with our visual percep-
tion). Although initially not intended, this nomenclature provides a conve-
nient association: the combination of two or more strong charges resembles
the mixing of ordinary colours. In particular, the con�nement property re-
quires the total strong charge of any hadron to vanish (i.e. to be �colour
neutral� or �white�). Thus, the three colour charges of the constituent quarks
in a baryon have to cancel each other, while for mesons the colour charges of
the quark and its antiquark partner have to be opposite (�complementary�).

The resulting fundamental theory describing the strong interaction is
therefore named Quantum Chromo Dynamics (QCD) � from the Greek word
χρωµα meaning colour. In analogy with QED, the elementary particles, here
quarks and antiquarks, interact via bosonic gauge �elds. These quanta are
called gluons, since they serve to �glue� the quarks together. While there is
only one type of photon in QED, which is electrically neutral, in QCD there
is an octet of gluons, corresponding to the various elementary ways of trans-
forming one colour into another6. The gluons themselves also carry colour
charge, which permits them to also interact among themselves, a property
which is believed to ultimately be responsible for con�nement.

While the strong and the electromagnetic interactions conserve the to-
tal net �avours (�avour minus anti�avour), the weak interaction can change
the �avour on time scales that are typically sub-nano seconds. Due to the
dramatic drop in temperature during the very early evolution of the uni-
verse, all initially created heavy-�avour hadrons quickly decayed into up and
down �avours and the electrons as present in the stable matter around us
today. The further expansion and cooling led to a plasma of very light nuclei
(predominantly protons) and electrons, which subsequently combined into
electrically neutral atoms (mostly hydrogen) only about 300,000 years later.
First galaxies were �nally formed after a further few hundred million years.

−− ∗ −−

Parallel to the advances at the elementary level, signi�cant progress was
achieved in the understanding of many-body systems such as macroscopic

tion in space denoted as �parity� (P). This symmetry was observed to be violated in certain
weak decay processes.
6 One might naively have expected there to be nine types of gluon, three colours times
three anticolours. However the colour neutral combination must be excluded, leaving eight
independent transformations.



Facets of matter 15Fig. 1 Phase diagram for
water delineating the ther-
modynamic domains of the
familiar gas, liquid and solid
phases in the temperature (T )
versus pressure (p) presentation
(the scales are not linear). The
three phase boundaries come
together at the triple point,
situated just above 0◦C, while
the liquid-gas phase boundary
terminates at the critical point;
above the critical temperature
there is a smooth transition
from the liquid to the vapour
phase. [The �gure was adapted
from http://serc.carleton.edu/
research_education/equilibria/
phaserule.html.]

matter. As known from our daily life, a given substance, such as water, can
appear in various forms (called phases). Depending on the ambient pres-
sure and temperature water exists in the form of vapour, liquid and solid.
The preference for one phase over another results from the interplay of the
binding forces between the constituents (e.g. the water molecules), which
tend to organise the system into regular structures, and the thermal mo-
tion, which drives the system towards disorder. Any given thermodynamic
condition usually favours one particular phase over the others. Therefore, by
changing the thermodynamic parameters (i.e. the temperature (T ), pressure
(p), etc.), one can control which phase is preferred and cause the substance
to undergo corresponding phase transformations. These properties are conve-
niently summarised in a phase diagram, which delineates the various phases
of the substance as a function of the thermodynamic variables, much like a
map shows the areas of various countries.

The phase diagram of water with its three phases of vapour, liquid and (one
of several forms of) ice is illustrated in Fig. 1 in the (p, T ) plane. Each point
on the phase diagram represents a large uniform and thermally equilibrated
system of the particular substance at the speci�ed values of pressure p and
temperature T . Neighbouring points located on opposite sides of a phase bor-
der line represent di�erent phase con�gurations with the same pressure and
temperature which can coexist, i.e. they can be simultaneously present under
the same thermodynamic conditions. However, they di�er in their microscopic
organisation and, as a result, they generally have di�erent particle or energy
densities. In the latter case one talks about a �rst order phase transition. The
crossing of such a phase boundary, i.e. transforming the substance from one
phase to the other (such as the change of water into vapour), requires the
supply or removal of a certain amount of energy (called the latent heat) as
well as some degree of compression or expansion. Furthermore, for thermody-
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namic conditions along a phase boundary the substance will generally appear
as a phase mixture, e.g. with droplets of the high-density phase immersed in
the low-density phase or vice versa. For water, ordinary fog represents such
a phase mixture, situated somewhere along the upper-right phase-boundary
line in Fig. 1, where liquid droplets coexist with the vapour. However, the
particular geometrical organisation of such phase mixtures (e.g. the droplet
sizes) depends on speci�c properties beyond those of uniform matter, such as
the surface tension, and cannot be depicted on a standard thermodynamic
phase diagram.

A phase separation line may end in a so called critical end point, where the
di�erences between coexisting phases cease. The study of the physical proper-
ties of a substance under thermodynamic conditions close to the critical point
has been a central research interest for decades in condensed matter physics.
Systems show some universal behaviour that permits di�erent substances to
be classi�ed into certain universality classes. Beyond the critical point there
is a smooth crossover between the phases. This occurs for water, which has
a liquid-vapour critical point situated near the upper-right corner of Fig. 1.
Furthermore, the simultaneous coexistence of three phases occurs when three
phase boundary lines come together in a triple point, as it happens for water
(see Fig. 1).

Besides the familiar three phases discussed above (gaseous, liquid, and
solid) nature exhibits several more phases of matter. Of particular importance
in the context of this book is the plasma phase, which can be formed at
high densities or pressures. Under such conditions the normally electrically
neutral atoms (or molecules) of a gas become ionised as some of their outer
electrons become unbound and mobile. The electromagnetic forces between
these charged constituents are then of primary importance. These conditions
are encountered during an electric discharge, in the interior of stars such as
our sun, or in large gaseous planets like Jupiter and Saturn.

In addition to the phases discussed above, which principally concern the
spatial organisation of the constituents of a system, there are also phase
transformations associated with internal degrees of freedom, such as the spin
of the constituents. Perhaps the most familiar example of such a phenomenon
is ferromagnetism, known since ancient times and manifested by the sponta-
neous magnetisation of certain materials (such as iron) when cooled below
the so-called Curie temperature. Another more modern example is supercon-
ductivity, the sudden drastic drop of the electric resistance in a conducting
material, when its temperature is brought below a critical value.

Both of those examples are particularly relevant to the present discussion.
They represent common place illustrations of the concept of spontaneous sym-
metry breaking, a phenomenon that plays a fundamental role in the standard
model of particle physics. For the case of a ferromagnet, the thermal prefer-
ence for disorder prevails at high temperature and the individual spins of the
constituents have random orientations. At low temperature, however, the at-
traction between parallel spins overwhelms the thermal noise and causes the
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spins to become mutually aligned. It should be noted that even though the
basic interactions favour no particular direction, the system automatically
settles into one particular (not a priori determined) orientation, thus sponta-
neously breaking the rotational symmetry. Furthermore, because di�erently
oriented aligned states have the same energy, it takes essentially no energy
to introduce a gentle spin wave into an aligned system (see Fig. 2). There is
thus no lower bound in the excitation spectrum (it is gapless), a characteristic
feature of phases exhibiting spontaneous breaking of a continuous symmetry.
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Fig. 2 Illustration of a spin wave in the spontaneously broken phase where all the indi-
vidual spins are (approximately) aligned along a common (here vertical) direction.

Common to all phase transitions is that symmetry considerations play an
import role in characterising the properties of the phase transition. Di�er-
ent substances with identical symmetry properties generally exhibit similar
phase-transition behaviours particularly in the vicinity of the critical point.

An important facet of matter concerns its response to external perturba-
tions such as the application of electric and magnetic �elds. Often a given
material responds quite di�erently from what would be naively expected from
the properties of its constituents. For example, although the elementary car-
riers of the electric current in matter are negatively charged electrons, there
are materials whose electric properties are most conveniently described as
if the mobile particles carry a positive charge. This phenomenon has led to
the notion of quasi-particles, dynamical entities that behave like particles
with modi�ed properties: a particle moving through matter interacts with
the surrounding particles and polarises the medium. The resulting collective
excitation can be e�ectively expressed as if the perturbing particle had ac-
quired a modi�ed mass and/or charge. A widely known example of such a
phenomenon is the change of the index of refraction in a dielectric medium,
such as glass or water. In the medium, a photon of given frequency prop-
agates with a di�erent velocity than in vacuum, with the consequence that
a light ray will be de�ected in the medium relative to its direction outside.
Moreover, in bulk matter, excitation modes exist that behave similar to par-
ticles or waves, such as e.g. spin waves or acoustic waves (called phonons),
although they have no counter part in the spectrum of the stable particles.

−− ∗ −−

In the present book we are interested in matter governed by the strong
force, rather than the matter encountered in our ordinary terrestrial world,
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which is bound by the electromagnetic force. One form of such matter, though
at zero temperature, exists inside large atomic nuclei and is referred to as nu-
clear matter. The associated scales of force and density exceed the familiar
scales of ordinary terrestrial matter by more than twelve orders of magnitude
(i.e. by factors beyond 1012). In order to obtain such densities one would
have to compress our planet into a sphere of less than a few hundred meters
in diameter. The typical binding forces in nuclear matter are in the range of
∼10MeV/fm=1022 eV/m, which vastly exceeds the typical strength of chem-
ical bonds between atoms, ∼109 eV/m. Nuclear matter of even higher densi-
ties exists in the interior of compact (neutron) stars. Furthermore, strongly
interacting matter in the form of a hot quark-gluon plasma (QGP) prevailed
during the �rst microseconds of the early universe.

Many of the various facets of normal matter discussed above are also ex-
pected to appear in the strong-interaction regime, i.e. in QCD matter. In
particular, di�erent phases are expected to occur as the temperature and
density are changed as illustrated in Fig. 3. Together with the change of the
matter conditions, the properties of particles moving through the matter are
also expected to be strongly modi�ed.

It is a characteristic feature of QCD that the mutual coupling between
quarks and gluons decreases as the collision energy is raised, a property re-

Fig. 3 The hypothetical phase diagram for strongly interacting matter in the plane of net
baryon density (in units of the nuclear bulk density) and temperature (in MeV), both scales
being logarithmic. At low temperatures, nuclear matter has a liquid-gas type phase transi-
tion and the corresponding region of phase coexistence is highlighted (grey). When the tem-
perature and/or (net) density is raised su�ciently, the hadrons dissolve into a quark-gluon
plasma. At low temperature, the decon�nement transition is presumably of �rst order with
an associated region of phase coexistence (blue), whereas a smooth crossover happens at
low density. Also the matter conditions prevailing during the Big Bang or existing in the in-
terior of neutron stars are indicated. [The �gure is from http://www.lbl.gov/abc/wallchart/
chapters/09/0.html.]
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ferred to as asymptotic freedom. Because of this inherent feature, one expects
that the quarks and gluons will essentially become free in matter at very
high temperatures T . Far before this asymptotic scenario, already at tem-
peratures of T ≈ 150 − 200 MeV, conditions are reached where the hadrons
dissolve into individual quarks forming a quark-gluon plasma. Similar to an
ordinary plasma, the colour charged particles (quarks, antiquarks and glu-
ons) can then move throughout the entire volume of the system. Our current
understanding of QCD suggests that this transformation occurs in a smooth
manner as the temperature is raised, provided that the net baryon density ρ
or the associated chemical potential µ is small. However, at large values of
ρ (or µ) one expects a true phase transition from a con�ned (hadronic) to
a decon�ned (plasma) phase. It is a major goal of the compressed baryonic
matter (CBM) experiment to investigate these phenomena. The associated
critical point forms a natural focus for these e�orts.

At very low temperatures and densities the con�ned phase primarily con-
sists of individual nucleons and a few very light composite nuclei. As the
density is raised, nuclear liquid becomes the favoured state. The associated
liquid-gas phase transition is of �rst order. It has been the subject of ex-
tensive experimental investigations in the 1980's and 1990's. At densities
signi�cantly larger than those in ordinary nuclei (possibly present in the in-
terior of neutron stars), one may encounter a variety of ordered phases with
novel properties, most notably colour charge superconductors. Unfortunately,
it appears to be unlikely that these dense but relatively cold phases could
be produced in collision experiments, in which large compressions tend to be
accompanied by large temperatures.

Fig. 4 Illustration of left- and right-handed quarks:
the direction of motion is given by the black arrows,
while the direction of the spin rotation is given by the
curved arrows; for left- or right-handed particles the
spin direction is anti-parallel or parallel to the direc-
tion of motion, respectively.

A particularly important symmetry in particle physics is chirality (from
the Greek word χειρ meaning hand), which characterises the orientation of
a particle's internal spin relative to its direction of motion. As illustrated in
Fig. 4, a quark's spin can be oriented either along its velocity (giving it a
right-handed chirality) or in the opposite direction (giving it a left-handed
chirality). In the sector of up and down �avours the basic QCD interaction
has approximate chiral symmetry, because the masses of the u and d quarks
nearly vanish. One might therefore expect that the resulting hadrons (bound
solutions to the QCD �eld equations) would re�ect this property by appearing
in (approximately) degenerate chiral pairs.

However, this is not what is found in nature, where the chiral partners ex-
hibit large mass di�erences. This apparent paradox was resolved by a mecha-
nism analogous to the spontaneous magnetisation of a ferromagnet below the
Curie temperature (illustrated in Fig. 5), namely the concept of spontaneous
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Fig. 5 Pictorial representation of spon-
taneous symmetry breaking in terms of
a ball moving in a rotationally symmet-
ric potential, assuming that this �e�ec-
tive� potential can change with temper-
ature. At high temperature (top) the ball
achieves its stable position in the poten-
tial minimum which is locate at the cen-
tre: so the equilibrium con�guration pre-
serves the symmetry. Towards low tem-
peratures (bottom) the e�ective poten-
tial changes its form taking the shape
of a sombrero, or a �Mexican hat�, thus
energetically disfavouring the central re-
gion. While to potential is still rotation-
ally symmetric, the ball has to sponta-
neously settle in an asymmetric con�g-
uration at the bottom of the potential.
[The �gure is from V. Koch, Int. J. Mod.
Phys. E6 203-250 (1997).]

breaking of chiral symmetry. Then the earlier discussed gap-less feature of
the ideal excitation spectrum suggests the existence of certain modes related
to chiral symmetry that are nearly massless. Such modes indeed exist in the
form of the π mesons (pions), whose masses (mπ ≈ 140 MeV) are abnormally
small. The fact that the pion masses are non zero is due to the small but �-
nite masses of the u and d quarks which explicitly break the symmetry. This
leads to a slight preference for one particular chiral direction, much like the
tendency of ferromagnetic material to align its magnetisation with the orien-
tation of an externally applied magnetic �eld. In the bottom picture of Fig.
5 this explicit symmetry breaking is achieved by slightly tilting the Mexican
hat, which de�nes a minimum at a preferred position due to a �soft� restor-
ing force along the bottom of the potential. The concept of chiral symmetry,
even extended to include the relatively light strange quark, turns out to be
a powerful tool for understanding the mass spectrum of light hadrons.

With respect to the properties of hadronic matter, the chirally broken
phase occurs at low temperatures and/or low densities of the phase dia-
gram. Much like the spontaneous magnetisation in a ferromagnet, though,
it is expected that the chiral symmetry breaking will gradually weaken as
the temperature or the density is increased. This eventually leads to novel
phases of strongly interacting matter in which chiral symmetry is (approx-
imately) restored. Such a change in the hadronic environment causes dra-
matic modi�cations in the hadronic excitation spectrum. In particular, in
the chirally restored phase the mass distributions of chiral partners would
become (nearly) identical. Furthermore there are conjectures that the chiral
transition may occur in close proximity to, or even simultaneously with, the
decon�nement�con�nement transition.
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In addition to the fundamental aspects raised above, experimental inves-
tigations of compressed baryonic matter would also elucidate a number of
astrophysical issues: What does matter look like under the very large gravi-
tational pressure in the interior of neutron stars? Do nucleons still exist there
or does matter melt into matter of quarks? What limits the total mass of a
neutron star? How does a super nova collapse and the subsequent explosion
of the burnt out star evolve? Do such processes create the composition of
elements that we �nd in our planetary system?

−− ∗ −−

The opportunity to analyse such forms of matter in all its facets in the
laboratory is truly fascinating. However, it is not as straight forward as the
investigation of ordinary matter. Neither are there appropriate vessels to con-
tain this kind of matter and to exert pressure on it, nor is there any standard
�ame that could heat it. The only possibility is to collide two heavy nuclei,
so that they inter-penetrate and compress but also heat each other due to
the microscopic collisions (see Fig. 6). Still, the analysis of such collision
events is intricate due to the transient nature of the reaction, where the ob-
ject of interest, the compressed and heated zone is of �nite small size and
fades away in the very short time of less than 10−22 seconds. Furthermore,
there is no light by which one can illuminate the collision scene in order to
watch and record the event, like with a movie camera, as we are used in
daily life observations. Rather the only observation comes through the re-
action products themselves, i.e. the particles emitted from the reaction zone
into the detectors. Thereby the di�erent nature of the various particle species

Fig. 6 Three snapshots illustrating a nuclear collision of two Uranium nuclei in a future
CBM experiment with a projectile energy per nucleon of 23 GeV on a �xed target. The
snapshots are taken in the moving reference frame, in which both nuclei have the same but
opposite velocities. Left frame: The two incident nuclei (with the incident nucleons in red)
are Lorentz contracted as the incident velocities are already close to the speed of light. The
middle frame shows the moment of highest compression, i.e. the con�guration of interest,
while the right frame displays the expansion stage, when most of the particles already
no longer interact strongly. The �nal situation is called freeze-out. The newly created
baryon resonances are in dark blue, while the created mesons are given in yellow colour.
The pictures resulting from a simulation code calculation are extracted from a movie on
http://th.physik.uni-frankfurt.de/∼weber/CERNmovies/ .
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can provide information on di�erent aspects of the collision event. The most
abundant particles produced are hadrons. Due to their strong interactions
with their environment, they tend to quickly adjust to the evolving condi-
tions and therefore mostly re�ect the conditions that prevailed during the
later stages of the collision event. However, there are also electromagnetic
��ashes� of photons and pairs of electrons and positrons emitted that are
hardly a�ected at all during their propagation through the collision zone.
Since these so-called penetrating probes tend to be produced primarily when
and where the system is hottest, they are particularly suited as �messengers�
of this stage.

In order to perform such experiments,accelerators are needed that are ca-
pable of accelerating atomic nuclei to the desired energies. The most e�cient
workhorses in this respect are synchrotrons. These are circular accelerators
that work a bit like hammer throwers, operating at more than a million turns
per second. In each turn the ionised atoms gain further energy through al-
ternating electric �elds, while magnets with synchronised �eld strengths hold
them on their circular orbits inside the ring. Once the desired beam energy
is reached, a short pulse of ions is directed onto a suitable target, usually a
foil su�ciently thin to ensure that the collisions occur at time intervals long
enough to permit the detection system to complete the event recording. The
construction of a modern heavy-ion accelerator facility is a complex project
that challenges the frontiers of science, technology and engineering. The va-
riety of physical conditions opened to experimental exploration has steadily
grown as the accelerators have become ever more powerful and the associated
detectors have acquired ever more sophisticated capabilities.

The �eld of high-energy nuclear collisions, often called relativistic heavy-
ion physics, originally evolved around the BEVALAC facility at the Lawrence
Berkeley Laboratory in the 1970's. Subsequently, beams of higher quality and
intensity became available in the same energy range of 1-2GeV at GSI in
Darmstadt (SIS18). At these energies it was possible to study hot and com-
pressed matter within the con�ned phase region only. The decon�ned region
could not be probed until it became possible to generate ultra-relativistic
beams, where the kinetic energies of the particles far exceeded their rest
masses, as �rst achieved at the Brookhaven AGS and at the CERN SPS.
In all of these early experiments the accelerated nuclei were bombarded on
a stationary target as explained above. Much higher e�ective collision en-
ergies can be achieved with a so-called collider, in which two beams collide
head-on. Over the past several years, the main experimental activity in the
�eld has occurred at the Brookhaven Relativistic Heavy Ion Collider (RHIC).
Even much higher collision energies will soon be available at the CERN Large
Hadron Collider (LHC).

In collisions at the very high energies characteristic of the collider facilities,
a large number of newly created particles will �ll the collision zone which by
far surpasses the number of incident particles. As the newly created particles
are balanced with respect to their matter�antimatter content, the net baryon
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density is relatively small in such matter. Therefore one explores the baryon-
poor (but very hot) region of the phase diagram (Fig. 3), where a cross-over
transition from the quark-gluon plasma to the hadron gas is expected.

Complementary to the research activities at the colliders, there is a strong
scienti�c interest to explore the �rst-order phase transition region and the
critical end point. For this purpose one needs to generate collision events that
lead to much higher net baryon densities at relatively moderate temperatures.
It follows from the above discussion that such matter is best investigated
at lower collision energies, where the degree of stopping is then larger, and
the amount of newly produced particles is less. There are currently several
e�orts underway worldwide towards this goal. In particular, a planned energy
scan at RHIC will carry out a series of measurements at the lowest possible
collision energies for the primary purpose of �nding evidence of the expected
critical end point. Furthermore, the Facility for Antiproton and Ion Research
(FAIR) soon being constructed at GSI (see Fig. 7) will o�er nuclear beams
of unprecedented quality and intensity. At one of the experimental sites a
dedicated detection system, the CBM detector (see Fig. 8), will be built for
the purpose of studying compressed baryonic matter, in particular to search

Fig. 7 FAIR, the new Facility for Antiproton and Ion Research under construction at
GSI. The double synchrotron SIS 100/300 directly provides the nuclear beams for the
CBM experiment. In parallel operation it can also feed complementary experiments with
beams, where mostly secondary beams of antiprotons or rare nuclear isotopes are produced
by means of a production target, �ltered by the new fragment separator (super FRS) and
subsequently stored and further manipulated in special purpose storage rings, such as the
HESR for antiproton research at the PANDA detector or for Nuclear structure and atomic
and plasma physics investigations at the other rings.
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Fig. 8 The detector complex planned
for the CBM (Compressed baryonic
Matter) experiment at FAIR. Some
explanations are given in the text. The
complete detector description can be
found in Part V, Chapter 2.

for the expected �rst-order phase transition. Finally, vigorous planning is in
progress at JINR in Dubna, Russia, for the construction of a Nuclotron-based
Ion Collider fAcility (NICA) for the purpose of studying strongly interacting
matter in the mixed phase.

The nuclear beams for the CBM experiment, like the beams for other
users at FAIR, will originate from an ion source at GSI. The ions are �rst
sent through and pre-accelerated by the existing UNILAC/ SIS-18 facility,
displayed on the left side of Fig. 7, before being injected into the new double
synchrotron SIS 100/300 (upper right portion of the diagram in Fig. 7), which
has a circumference of 1100 m.

A single high-energy nucleus-nucleus collision at RHIC or LHC typically
produces thousands of reaction products. Even at the lower energies rele-
vant for exploring the high-density region there will typically be hundreds
of particles per collision event � mostly neutrons, protons and pions. The
experimental task of detecting these reaction products, i.e. identifying their
species and measuring their mass, energy and emission angle, requires a detec-
tion system that is optimised for the speci�c physics objective. The proposed
CBM detector is shown schematically in Fig. 8. It is a multi-particle detector,
which is able to resolve and to detect most of the particles simultaneously
emitted in a collision event. It consists of several detector layers, each serving
a di�erent purpose for the complex detection strategy. It enables to trace rare
probes such as particles carrying multiple strangeness or charm quarks. It is
further capable of singling out the extremely rare electron�positron or muon
pairs, that carry the message from the hottest part of the collision zone.

−− ∗ −−

It is obviously a di�cult task to anticipate the outcome of such collisions,
to identify the novel physics phenomena that may occur, and to determine
how they are best observed. In an attempt to provide a useful resource for
this challenging endeavour, the present book reviews the status of the �eld,
discusses important recent developments, and outlines future prospects and
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perspectives, as well as important theoretical challenges. The highlights of
the various parts of this book are summarised in the subsequent �Executive
Summary�. Part I concentrates on topics related to the bulk properties of
strongly interacting matter, its phase structure and the equation of state.
Part II considers medium modi�cations of hadrons travelling through such
a medium. Part III discusses the various dynamical treatments developed
for the description of the collision dynamics. Relevant experimental observa-
tions and their physical interpretations, together with speci�c predictions for
the CBM experiment are reviewed in Part IV. Finally Part V describes the
technical aspects of the CBM detector complex.
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Executive summary

The purpose of this book is to describe our present understanding of the
physics of hot and dense strongly interacting matter, with emphasis on as-
pects relevant for the planned nuclear-collision experiments in the intermedi-
ate beam energy range of 10-50 AGeV, as seen in the target rest frame. Such
experiments are foreseen at RHIC (BNL, USA), FAIR (GSI, Germany) as
well as NICA (JINR, Russia). It is expected that nuclear collisions at these
energies will produce matter at moderate temperatures and high baryon den-
sities. These research programs present unprecedented opportunities for ex-
ploring the phase diagram of Quantum Chromodynamics (QCD) at densities
and temperatures complementary to those probed in nuclear collisions at the
highest energies at RHIC and LHC. In particular, in the indicated energy
range, it is expected that the properties of hot hadronic matter and of the
decon�nement/chiral phase transition can be probed at the highest baryon
densities available in laboratory experiments.

The topics addressed in this book are organized into �ve main parts, pre-
ceded by an elementary introduction to the properties of strongly interacting
matter at high densities and temperatures and to the relevant experiments
(Facets of Matter). First the properties of strongly interacting matter in ther-
mal equilibrium are addressed in Part I, while the in-medium properties of
particles and excitation modes in such systems are discussed in Part II. The
theoretical tools required for describing the transient dynamical situations of
the nuclear collision experiments are presented in Part III. They provide the
bridge between the bulk matter properties on the one hand, and the experi-
mentally observed data on the other. The data aspects are discussed in Part
IV, where besides the results from dynamical models for already completed
experiments also predictions for the planned future experiments are discussed.
Finally, in Part V the conceptual designs for the projected second-generation
type experiments in this beam-energy range are presented. This part also
includes an appendix summarising the various �rst-generation experiments
at AGS, SPS and RHIC.

I Bulk properteis of strongly interacting matter

A uni�ed theoretical description of the thermodynamics of strongly interact-
ing matter at all densities and temperatures does not yet exist. Our present
understanding of this subject is based on results obtained with a variety of
approaches ranging from systematic solutions of QCD on a computational
lattice to e�ective models that exhibit some of the relevant symmetries of
QCD.

Symmetries play a crucial role in the classi�cation of the various phases
and phase transitions. An instructive example is provided by the approximate
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chiral symmetry of QCD, which arises from the smallness of the masses of
the u and d quarks. Chiral symmetry is spontaneously broken at low tem-
peratures and densities and thereby plays a crucial role in the generation of
hadron masses, leading to a signi�cant mass splitting of the so-called chiral
partners (such as the ρ and a1 mesons), which would otherwise be degenerate.
The spontaneous breaking of chiral symmetry is re�ected in a non-vanishing
expectation value of the quark condensate. In strongly interacting matter
at su�ciently high values of the temperature and/or density chiral symme-
try is restored and, accordingly, the quark condensate is very small. Thus,
the quark condensate is an order parameter that characterizes the sponta-
neous breaking of chiral symmetry. Because the u and d masses are in fact
not strictly zero, chiral symmetry is not exact and, consequently, the chiral
phase transformation is generically not of second order. At �nite temperature
and vanishing baryon density it is most likely of the crossover type, similar
to the gradual ionization of a gas (leading to an electromagnetic plasma) as
the temperature is raised. Model calculations suggest that at low tempera-
tures and �nite baryon densities the transition is of �rst order. Consequently,
there should be a critical end point somewhere in the plane of temperature
and baryo-chemical potential.

The decon�nement phase transformation is also related to an approximate
global symmetry, namely the center symmetry of the color gauge group (the
center of the SU(3) group is Z(3)). This symmetry is exact for in�nitely heavy
quarks but only approximate for physical quark masses. A suitable order
parameter for the decon�nement transformation is the so-called Polyakov
loop, which is related to the free energy of a single quark. This symmetry
is broken in the decon�ned phase and the order parameter is non-vanishing,
while it is restored in the con�ned phase where the order parameter vanishes.

So far lattice QCD simulations are well established at vanishing baryon
chemical potential µB . First results for �nite but still small µB have re-
cently been obtained using various methods for extrapolating from µB = 0.
At low temperatures and densities systematic calculations involving a low-
temperature and low-density expansion are available in the framework of chi-
ral perturbation theory. Conversely, at very high temperatures and/or baryon
chemical potentials QCD is, due to asymptotic freedom, weakly interacting
and perturbative calculations of thermodynamic functions become applica-
ble. Unfortunately, at the densities and temperatures of interest here, neither
of these methods can be applied with con�dence. Consequently, much of our
present understanding of hot and dense matter is based on results obtained
in various e�ective models. Although some of these models are constrained
by the model-independent results obtained in lattice QCD, chiral perturba-
tion theory and perturbative QCD, the predictions at temperatures near the
expected decon�nement/chiral transition, in particular at non-zero densities,
remain model dependent. Consequently, progress in this �eld requires inten-
sive exchanges between theory and experiment as well as the development of
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novel theoretical methods for describing the truly non-perturbative phenom-
ena of strongly interacting matter near the phase transition.

Chapter 2 introduces QCD and the thermodynamics of strongly interact-
ing matter. The relevant symmetries of the QCD Lagrangian are identi�ed
and the systematic approaches as well as the models used to describe the
thermodynamics of QCD are presented. The general features of thermody-
namics of phase transitions are also discussed and universality arguments that
can be used to classify phase transitions based on their symmetry breaking
pattern are applied to the QCD phase transformations. Then, in Chapter 3,
systematic approaches to the thermodynamics of strongly interacting matter
are introduced and subsequently Chapter 4 discusses a variety of models used
for the description of strongly interacting matter near decon�nement.

II In-Medium Excitations

The symmetries of QCD are essential not only for characterizing its phase
diagram but also for determining its spectrum of excitations. In Part II the
properties of in-medium excitations are discussed and utilized to link observ-
ables with symmetry and transport properties of QCD at �nite temperature
and density. One basic idea is that the spontaneous breaking of chiral sym-
metry (SBCS) is re�ected in the properties of hadrons. Thus, by studying
hadron properties in matter one can explore the (partial) restoration of the
chiral symmetry including, e.g., the connections to hadronic mass generation.
Another central idea is to use (hadrons containing) the heavier strange and
charm quarks to access (chemical and kinetic) transport properties of the
QCD medium.

The in-medium modi�cations of hadrons are best explored with so-called
penetrating (electromagnetic) probes, since they escape essentially una�ected
from the strongly interacting medium. The relations of dileptons and photons
to the in-medium properties of hadrons are discussed in Chapter 2. The light
vector mesons ρ, ω and φ play a special role due to their direct decay into
dileptons (e+e− or µ+µ− pairs). The dilepton production rate probes the
in-medium current-current correlation function, which is sensitive to the in-
medium spectral functions of the vector mesons. Thus, the dilepton invariant-
mass spectrum, measured in heavy-ion collisions, is expected to unveil the
in-medium properties of the light vector mesons.

The ρmeson has been at the center of attention because it is short lived and
hence likely to decay inside the medium, and because of its strong connection
with chiral symmetry. However, since experimental access to the chiral part-
ner of the ρ meson, the a1 meson, in the medium is extremely di�cult, one
has to resort to other means to clarify the characteristics of chiral symmetry
restoration. A basic problem here is that the fate of e.g. the ρ-meson mass
spectrum in matter is not uniquely determined by chiral symmetry. Hence,



Executive summary 29

various e�ective hadronic models, satisfying constraints of chiral symmetry,
can imply di�erent dynamics and therefore predict di�erent properties of the
ρ mass spectrum at �nite temperature and density. A program is outlined
which utilizes chiral sum rules to connect chiral order parameters (as eval-
uated, e.g., in lattice QCD) with in-medium ρ and a1 properties computed
within e�ective models which, in turn, can be tested in dilepton experiments.
Eventually, hadronic spectral functions may be computed directly from lat-
tice QCD.

Much progress has been achieved in recent years. It is discussed how a
large variety of constraints, derived e.g. from QCD sum rules and from el-
ementary reactions on ground-state nuclei, are implemented into e�ective
hadronic models presently employed to compute dilepton production rates.
These approaches yield a broadening (and ultimately �melting�) of the ρ-
meson spectral function without an appreciable shift of its mass. This is in
contrast to the vector manifestation approach, where both the ρ mass and its
coupling to dileptons approach zero as chiral symmetry restores. The close
connection to production rates for single photons (and, to a lesser extent, to
photon pairs) is pointed out. The enhancement of dileptons found in nucleus-
nucleus collisions is largely consistent with the broadening scenario, and, in
particular, identi�es baryons as the prevalent source of medium e�ects. This
implies that the energy range of FAIR, where baryon-rich matter is produced,
appears ideal for the next generation of dilepton experiments.

Chapter 3 discusses the spectroscopy of hadronic resonances in the light
quark (u, d) sector. The in-medium mass distribution of the ∆(1232), ρ(770)
and possibly �σ(500)�, close to the freeze-out transition, may be observed via
the invariant-mass spectra of the decay products. Such data could provide
information complementary to that obtained from the penetrating probes, in
particular from the dilepton spectrum of the ρ meson. For the ∆ resonance
π±p invariant-mass spectra have been measured at BEVALAC/SIS and RHIC
energies, without conclusive evidence for the relevance of medium e�ects.
Such an analysis is rather challenging due to large backgrounds and resonance
widths, combined with phase space and rescattering e�ects. This also applies
to π+π− spectra which are particularly interesting due to the close connection
of ρ and σ mesons to chiral symmetry.

The role of strangeness is addressed in Chapter 4. The strange (s) quark
is considerably more massive than u and d quarks. However, on the scale
of SBCS, the s quark may be considered light and therefore treated on the
same footing as u and d quarks. In nuclear collisions, however, s quarks dif-
fer in an important aspect from u and d in that there are essentially no
s and s̄ in the initial state. Strangeness-carrying hadrons in the �nal state
have to be produced in the collision, rendering them an important messen-
ger of �avor chemistry in nuclear reactions. For example, the production
of strangeness is expected to be enhanced in a decon�ned, chirally restored
QGP, due to a much reduced mass threshold for (bare) ss̄ pairs compared
to, e.g., kaon-antikaon pairs. In nuclear collisions at AGS energies and above,
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the multiplicity of strange particles is consistent with the saturation of phase
space, which is not the case in elementary hadron-hadron collisions. How-
ever, the connection to QGP formation is still somewhat tentative since at
this point other e�ects cannot be excluded from playing an important role
in the chemical relaxation of the strangeness degrees of freedom. Chapter
4 focuses on in-medium modi�cation of anti-/kaons and their coupling to
baryonic excitations, which is particularly relevant close to the threshold for
strangeness production, i.e., at SIS/BEVALAC energies. Analogous consid-
erations may apply to charm production near threshold, to be explored at
FAIR. (One should realize, however, that the timescales for strangeness and
charm production are presumably rather di�erent and thus the analogy may
be of limited use.) A lowering of the K̄ energy in matter, as predicted by
model calculations, implies an enhanced production in nucleus-nucleus colli-
sions close to the production threshold. The observed enhancement of the K̄
multiplicity compared to elementary reactions at SIS energies is, at least on
a qualitative level, consistent with this picture.

Chapters 5 and 6 address the physics of charm in nuclear collisions which
plays a prominent role in the analysis of the produced medium. The c quark
is heavy compared to the typical temperatures in the hot collision region.
Consequently, the population of charm quarks ought to be determined in early
hard collisions and remains una�ected by lower-energy secondary reactions
in the QGP and in the hadronic phase. The number of charm quarks should
therefore follow from an extrapolation of binary nucleon-nucleon collisions.
At present, neither experimental proton-proton data nor perturbative QCD
calculations can deliver the desired accuracy for the elementary production
processes at the relevant collision energies near threshold.

As discussed in Chapter 5, if a reliable baseline for the initial spectra can
be established, open charm is an ideal probe to study the transport proper-
ties of the medium and to possibly gain insight into hadronization mecha-
nisms. Roughly speaking, the c quark is su�ciently light to undergo signi�-
cant rescattering in the medium, yet heavy enough not to (fully) equilibrate,
thus carrying information especially on the early phases of the medium pro-
duced in nuclear collisions. A theoretically appealing aspect is the possibility
of a Brownian motion treatment of charm di�usion.

In Chapter 6 the study of hidden-charm bound states (charmonia) in nu-
clear collisions is presented. Charmonium production in nucleus-nucleus col-
lisions is believed to probe the properties of the potential between two heavy
quarks, as well as pertinent dissociation mechanisms. Originally, a suppressed
production of J/ψ mesons was suggested as a signal of decon�nement, as a
consequence of color-Debye screening melting the hidden-charm bound states.
However, at present, the problem appears to be much more involved than
anticipated. While signi�cant suppressions have been observed at SPS and
RHIC, their levels are very similar, despite an increase of the collision energy
by more than an order of magnitude. It has been suggested that this is due to
a competition between enhanced charmonium suppression, on the one hand,
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and charm coalescence becoming increasingly important at higher energies,
on the other hand. Much activity is presently devoted to the problem of in-
medium charmonium properties in both lattice QCD and potential models,
as described in Chapter 6. This work has advanced the understanding of color
screening and melting of charmonia in a hot environment. Phenomenological
applications are discussed in the framework of transport approaches including
both dissociation and regeneration mechanisms. A more stringent connection
between theory and phenomenology, and additional measurements at LHC
and FAIR, will contribute to clarifying the fate of charmonia in the QGP and
the relation to observables.

Finally, Chapter 7 discusses selected aspects of color-superconductivity,
the state of matter expected at very high baryon densities and low temper-
atures. In particular, the excitation spectrum in a two-�avor color supercon-
ductor (2SC phase), as well as precritical phenomena in normal quark matter
near the transition to the superconducting phase, are discussed. Other aspects
of color superconductivity were explored in Sect. 3.5 of Part I.

III Collision dynamics

Many of the theoretical concepts discussed in Parts I and II are formulated
for idealised systems that are uniform in density and temperature and in
global thermodynamic equilibrium. However, the experimental situation in
relativistic nuclear collisions is very di�erent. There one expects strong non-
equilibrium e�ects, requiring non-equilibrium many-body approaches to de-
scribe the reaction dynamics and ultimately provide the bridge between the
observables properties of the reaction products and those of the idealized
uniform and static systems of strongly interacting matter. Since a full dy-
namical treatment of such colllisions is intractable, one must resort to re-
duced schemes that are computationally practical. These range from kinetic
transport models of the Boltzmann equation type on the microscopic level
to macroscopic (multi) �uid approaches. In this part of the book, we review
the various dynamical frameworks and models employed for the description
of nuclear collisions, as well as the further conceptual developments needed
for extending their applicability to the FAIR energy range.

The introductory Chapter, Chapter 1, covers the general features, like
collision geometry, typical time scales, the relevant degrees of freedom at
various beam energies, as well as the achieved densities and the relation to the
equation of state. Chapter 2 describes the simplest, and historically earliest,
microscopic transport treatments, the so-called cascade models. There the
participating particles move on straight trajectories, while accumulating the
e�ects of sequential random binary collisions that are treated according to
elementary cross sections. Later on, re�nements based on perturbative QCD
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were introduced to compute the early highly non-equilibrium state of nuclear
collisions at very high energies.

In the beginning of Chapter 3 the most commonly used transport ap-
proaches are presented. They rest on the Boltzmann-Uehling-Uhlenbeck equa-
tion, which includes an e�ective one-body �eld that governs the motion of
the individual particles in between their binary collisions. The latter may
be either Pauli suppressed (for fermions) or (less commonly) Bose enhanced
(for bosons). Kinetic models of this type are well justi�ed for dilute systems,
where single-particle excitations are well approximated by quasiparticles of
in�nite lifetime. At collision energies above 1 A GeV hadron resonances with
broad spectral widths will be produced. Also stable particles will acquire non-
trivial spectral functions due to the high collision rates in the dense medium.
Therefore a large portion of this Chapter is devoted to the transport treat-
ment of particles with broad spectral widths. This includes the derivation
of generalized phase-space transport equation from the underlying quantum
Kadano�-Baym equations by means of a systematic gradient expansion, ques-
tions of detailed balance and unitarity, as well as issues of conservation laws.
A further important facet of transport in dense systems is the relevance of
multi-particle collisions. General aspects of this problem are discussed and
various implementations are presented. Chapter 3 closes with descriptions of
the various speci�c transport models which are presently used. After some
general remarks on the technical issues, each model is brie�y presented.

In Chapter 4 the attention is turned to many-body models, which are capa-
ble of retaining many-body correlations. The most extensively used versions
for simulating nuclear collisions from low up to relativistic energies are the
so called quantum molecular dynamics (QMD) models. In these treatments,
the mean-�eld dynamics described above is replaced by classical many-body
dynamics subjected to smooth two-body forces that can be density and mo-
mentum dependent. In order to obtain smooth phase-space densities, each
particle is represented by a Gaussian in phase space, while the strong short-
range part of the interactions is still represented by a collision term as in the
Boltzmann treatments. True quantum mechanical schemes were developed
on the basis of Slater determinants built from single-particle Gaussian wave
packets. While these fermionic (FMD) or anti-symmetrised (AMD) molecular
dynamics approaches are capable of delivering even quantitative results for
nuclear structure and can be applied to low-energy collisions, applications to
high-energy nuclear collisions are not foreseen.

Dynamical instabilities, such as those caused by phase transitions, may
occur during the evolution. Such scenarios were addressed in the context of
multi-fragmentation at lower beam energies, where the liquid-vapour phase
transition causes the expanding system to condense into nuclear clusters of
various sizes. In order to meet this challenge, a variety of dynamical schemes
were developed that account for �uctuations beyond the average dynamics. Of
particular importance are Boltzmann-Langevin and the Quantum-Langevin
approaches. While their applications have so far been relatively limited, due
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to the signi�cant computational requirements, such techniques may become
important also for the dynamics related to the transition between the quark-
gluon plasma and the hadronic resonance gas.

Macroscopic transport approaches in terms of �uid dynamical concepts
are described in Chapter 5. They o�er an alternative to the kinetic descrip-
tions above discussed and provide a direct link between the equation of state
(EoS) discussed in Part I and the collision dynamics. In ideal hydrodynamics,
which assumes instantaneous local equilibration, the EoS is the only dynam-
ical input needed. The corresponding evolution is then generally isentropic.
However, there are circumstances where ideal hydrodynamics fails. One such
situation occurs during the initial stage of the collision, where the bulk of
the matter has the character of two counter-streaming hadronic or partonic
currents. At high energies, the equilibration of such a system is within ideal
hydrodynamics attained instantaneously in an idealized shock front, while
a more realistic description involves a gradual approach to equilibrium. An-
other case concerns the dynamics of phase separation occurring when bulk
matter evolves into a mechanically unstable state. In ideal �uid dynamics, the
lack of a �nite spatial scale precludes a proper treatment of such instabilities.
A more realistic treatment is obtained by allowing for the �nite relaxation
time scales encoded in the coe�cients of shear and bulk viscosity, as well as
heat transport.

Various strategies have been developed to circumvent such problems. Par-
ticularly powerful are hybrid approaches that link kinetics with �uid dynam-
ics and multi-�uid concepts that model the mutual thermalisation between
the �uid components by a phenomenological dissipative coupling. Recently
also viscous �uid dynamics treatments have been developed and applied. Fits
to elliptic �ow data from RHIC suggest a very small shear viscosity which
has led to the expectation that the matter near the QCD phase boundary
is strongly coupled. Non-equilibrium multi-�uid models can also accomodate
a �rst-order phase transition from the quark-gluon plasma to the hadronic
phase. The resulting approximate chemical equilibration among the hadrons
at the end of the transition has provided support for the use of thermal
freeze-out models for the observed yields, cf. Part IV.

Once the system is dilute, the particles also decouple kinetically and be-
come free. In most hydrodynamic calculations the decoupling is treated arbi-
trarily as a sudden freeze-out on a hyper-surface, a crude concept that is not
void of de�ciencies. Indeed recent progress indicates that a sudden freeze-out
is not possible; the typical time scale that emerges for the freeze-out process
is of the same order as the expansion time scale. A discussion of these devel-
opments is followed by a brief review on the use of �nal-state correlations for
imaging of the source (HBT) in the context of the �nite decoupling duration.

In Chapter 6 the characteristic dynamical behavior such as the various
�ow phenomena are discussed in some detail. In the last Chapter the status
of the �eld is brie�y reviewed and perspectives for future developments as
well as the challenges lying ahead are outlined.
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IV Observables and predictions

Progress in the exploration of hot and dense strongly interacting matter re-
quires, on the one hand, a comprehensive set of high quality data, and on
the other hand dynamical models that make contact between theoretical con-
cepts and experimental observables. Part IV reviews the relevant experimen-
tal data, the corresponding results of simulations as well as predictions for
observables that are not yet measured in the intermediate energy range. This
part starts with an outline of the physics program of the Compressed Bary-
onic Matter (CBM) experiment at FAIR.

Chapter 2 gives an overview of our present knowledge of the QCD phase
diagram. The challenging goal of the future experiments at RHIC and FAIR
is to discover the most prominent landmarks of the QCD phase diagram - the
theoretically anticipated �rst-order phase transition and the corresponding
critical endpoint. Furthermore, the dependence on beam energy of the region
in the phase diagram probed in nuclear collisions is discussed on a qualitative
level.

The highlights of the experiments conducted so far at SIS, AGS, SPS and
RHIC are presented in Chapter 3. In particular, data relevant for the extrac-
tion of the nuclear equation of state, data on strangeness production, studies
of the �reball geometry using HBT correlations, data on collective �ow, jet
quenching as well as measurement of hadronic resonances are discussed.

The measured excitation function of hadron abundances is discussed and
compared to results of various model calculations in Chapter 4. The gen-
eral trend of particle yields can be understood in terms of a transition from
baryon-dominated matter below to meson-dominated matter above the low
SPS energy range. However, the observation of a sharply peaked structure in
the ratio of strangeness-to-entropy as a function of energy cannot be repro-
duced by purely hadronic models.

In the same beam energy range, the excitation function of the inverse
slope parameters of the transverse mass spectra of strange mesons measured
in heavy-ion collisions exhibits a step-like structure which also is in disagree-
ment with the expectations of hadronic models. Moreover, the inverse slope
parameter rises with increasing mass of the particle species up to about the
proton or Λ mass, and then drops for particles with higher masses such as
Ω and charmonium. This observation indicates that the heavy particles con-
taining strange and charm quarks are produced in the early (partonic) phase
of the collision. These features of the transverse mass spectra are reviewed in
Chapter 5.

The collective �ow of particles is discussed in Chapter 6. At FAIR ener-
gies and above, the elliptic �ow is driven by the pressure generated in the
reaction volume and it is therefore a sensitive probe of the equation of state
of strongly interacting matter. At RHIC energies the elliptic �ow exhibits
partonic collectivity, i.e. its strength scales with the number of constituent
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quarks. Hydrodynamical calculations suggest that the elliptic �ow disappears
at the phase transition.

The data on lepton-pair production in nuclear collisions measured at the
BEVALAC, at SIS, SPS and RHIC are presented in Chapter 7 together with
various theoretical interpretations. The yields and invariant mass distribu-
tions of dileptons produced in proton-nucleus collisions are in agreement with
the expected contributions from known lepton-pair sources such as vector
mesons and other hadronic sources (the so called cocktail) - in the case of
electron-positron pairs these include e.g. Dalitz decays of pions and Delta
resonances. The dilepton invariant mass spectra obtained in nucleus-nucleus
collisions, however, exhibit an enhancement above the cocktail in the mass
range between 0.3 and 1 GeV/c2, which is attributed to a broadening of
the rho-meson mass-distribution in the dense and hot nuclear medium. The
slope of the transverse momentum distribution of the lepton pairs rises with
increasing invariant mass up to about 1 GeV/c2 and then falls again, indicat-
ing a partonic source for lepton pairs with invariant masses above 1 GeV/c2.

The production of charm in nuclear collisions is reviewed in Chapter 8.
A signi�cant suppression of J/ψ production relative to that obtained by
scaling of proton�proton scattering is observed in central collisions of heavy
nuclei at SPS and RHIC. Indeed, the suppression is larger than expected from
extrapolation of the in�uence of cold nuclear matter. However, the theoretical
interpretation of these results is subject of debate. On the one hand, within
transport models, the supression of both J/ψ and ψ′ is attributed solely to
collisions of the charmonium with comovers. On the other hand, the solution
of kinetic rate equations within an expanding thermal �reball, suggest that
interactions in the QGP are responsible for an important contribution to the
dissociation of J/ψ. Furthermore, in models of the latter type, the suppression
of ψ′ mesons is mainly due to the decay into a pair of DD mesons in the
hadronic phase, a process which requires a reduction of the D meson mass
in the medium. The resulting ratio of J/ψ to D meson yields computed
within a hadronic transport model (HSD) is larger than that obtained in
the statistical hadronization model, where the yields of hadrons containing
charmed quarks are determined by assuming canonical chemical equilibrium
(the total number of charm quarks is �xed in the initial hard collisions)
near the phase boundary. In order to narrow down the range of theoretical
interpretations, data on open charm and on transverse spectra of charmed
hadrons will be very valuable. For instance, the �ow of D mesons encode
information on the transport properties of open charm in strongly interacting
matter, and, hence, on the dynamics of charm-carrying degrees of freedom in
the �reball.

In Chapter 9, critical �uctuations and correlations of various observables
are discussed as signatures for phase transitions in general and for the QCD
critical endpoint in particular. Thermodynamic and mechanical instabilities
are expected in the vicinity of the critical end point, and in the presence of
a �rst-order phase transition when the bulk of the �reball enters the cor-
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responding spinodal region. If, as a consequence of these instabilities, the
plasma is decomposed into "blobs", which hadronize independently at di�er-
ent locations in space with distinct �ow velocities, �uctuations in event-by-
event correlations of the proton rapidity di�erence and in the strange particle
abundance are expected. Indeed, event-by-event �uctuations of the K-to-π
ratio have been observed in central Pb+Pb collisions at the SPS. However,
the interpretation of these data is still under debate. Finally, the idea that
relative charge �uctuations are suppressed in a QGP environement relative to
a hadron gas, and hence may serve as a signal for decon�nement is discussed.

In Chapter 9 it is also noted that �uctuation signals from the QGP may
be severely reduced by subsequent hadronic interactions. The point is made,
that a careful scrutiny of relevant processes, such as resonance scattering
and decay, is clearly needed. Furthermore, it is noted that �uctuations of
conserved quantities, such as charge and baryon number, depend strongly
on the actual kinematic domain experimentally covered. To properly account
for detector acceptance and for the event classes employed in the analysis,
detailed transport simulations are required.

The prospects for producing composite objects with multiple units of
strangeness in heavy-ion collisions is discussed in Chapter 10. According to
model calculations, the yield of meta-stable exotic multi-hypernuclear clus-
ters (consisting of nucleons and hyperons) increases with increasing baryon
density and reaches a maximum at FAIR energies. Such objects can be iden-
ti�ed e.g. via their weak decay into a pair of Λ hyperons plus nucleons.

The most promising experimental observables and diagnostic probes of
dense and hot baryonic matter produced in high-energy heavy-ion collisions
are summarized in Chapter 11. It is pointed out that progress in this �eld
is dependent on a comprehensive set of new high-quality experimental data
and that novel theoretical tools are needed to trace the observables back to
the early phases of the collision where matter presumably was in the form of
partons.

V The CBM experiment

The goal of the CBM (Compressed Baryonic Matter) experiment at FAIR is
to explore the phase diagram of strongly interacting matter in the region of
high baryon densities. The CBM research program, as outlined in Chapter 1 of
part V, addresses the equation of state of baryonic matter, the decon�nement
phase transition and its critical endpoint, chiral symmetry restoration at high
baryon densities, and the in-medium properties of hadrons. The correspond-
ing key observables comprise low-mass vector mesons decaying into lepton
pairs which serve as penetrating probes, hidden and open charm produced at
threshold beam energies, (multi-) strange particles, and global features like
collective �ow and event-by event �uctuations. Lepton pairs and particles
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containing charm quarks have not yet been measured in heavy-ion collisions
at AGS and low SPS energies, and only very little data on multi-strange hy-
perons have so far been recorded. The CBM experiment at FAIR is designed
to perform these measurements with unprecedented precision.

The CBM detector concept is outlined in Chapter 2. The experimental
challenge is to identify both hadrons and leptons, and to select events con-
taining charm or lepton pairs in a heavy-ion environment with up to about
1000 charged particles per central collision at reaction rates of up to 10 MHz.
Such measurements require fast and radiation-hard detectors, self-triggered
read-out electronics, a high-speed data acquisition system, and online event
selection based on full track reconstruction.

In Chapter 3 the results of feasibility studies are presented, demonstrating
that both frequently produced as well as rare particles can be measured with
excellent statistics within beam times of several weeks. Finally, a brief review
of complementary experimental approaches such as the NA61 experiment at
CERN-SPS, the RHIC beam energy scan program and the NICA project at
JINR in Dubna, currently under consideration, is given in Chapter 4. The
subsequent appendix covers technical features and main accomplishments of
past and present detector arrangements employed in high-energy heavy-ion
reaction experiments.
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Chapter 1

Introduction

Quantum Chromodynamics (QCD) shows a rich phase structure mainly re-
lated to changes of its symmetry properties. Accordingly, the equation of
state is dominated by rather di�erent degrees of freedom depending on the
values for the temperature and the chemical potentials. At low temperatures
and low chemical potentials hadrons are the relevant degrees of freedom. Chi-
ral symmetry is spontaneously broken whereas the center symmetry of color
SU(3) (the symmetry aspect underlying con�nement) is not. Systems at high
temperatures are governed by quarks and gluons. This, however, does not
imply that such a quark-gluon plasma is a weakly interacting gas for the
temperatures reachable by heavy-ion collisions. In the quark-gluon plasma
chiral symmetry is restored while the center symmetry is broken. Also at
low temperatures, but high chemical potentials quarks determine the bulk
properties. The dynamics, however, is related to the excitations near the
Fermi surface where diquark correlations play an important role leading to
color superconductivity. Concerning the transition from one phase of mat-
ter to another one, it is expected that when increasing the temperature at
low chemical potentials a crossover from hadronic matter to the quark-gluon
plasma takes place. For larger chemical potentials this changes to a �rst or-
der transition. (Note that this issue is not completely settled yet, see e.g.
[1, 2] for di�ering opinions.) The critical point which appears at the end of
the �rst-order transition line is an important aspect of the phase diagram
both from the theoretical and the experimental point of view. A sketch of
our present-day understanding of the phase diagram of QCD is depicted in
Fig. 1.1.

The pressure as a function of the temperature and the chemical poten-
tial(s), i.e. the equation of state, is one of the most important characteristics
of QCD matter. The precise knowledge of the pressure of QCD has obvious
phenomenological signi�cance for the analysis of heavy-ion collision experi-
ments, e.g. for the determination of collective �ow and as an essential ingre-
dient for a hydrodynamic treatment. In the early Universe the total pressure
was dominated by the QCD degrees of freedom for temperatures larger than
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Fig. 1.1 Sketch of our present-day understanding of the QCD phase diagram at �nite
temperature T and non-zero quark chemical potential µ. It shows a crossover region at
low µ (dashed) which turns to a true phase transition at a non-zero critical value of the
quark chemical potential. The phase transition line starts with a 2nd order phase transition
point as an end-point of a line of 1st order transitions. The latter extend to higher chemical
potentials and lower temperatures until the region of color superconductivity is reached.
(The line at smaller T and smaller µ which also ends in a critical point is the liquid-gas
phase transition of nuclear matter.)

the transition temperature. Because the pressure contributes strongly to the
rate of the expansion of the Universe, it may a�ect the evolution of vari-
ous cosmological relics: so far, the spectrum of the primordial gravitational
waves [3, 4] and the relic densities of various dark matter candidates [5�9]
have been studied in this context. The knowledge of the pressure to better
than ∼ 1% level is necessary for precise quantitative analysis. Neutron stars
are macroscopic objects where the stability is guaranteed by the Pauli princi-
ple of nucleons (together with a repulsive short-range interaction). Therefore
the structure of a neutron star is dictated by the strong interaction (and,
of course, gravity). The key ingredient that enters the stability condition is
precisely the equation of state.

It is important to understand which regions of the phase diagram de-
picted in Fig. 1.1 are accessed by nature or accessible by experiment: The
early Universe traversed the phase diagram essentially downward along the
temperature axis, i.e. for vanishing chemical potential. Neutron stars, on the
other hand, probe the strong interaction at very small temperatures, but
high chemical potential. The question whether the interior of a neutron star
is already in a (superconducting) quark phase constitutes an active �eld of
research. Ultrarelativistic heavy-ion reactions reach the transition region be-
tween hadronic and quark-gluon matter. It should be noted, however, that
one has to evaluate for each reaction to what extent the hot system created
in the center of a heavy-ion collision reaches local equilibrium. In that sense
it might be somewhat oversimpli�ed to attribute a position in the phase dia-
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gram of Fig. 1.1 to the product of a heavy-ion reaction. With these words of
caution one can say that typically the higher the reaction energy the closer
the created system is located near the temperature axis. Hence, it is the
crossover region close to the temperature axis which is explored by the ex-
periments at the Relativistic Heavy-Ion Collider in Brookhaven (RHIC) or
at the Large Hadron Collider at CERN (LHC) which reach the largest en-
ergies. To �nd a true phase transition and eventually the critical end point
one presumably has to go to lower bombarding energies. Whether a color
superconducting phase can be reached by a heavy-ion collision depends on
the critical temperature of these low-temperature phases. At present one has
to rely on models which in part yield sizable temperatures on the order of
about 50 MeV. This is below the temperatures reached in the matter created
in heavy-ion collisions, but it is su�ciently close to stimulate the hope that
some precursor e�ects of a color superconducting phase might already be
visible. Clearly dedicated observables are necessary to study the properties
of strongly interacting matter in the region of the true phase transitions. The
CBM experiment at FAIR is designed to explore this region.

In principle, one would like to describe all areas of the phase diagram de-
picted in Fig. 1.1 and the corresponding equation of state by �rst principle
QCD calculations. The corresponding two tools, lattice QCD and perturba-
tive QCD, however, have their intrinsic limitations: Perturbative QCD can
only be applied at large enough temperatures and/or large enough chem-
ical potentials where the non-perturbative aspects (e.g. con�nement) have
faded away. Also there, resummation techniques are necessary, since naive
loop expansions are not equivalent to coupling constant expansions and since
the QCD coupling constant is still sizable for the temperature and density
regimes of interest (heavy-ion collisions, neutron stars). In contrast to pertur-
bative QCD, lattice QCD can also be applied to the non-perturbative regime.
Limitations occur, however, for �nite chemical potentials and for quantities
which are sensitive to the smallness of the up and down quark masses. Only
very recently it became possible to perform lattice calculations in the range of
realistic quark masses. It should also be mentioned that aside from the phase
diagram there are also many other quantities which are of interest for the
characterization of a strongly interacting system, e.g. transport properties or
spectral informations (cf. Part II). Also such quantities are di�cult to assess
within lattice QCD.

At very low temperatures and low chemical potentials there is still another
systematic approach to describe strongly interacting systems: chiral pertur-
bation theory. It accounts for the smallness of the up and down quarks and
for broken chiral symmetry in a systematic way. However, it does not work
any more in the region where hadron resonances start to in�uence the prop-
erties of a strongly interacting system. In view of the present day limitations
of �rst principle calculations and systematic approaches, also e�ective models
are a valuable tool to determine the equation of state and the phase struc-
ture of strongly interacting matter. Such models use either hadronic degrees
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of freedom with properties based on phenomenology or degrees of freedom
closer related to the basic ingredients of QCD, like dressed quarks, quark
bound states or Wilson lines. The respective region of applicability of the
various approaches is illustrated in Fig. 1.2. In this �gure the main empha-
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Fig. 1.2 Regions of applicability of various approaches to the phase diagram of QCD.
For simplicity only the phase line between hadronic matter and the quark-gluon plasma is
displayed (the full line which terminates in a critical end point), while the color supercon-
ducting phase and the liquid-gas transition are not shown. The label �χPT� denotes chiral
perturbation theory, �LQCD� lattice QCD, �PQCD� perturbative QCD, �HM� hadronic
models and �QM� quark models. Recent developments in lattice QCD aim at the extension
of this �rst principle method to larger chemical potentials. This is indicated by the arrows.
See main text for details.

sis lies on the transition from hadronic matter to the quark-gluon plasma.
(The corresponding transition line is the full line which ends in the critical
point discussed above.) Therefore, the other transition lines depicted in Fig.
1.1 are left out here for simplicity. As already discussed, perturbative QCD
(labeled by �PQCD� in Fig. 1.2) is only applicable where the temperature
T and/or the chemical potential is large. The applicability region of Lattice
QCD (LQCD) is depicted by the full line. Lattice QCD can deal in principle
with arbitrary temperatures, but only with small chemical potentials. Recent
progress in lattice QCD pushes the reachable chemical potentials to larger
values. This is indicated in Fig. 1.2 by the arrows. At very low temperatures
the bulk properties are determined by the lightest hadrons, the pions. Since
their mass is determined by the very light up and down quark masses, the
pions are typically too heavy in present-day lattice QCD calculations. There-
fore, the applicability region of lattice QCD roughly ends at the domain of
chiral perturbation theory (χPT) � the dashed line. Obviously, there are re-
gions in the phase diagram depicted in Fig. 1.2 where none of the systematic
approaches (PQCD, LQCD, χPT) works. There one has to rely on models
to get qualitative or semi-quantitative insights. Of course, hadronic models
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(HM) work only in the hadronic phase, i.e. their border (dotted line) is be-
low the phase transition line. In principle, quark models (QM) could work
below and above the transition between hadronic matter and the quark-gluon
plasma. Typically, however, they do not reliably describe the hadronic matter
with its large number of degrees of freedom. Around the phase transition and
especially for large chemical potentials, on the other hand, quark models are
the only tool which one can apply so far (various kinds of quark models will
be discussed below). Therefore, a realistic border for the applicability region
of quark models is given by the dotted and the dashed line. An interesting
aspect is the fact that the regions of both hadronic and quark models have an
overlap with the region of lattice QCD. Therefore, lattice QCD can provide
valuable cross-checks or constraints for these models.

The present part of the book is essentially structured in three chapters:
Chapt. 2 contains a general introduction to QCD and its thermodynamics.
Chapt. 3 is a scan through the phase diagram of strongly interacting matter.
Chapt. 4 collects various approaches towards the description of the properties
of matter near the phase transitions or crossovers.

An introduction to QCD and its symmetry properties is provided in Sec.
2.1. Systematic approaches to the strong interaction are brie�y introduced
and the fundamental di�erence to e�ective models is pointed out. A discussion
of general aspects of thermodynamics and an overview of the phases of QCD
is given in Sec. 2.2.

In Chapt. 3 the phase diagram (see Figs. 1.1 and 1.2) is scanned through
� roughly from top left to bottom right: Calculations of the equation of state
using perturbative QCD are reviewed in Sec. 3.1. This method is applicable
for high temperatures. Results from lattice QCD for the equation of state
and other thermodynamic quantities of interest as well as for the location of
the critical point are presented in Sec. 3.2. We recall that this critical point
separates the crossover region (between hadronic and quark-gluon matter)
present at low baryo-chemical potential from the true phase transition region
at higher baryo-chemical potential. Approaching higher chemical potentials
and lower temperatures one leaves the region where �rst principle approaches
can be reliably applied. The determination of the nuclear equation of state
from hadronic models (�hadronic many-body theory�) is reviewed in Sec.
3.3. At least for the late stage of a heavy-ion collision the system crosses
the regime where at present hadronic many-body theory is the best tool at
hand. Properties of cold and dense strongly interacting matter as can be
found in neutron stars are discussed in Sec. 3.4. Interestingly, the observed
properties of neutron stars constrain the equation of state obtained from
hadronic and/or quark models. In that way one obtains crosslinks relevant
for the equation of state which enters the description of heavy-ion collisions.
Chapt. 3 ends with a review of the color superconducting phases present at
high chemical potentials and low temperatures in Sec. 3.5. It is noticable that
at least for extremely high chemical potentials perturbative QCD can be used
again.
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Chapt. 4 concerns the physics in the vicinity of the transition from
hadronic to quark-gluon matter. In Sec. 4.1 the statistical thermal model
for particle production yields is presented. In Sec. 4.2 it is demonstrated
that below, but close to the transition region the thermodynamic properties
of hadronic matter can be described in terms of a hadron resonance gas.
Above, but close to the transition region, the quark-gluon plasma has prop-
erties which are rather di�erent from a free gas of gluons and quarks. One
well established approach which introduces quark and gluon quasi-particles
is presented in Sec. 4.3. The role of the dynamics of the Polyakov loop for
the decon�nement phase transition is discussed in Sec. 4.4. In Sec. 4.5 quark
models are discussed which account for the con�nement as well as for the
chiral symmetry aspect of the transition from hadronic to quark-gluon mat-
ter. Polyakov loop and constituent quark degrees of freedom are combined
on a mean �eld level. In Sec. 4.6 the role of �uctuations is highlighted focus-
ing on �rst order phase transitions out of eqilibrium. Here one of the quark
models introduced in the previous section is used for illustration. Model cal-
culations which go beyond mean �eld approaches by using renormalization
group methods are presented in Sec. 4.7. A possible connection between QCD
on one hand and conformal �eld theory and gravity theory on the other is
discussed in Sec. 4.8.

Finally an executive summary is presented in Chapt. 5 which highlights the
connection of the presented approaches to the CBM experiment and points
to future developments.



Chapter 2

QCD and its thermodynamics

2.1 QCD and its symmetries

The present section provides an introduction to QCD and its symmetry prop-
erties. Also systematic approaches to the strong interaction are brie�y intro-
duced and the fundamental di�erence to models is pointed out.

2.1.1 QCD basics

It is commonly accepted at present that Quantum Chromodynamics (QCD)
is the theory of the strong interaction. The theory posits that the observed
strongly interacting particles, namely the hadrons, arise as particle excita-
tions in a quantum �eld theory of quarks and gluons as fundamental degrees
of freedom. Six di�erent types of quarks, called quark �avors, exist: up (u),
down (d), strange (s), charm (c), bottom (b) and top (t). Some of their prop-
erties are collected in Tab. 2.1. The quarks carry fractional (electric and
baryonic) charge. In addition, the up, down and strange quarks are very light

particle mass [MeV/c2] electric charge baryon number spin

u 1.5 � 3.0 2/3 1/3 1/2
d 3 � 7 −1/3 1/3 1/2
s 95± 25 −1/3 1/3 1/2

c (1.25± 0.09) · 103 2/3 1/3 1/2

b (4.20± 0.07) · 103 −1/3 1/3 1/2

t (174.2± 3.3) · 103 2/3 1/3 1/2
g 0 0 0 1

Table 2.1 Some basic properties of quarks and gluons. The electric charge is given in
multiples of |e| where e is the charge of an electron. The spin is given in multiples of ~.
Note that the quark masses depend on the renormalization scheme and scale (see [10] for
details).
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objects. All experimental searches for such light states or for states with frac-
tional charge have failed. This fact � which is far away from being completely
understood � is called con�nement.

As will be discussed below in Sec. 2.1.3 con�nement is associated to a
symmetry: the center symmetry. This symmetry changes its pattern in a
hot and/or dense strongly interacting system. Quarks and gluons will be-
come decon�ned and form a quark-gluon plasma. For later use concerning
thermodynamics it is illustrative to count the light degrees of freedom on
the elementary level of QCD, i.e. the light quarks and gluons (where �light�
means every state which is signi�cantly lighter than, e.g., 1 GeV):

quarks: (part.+antip.)× spin× �avor× color = 2× 2× 3× 3 = 36
gluons: polar.× color = 2× 8 = 16

Thus one �nds in total 52 light degrees of freedom.
Instead of the pattern of states which one would naively expect (more or

less free quarks and gluons) one �nds a rather complex hadronic world which
consists of states with integer electric and baryonic charges. These states
are rather heavy as compared to the (lightest) quark masses (cf. Tab. 2.2).
The spectrum starts after a gap of roughly 1 GeV. There is, however, an
exception: one �nds comparatively light pseudoscalar states (as compared to

particle mass [MeV/c2]
electric
charge

baryon
number

spin

π0 134.9766 0 0 0

π± 139.57018 ±1 0 0

K± 493.677 ±1 0 0

K0 , K̄0 497.648 0 0 0

η 547.51 0 0 0

ρ0 , ρ± 775.5 0 ,±1 0 1

ω 782.65 0 0 1

K∗ 891.66 0 ,±1 0 1

η′ 957.78 0 0 0

φ 1019.460 0 0 1

p 938.27203 1 1 1/2

n 939.56536 0 1 1/2

Λ 1115.683 0 1 1/2

Σ+ 1189.37 1 1 1/2

Σ0 1192.642 0 1 1/2

Σ− 1197.449 −1 1 1/2

Ξ0 1314.83 0 1 1/2

Ξ− 1321.31 −1 1 1/2

. . . . . . . . . . . . . . .

Table 2.2 Low-lying hadronic states (selection) and some of their properties [10]. Top
part mesons, bottom part baryon octet.
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other hadrons), the pions � including the strangeness sector one additionally
has the kaons and the eta meson.

Again one can count the light degrees of freedom:

3 (pions) + 4 (kaons) + 1 (eta) = 8

Hence in the hadronic world one only has the 8 types of light pseudoscalars
as compared to the 52 light degrees of freedom counting quarks and gluons.
As already pointed out, one expects that quarks and gluons are liberated in
a strongly interacting medium at su�ciently large densities/temperatures.
If such a transition1 happens, the relevant degrees of freedom signi�cantly
change from about 8 to about 52. (For the sake of this simple qualitative ar-
gument interactions are neglected.) Therefore one can expect sizable changes
e.g. in the energy density or pressure as a function of the temperature. A
detailed discussion of the phases of QCD is given in Sec. 2.2.

Con�nement or not, global symmetries of the fundamental theory are man-
ifest in the hadron spectrum. The isospin symmetry, under which proton and
neutron transform as an SU(2) doublet2 is the manifestation of the corre-
sponding SU(2) symmetry of QCD between the up and down quarks. The
approximate SU(3) symmetry under which proton, neutron and six hadron
resonances (strange hyperons Σ, Ξ and Λ) transform as an octet is the man-
ifestation of the approximate �avor symmetry between the up, down and
strange quarks, which transform in the fundamental representation of �avor
SU(3) (cf. Fig. 2.1). In SU(3), to obtain an octet representation one should
take a product of three fundamental representations � i.e., there are three
quarks in a baryon.
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Fig. 2.1 The lowest-lying baryon multiplet (left) and the fundamental triplet (right) of
�avor SU(3).

1 �Transition� is used here in a loose sense. It might be a true phase transition or a rapid
crossover. Details are discussed below in Sec. 2.2.
2 SU(N) denotes the group of special unitary transformations in N dimensions (N ≥ 2),
whose determinant is 1. The group in non-cummutative and hence non-Abelian.
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A further symmetry of QCD which is not manifest in the spectrum of
hadrons is called color � which gives the name to the theory. Unlike �avor,
the color symmetry is a local symmetry or, more appropriately, invariance
of QCD. Like the U(1) local gauge invariance of QED, the local color invari-
ance also requires vector boson �elds; these are the gluons. As there are three
fundamental colors required (e.g. �red�, �green� and �blue�), QCD gauge in-
variance obeys a color SU(3) symmetry, de�ning QCD as a non-cummutative,
i.e. non-Abelian gauge theory.

SU(3)flavor and SU(3)color are two completely di�erent sets of transforma-
tions in QCD, completely independent from each other, though they form
similar group structures. Quarks transform under (i.e., carry) both �avor (u,
d, s for up, down and strange quarks3) and the three color. Gluons, like
photons, are emitted by currents. Unlike photons, gluons do not only carry
momentum and spin, but also color. The color of the gluon is determined by
the colors of quarks before and after the emitting transition. There are eight
gluons corresponding to nine pairs of initial times �nal quark colors minus
one which correspond to a singlet under SU(3)color.

In quantum �eld theory the gluons are described by eight 4-vector poten-
tials Aaµ, a = 1, . . . 8, or matrix valued 4-vector Aµ ≡ Aaµλ

a/2, where λa are
eight linearly independent 3× 3 Gell-Mann matrices. Each �avor of quark is
described by three (color) Dirac 4-spinor �elds qc, c = 1, 2, 3, where q = u, d
or s and we suppress Dirac spinor indices.

The most general, relativistically invariant, renormalizable Lagrangian
density for a theory of 3 �avors of quarks with SU(3) color gauge invari-
ance is given by [11]:

LQCD = −1
2
TrFµνFµν +

∑
q=u,d,s

q̄ (iγµDµ −mq) q , (2.1)

with the gauge covariant derivative Dµ = ∂µ − igAµ and the gluon �eld
strength Fµν = i

g [Dµ, Dν ]. For a single color component the �eld strength
reads

F aµν = ∂µA
a
ν − ∂νAaµ + gfabb

′
AbµA

b′

ν (2.2)

which demonstrates that gluons also interact with themselves and not only
with quarks.

The Lagrangian density (2.1) and the corresponding action

SQCD =
∫
dt

∫
d3xLQCD (2.3)

3 For the present discussion the heavy quarks c, b and t are ignored. For the symmetry
considerations which will follow below and also for the thermodynamics the heavy quarks
are not of much concern. Note, however, that the heavy quarks are interesting probes
to explore strongly interacting matter, cf. the Parts II �In-Medium Excitations� and IV
�Observables and predictions�
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de�ne QCD on the classical level. One convenient way to obtain the corre-
sponding quantum �eld theory is the path integral formalism. In addition, this
formalism yields a close connection to the thermodynamic partition function.
In vacuum, the central quantity to obtain observables is the transition am-
plitude which transports a given �eld con�guration Φ1 at time t1 to another
con�guration Φ2 at time t2 [11]:

〈Φ1| e−iH(t2−t1) |Φ2〉 ∼
∫
D[q, q̄, Aaν ] exp

i t2∫
t1

dt

∫
d3xLQCD[q, q̄, Aaν ]


=
∫
D[q, q̄, Aaν ] e

iSQCD (2.4)

with the Hamiltonian H. On the other hand, in a (su�ciently large) many-
body system which is in thermal equilibrium all thermodynamical quantities
can be obtained from the grand canonical partition function [12]

Z := tr e−(H−µN)/T =
∑
n

〈n|e−(H−µN)/T |n〉 . (2.5)

Here T denotes the temperature and µ is the chemical potential associated
with the conservation of baryon number (see Secs. 2.1.3 and 2.2 below). N
denotes the baryon number operator.

In addition, the expectation value for an observable O is given by

〈O〉 :=
tr
[
O e−(H−µN)/T

]
Z

. (2.6)

It is important to note here that the states |n〉 in (2.5) form an arbitrary
complete set of states, i.e. they are not necessarily eigen states of H.

The formal similarity between e−iH(t2−t1) in (2.4) and e−(H−µN)/T in (2.5)
can be exploited to represent also the partition function by a path integral

Z ∼
∫
D[q, q̄, Aaν ] exp

− 1/T∫
0

dt

∫
d3x

(
LEQCD[q, q̄, Aaν ]−

1
3
i µ q†q

)
=
∫
D[q, q̄, Aaν ] e

−SEQCD exp

 1/T∫
0

dt

∫
d3x

1
3
i µ q†q

 (2.7)

where LEQCD/S
E
QCD is the Euclidean Lagrangian/action. Changing from Min-

kowski to Euclidean space accounts for the fact that the �time� integration
is now along an imaginary time running from 0 to −i/T . The expectation
value (2.6) can be represented in a corresponding way. We note that the
chemical potential enters (2.7) in a simple way: Starting from the action SEQCD
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each �eld that transforms nontrivially under the action of the baryon charge
operator (such as the quark �elds in QCD) should have its time derivative
extended, ∂0q → ∂0q+ i

3µq, where
1
3 is the baryon charge of the quark. This

is analogous to the coupling of an external electrostatic potential to a charged
particle.

On a grid the sum over all possible �eld con�gurations can be performed
by the Monte-Carlo method provided that the statistical weight of a given
con�guration is a positive de�nite function, i.e. allows for a probabilistic inter-
pretation. This condition is indeed satis�ed by e−S

E
QCD which appears in (2.7),

but not by eiSQCD appearing in (2.4). Therefore time-dependent quantities
cannot be evaluated with such a Monte-Carlo approach. Also the appearance
of a �nite chemical potential in (2.7) makes the exponent complex-valued
and the exponential function non-positive de�nite. Ways to circumvent that
problem are discussed in much more detail below in Sec. 3.2.

The Monte-Carlo evaluation of path integrals like the one in (2.7) consti-
tutes the lattice QCD approach towards strongly interacting systems. More
details and applications of this technique to thermodynamical quantities can
be found in Sec. 3.2 below. For the limiting case T → 0 (and µ = 0) one can
even describe vacuum properties by appropriate choices for the observable
O in (2.6). Note, however, that for the vacuum case only static quantities
(like masses) can be calculated in lattice QCD, no dynamical ones like reac-
tion rates. After this brief introduction of path integrals and a �rst look at
thermodynamic quantities we return to some elementary properties of QCD.

One can see that the QCD Lagrangian (2.1) has only one parameter � the
dimensionless coupling constant, g, besides the quark masses. Gauge invari-
ance together with renormalizability are powerful constraints. Such a theory
must have an enormous predictive power (in a loose sense of predictions per
free parameter).

The most remarkable property of QCD is asymptotic freedom � the physi-
cal coupling de�ned, e.g., through a process of scattering, tends to zero as the
characteristic momentum transfer of the de�ning process Q tends to in�nity:
g2(Q) ∼ 1/ logQ. In a simpler language, translating the momentum transfer
to a space resolution, the coupling vanishes at short distances.

Moreover, because of the renormalization group running of the physical
coupling, the theory is more appropriately described by a scale, rather than
a dimensionless coupling (this is known as dimensional transmutation). This
scale is usually de�ned as a scale Q at which the running coupling would
become of order unity. This is the characteristic hadronic scale, typically
taken as ΛQCD = 200 MeV. For example, the size of a proton is of order
~c/ΛQCD = 1 fm.

The running coupling constant αs = g2

4π is depicted in Fig. 2.2 taken from
[10]. Due to the smallness of the coupling constant QCD perturbation the-
ory becomes applicable in the high energy regime for quantities which are
insensitive to low energies [11]. At lower energies, however, the results of per-
turbative QCD become unreliable. At least one sees that the strong coupling
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Fig. 2.2 The running coupling constant αs of QCD [10].

constant strongly rises. This suggests that it is possible that the strong in-
teractions rearrange things in such a way that one can no longer simply read
o� the relevant degrees of freedom from the Lagrangian density. Therefore
the rise of the strong coupling constant with decreasing energy/momentum
is compatible with (but no proof of) con�nement.

2.1.2 Systematic approaches and models

At present, we are not able to fully solve QCD.4 Nonetheless for certain
kinematical regimes and for speci�c problems we can develop systematic ap-
proaches towards QCD. In addition, we have a whole plethora of hadronic
and quark models at hand. The principal di�erence between systematic ap-
proaches and models is that in the former case one knows � at least in prin-
ciple � how to systematically improve the calculations. A non-exhaustive list
of systematic approaches which is relevant for the forthcoming discussions is
given here:

• Perturbative QCD [11]: One deals with free quarks and gluons as the basic
objects. Every quantity is calculated as an expansion in terms of the cou-
pling constant αs, i.e. one approximates full QCD by a Taylor expansion
in αs. This approach is only applicable for high energies where the running
coupling is small enough (cf. Fig. 2.2) and where the quarks and gluons
are the relevant degrees of freedom. Concerning thermodynamics one can

4 Actually this is true for any quantum �eld theory besides some toy models.
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apply perturbative QCD to the regimes of high temperatures and/or high
chemical potential, since in these regimes the high-momentum modes play
the dominant role. Obviously, for the behavior and interactions of these
high-momentum modes perturbation theory can be applied since the run-
ning coupling becomes small. Note that some non-perturbative features
are intertwined with standard perturbation theory for the calculation of
thermodynamic properties (see Secs. 3.1 and 3.5 for details).

• Chiral perturbation theory [13�16]: Full QCD is approximated by an ef-
fective theory for the light pseudoscalar mesons (and nucleons), i.e. one
takes into account the stable5 hadrons which are the relevant degrees of
freedom at low momenta. This e�ective theory contains free parameters
which ideally one would like to determine from QCD. So far one has to �t
them to experimental data. One obtains a Taylor expansion in terms of
energies and (Goldstone boson) masses. For a given order in this Taylor
expansion the pattern of chiral symmetry breaking (see Sec. 2.1.3) reduces
the number of otherwise in�nitely many free parameters to a �nite num-
ber (which rises with the desired order in the expansion). Obviously this
approach is applicable for low energies where mesonic and baryonic reso-
nances are not excited. Concerning thermodynamics one can apply chiral
perturbation theory to the regime of low temperatures and low chemical
potentials, since there the lowest excitations play the dominant role. This
approach will be of use in Sec. 2.2.6 to calculate the onset of in-medium
changes for various order parameters.

• Lattice QCD [17]: One approximates full continuum QCD by (full!) QCD
on a grid, i.e. with a �nite grid point distance a 6= 0 and a �nite volume
V 6= ∞. In principle one can improve the calculation by working with a
higher number of grid points. In addition, one can check how the calcu-
lated quantities scale with the number of grid points to judge how close
one already is to the continuum and in�nite volume limit [18]. Clearly,
lattice QCD is a powerful tool to learn about QCD especially since it is
not restricted to very low or high energies/temperatures like chiral pertur-
bation theory or QCD perturbation theory, respectively. Nonetheless, also
lattice QCD has some inherent restrictions which have already been partly
discussed after Equation (2.7). In contrast to the previously discussed ap-
proaches one cannot calculate dynamical quantities within lattice QCD.
Therefore, the dynamics of a nucleus-nucleus collision is out of reach. On
the other hand, concerning thermodynamical quantities this is of no con-
cern and one can use lattice QCD at least in principle for arbitrary high or
low temperatures. More severe in that context is the restriction to small
chemical potentials. How this problem is tackled is discussed in more de-
tail in Sec. 3.2. A second problem concerns the light quark masses. In
lattice QCD the action of fermions is transformed to a functional determi-
nant which is a nonlocal object. The computational e�ort grows with the

5 �Stable� with respect to the strong interaction.
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number of lattice sites which are correlated by this determinant. On the
other hand, how many lattice sites are e�ectively correlated, is determined
by the dimensionful quantity which sets the largest scale (in coordinate
space), i.e. in practice by the smallest quark mass. At present, it is not
possible to deal with quark masses as low as the physical up and down
quark masses. There is yet another problem with fermions on the lattice:
Due to the lattice boundary conditions the fermion determinant actually
contains more degrees of freedom than one has in the continuum (fermion
doublers). One ad hoc method to deal with that problem is to take roots of
the determinant (staggered fermions). Another one is to give a large mass
to the doublers which grows to in�nity when the continuum limit is ap-
proached (Wilson fermions). The latter method, however, violates chiral
symmetry (see below). In principle, one expects chiral symmetry to be-
come restored in the continuum limit, but for all practical calculations �
which always have a �nite grid distance, no matter how small it is � one
sacri�ces an important symmetry. A third method, which is theoretically
most satisfying, but numerically most costly, is to use an action which ex-
actly obeys a lattice chiral symmetry (chiral fermions). In the continuum
limit the latter turns into the ordinary chiral symmetry. These issues are
taken up again in Sec. 3.2.

As should have become clear from the previous discussion there are still
areas and problems where none of the systematic approaches can be applied:
Concerning elementary processes (e.g. hadron scattering) there is the regime
of intermediate energies which is dominated by the appearance of hadronic
resonances. Neither chiral perturbation theory nor perturbative QCD (using
quarks and gluons) can be applied here. Of course, the same is true for more
complicated reactions, e.g. nucleus-nucleus collisions, in the corresponding
energy regime. Therefore, hadronic models are applied to such problems. For
the description of strongly interacting many-body systems one has to switch
from hadronic to quark models, if one proceeds from below to temperatures
close to the transition and above. Concerning thermodynamic quantities this
is especially necessary for large chemical potentials and low temperatures
where lattice QCD cannot be applied.

It is important to understand the following interrelation between models
and systematic approaches: Models are mandatory for the areas where the
systematic approaches do not work. However, these models typically have
a region where they overlap with the applicability region of one of the sys-
tematic approaches. This opens the possibility to constrain parameters of
the models. Especially �ts of models to lattice QCD calculations are an im-
portant tool to improve hadron or quark models or to �x their parameters.
Various such hadronic and quark models are discussed in later sections of this
book. Of course, another constraint for these models comes from the sym-
metries obeyed by the strong interaction. These symmetries are discussed in
the following.
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2.1.3 Symmetries of QCD

To �gure out the symmetries of a physical system is an important aspect to
understand the observed pattern, e.g. of the mass spectrum. Selection rules
and the appearance of multiplets (degenerate states) are classical examples for
the importance of symmetries. Even more, if one has a problem at hand where
the underlying theory cannot be fully solved, symmetries can still lead to a
qualitative understanding. Especially the phase structure of QCD is dictated
by its symmetries. Most important in that respect are chiral, center and color
symmetry. Their changes with temperature and/or chemical potential lead to
the hadronic phase, the quark-gluon plasma and the color superconducting
state. These aspects will be outlined in the present section.

Symmetries can be realized in di�erent ways in a given physical system:
First, the symmetry might be either exact or only approximately realized.
Second, one has to distinguish between the interaction which governs the
system and the physical state. Third, a symmetry might exist on the classical
level, but be destroyed on the quantum level. The most simplest case appears,
if both the interaction and the physical state are invariant with respect to
a symmetry transformation. This situation is called Wigner-Weyl phase. In
this case one �nds the celebrated selection rules etc. If the symmetry is only
approximate one observes some (small) violations of the consequences which
follow from the symmetry. But also these violations show a pattern which
can be understand from the approximate symmetry.

If only the interaction obeys the symmetry, but not the physical state, the
system is in the Nambu-Goldstone phase. Such a symmetry is called �hidden�
or �spontaneously broken.� A classical example is a ferro magnet: The spin-
spin interaction is invariant with respect to rotations. However, the energeti-
cally favored physical state is the one where all spins are aligned. This causes
a macroscopic magnetization which points in some direction. Clearly, rota-
tional invariance is broken. If a continuous symmetry is spontaneously broken
one �nds a massless state (gapless excitation) in the excitation spectrum, the
Goldstone mode. Another feature of a spontaneously broken symmetry is
the change of the symmetry pattern as a function of temperature. For the
ferro magnet there is a critical temperature, the Curie temperature, where
the system changes from the low-temperature Nambu-Goldstone phase to the
high-temperature Wigner-Weyl phase. The magnetization serves as an order
parameter of this symmetry transition. An order parameter is non-vanishing
when the symmetry is spontaneously broken and vanishes when the symme-
try is restored. If the symmetry is only approximately realized in a system,
the Goldstone modes are not exactly massless (gapless), but light. Also the
order parameter might not completely vanish in the Wigner-Weyl phase.

Finally, a symmetry might exist only for the classical version of the inter-
action. If it does not exist for the corresponding quantum theory one calls it
an �anomaly�. In the path integral representation (cf. e.g. (2.4)) this implies
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that the action is invariant while the integration measure is not. Still, the
classical symmetry leaves its marks in the quantum system.

In the following we will discuss the symmetries of QCD. We will see that
the symmetry structure of QCD is so rich that all cases (Wigner-Weyl and
Nambu-Goldstone phases, anomalies) appear here. The results are summa-
rized in Tab. 2.3.

symmetry vacuum high T low T , high µ order parameter consequences

(local) color

SU(3)
unbroken unbroken broken

diquark
condensate

color super-
conductivity

Z(3) center
symmetry

unbroken broken broken Polyakov loop
con�nement/
decon�nement

scale
invariance

anomaly
gluon

condensate
scale (ΛQCD),
running coupling

chiral symmetry UL(Nf )× UR(Nf ) = UV (1)× SUV (Nf )× SUA(Nf )× UA(1)

UV (1) unbroken unbroken unbroken �
baryon number
conservation

�avor
SUV (Nf )

unbroken unbroken unbroken � multiplets

chiral
SUA(Nf )

broken unbroken broken
quark

condensate

Goldstone bosons,
no degenerate states
with opposite parity

UA(1) anomaly
topological
susceptibility

violation of
intrinsic parity

Table 2.3 Exact and approximate symmetries of QCD; note that the consequences given
in the last column are only a selection. The symmetries which hold only approximately are
explicitly broken. See main text for details.

As already mentioned in Sec. 2.1.1 the QCD Lagrangian (2.1) is invariant
with respect to local color transformations

q(x) → gq(x) := g(x) q(x)

Aµ(x)→ gAµ(x) := g(x)
(
Aµ(x) + i

g∂
x
µ

)
g†(x)

(2.8)

where we have introduced the local transformation

g(x) = eigΘ
a(x)λa/2 (2.9)

utilizing the Gell-Mann matrices λa acting on the color indices of the quarks.
Θa are arbitrary real numbers, a = 1, . . . , 8. It is the local gauge invariance
with respect to color SU(3) which leads to the fact that both the quark-
gluon and the gluon-gluon interaction strength are determined by the same
coupling constant g. As a gauge theory QCD has a lot of similarities to QED.
In particular, there are QED governed systems which show a transition to a
superconductor at su�ciently low temperatures. From the point of view of
symmetries, QED gauge invariance is spontaneously broken in the supercon-
ducting phase. Electron pairs condense and the photons obtain a (Meissner)
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mass, i.e. magnetic �elds cannot penetrate the superconducting region. The
corresponding e�ect is observed for QCD: At low temperatures, but very high
chemical potentials one enters the regime of color superconductivity. Quark
pairs condense and this diquark condensate serves as an order parameter of
spontaneously broken color SU(3). For more details see Sec. 3.5.

A symmetry which is closely interrelated with the local color symmetry is
the center symmetry (for a recent introductory report see [19]). Some formal
considerations are necessary to identify this symmetry: First we note that in
the de�nition of the partition function in (2.5) the very same state appears
as a bra and as a ket vector (since it has to represent the trace). In the path
integral representation (2.7) this translates to boundary conditions for the
�elds: Gluon/quark �elds must be periodic/antiperiodic in Euclidean time,
i.e.

Aµ(t+ 1/T,x) = Aµ(t,x) , q(t+ 1/T,x) = −q(t,x) . (2.10)

Clearly, the boundary condition (2.10) places constraints on the allowed gauge
transformations which appear in (2.8). As it will turn out in the following,
the center symmetry is a good symmetry of a purely gluonic theory (Yang-
Mills theory), i.e. it becomes a symmetry of QCD, when the quarks are
neglected. Therefore, we �rst concentrate on the gluons and neglect the quark
�elds in (2.7). In order to ful�ll the boundary condition (2.10) for the gluon
vector potential, we consider �rst gauge transformations which are strictly
periodic in (Euclidean) time g(x, x4 + β) = g(x, x4). Every physical quantity
must be invariant under these gauge transformations. In addition we can �nd
topologically non-trivial transformations that are periodic up to a constant
twist matrix h ∈ SU(3)

g(t+ 1/T,x) = h g(t,x) . (2.11)

Such a transformation turns a strictly periodic vector potential Aµ into

gAµ(t+ 1/T,x) = h gAµ(t,x)h† . (2.12)

Still the gauge transformed vector potential gAµ must obey the boundary
condition (2.10). Therefore, the twist matrices h are limited to the center
Z(3) of the gauge group SU(3). By de�nition, the elements of the center
commute with all group elements. They are multiples of the unit matrix,

h = z1, z = exp(2πin/3) , n = 1, 2, 3 . (2.13)

The symmetry with respect to the transformations (2.11) which obey (2.13)
is called center symmetry. Note that for a given gauge transformation g(x)
the center symmetry with respect to h is a global transformation and should
not be considered as a subgroup of the local gauge group.
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Now we turn to the quarks. Here the Z(3) symmetry gets explicitly bro-
ken in the presence of dynamical quark �elds: The crucial point is that the
quarks are antiperiodic in Euclidean time, cf. (2.10). Indeed, under a twisted
transformation a quark �eld transforms into

gq(t+ 1/T,x) = g(t+ 1/T,x) q(t+ 1/T,x) = −z g(t,x) q(t,x) = −z gq(t,x) .
(2.14)

To maintain the boundary condition (2.10) one is restricted to z = 1 so that
the center symmetry disappears. Nonetheless, the center symmetry is useful
as an approximate symmetry of QCD which becomes exact, if the dynamical
quarks are neglected.

Note, that we always stress the word �dynamical� in the context of quarks.
Indeed, the center symmetry is an important aspect of the theory in particu-
lar in the presence of static quarks. Here, the connection between the center
symmetry and con�nement appears, as will be discussed next: We recall that
� neglecting dynamical quarks � the QCD action is Z(3) invariant. How-
ever, other physical quantities need not necessarily be invariant under the
center symmetry transformations. In particular, the global Z(3) symmetry
can break spontaneously. We now use static quark �elds to probe the physics
of the gauge �elds. Such in�nitely heavy test quarks are described by the
Polyakov loop (a Wilson loop closed around the periodic Euclidean time di-
rection)

L(x) = Tr P exp

ig 1/T∫
0

dtA0(t,x)

 (2.15)

where P denotes path ordering of the exponential. The Polyakov loop is a
complex scalar �eld that depends on the spatial position x of the static color
source. It transforms non-trivially under Z(3) transformations,

gL(x) = z L(x) . (2.16)

On the other hand, it is invariant under strictly periodic gauge transforma-
tions (with z = 1) as it should be for a gauge invariant physical quantity.

The partition function for a system of gluons in the presence of a static
in�nitely heavy test quark is given by

ZQ =
∫
D[Aaν ]L(x) exp(−SEYM) (2.17)

where the (Euclidean) Yang-Mills action SEYM is obtained from the QCD
action by dropping the quark �elds. Obviously, the thermal expectation value
of the Polyakov loop
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〈L〉 =
1
Z

∫
D[Aaν ]L(x) exp(−SEYM) =

ZQ
Z

= exp(−βF ) (2.18)

is just the ratio of the partition functions of the gluon systems with and
without the external color source. Therefore, this expectation value measures
the free energy F of the static test quark. This aspect connects the center
symmetry to con�nement: At low temperatures color is con�ned and the free
energy of a single quark is therefore in�nitely large (F = ∞). Hence, in the
con�ned phase 〈L〉 = 0. On the other hand, at high temperatures asymptotic
freedom suggests that quarks and gluons become decon�ned. There F is �-
nite and 〈L〉 = L0 6= 0 in the decon�ned phase. From (2.18) we know that L
transforms non-trivially under center symmetry transformations. Therefore,
a non-zero expectation value L0 implies that the Z(3) symmetry is spon-
taneously broken at high temperatures in the decon�ned phase. Thus, 〈L〉
quali�es as an order parameter of decon�nement. It is unusual that a sym-
metry is realized at low temperatures, but gets spontaneously broken at high
temperatures. However, we note that the center symmetry is not a symme-
try of the Hamiltonian, but of the action. In fact, it is easy to understand
why the center symmetry must break spontaneously at high temperatures:
In the limit 1/T → 0 the integral in (2.15) extends over shorter and shorter
Euclidean time intervals and hence L0 → Tr1 = 3, the number of colors. As
we will see below in Sec. 2.2.6 the expectation value of the Polyakov loop is
still useful as an order parameter even in the presence of dynamical quarks
which break the center symmetry explicitly (cf. also Sec. 4.4). In this case, the
center symmetry can only be regarded as an approximate symmetry of QCD.
This is a �rst example for an approximate symmetry which still leaves its
trace in the phenomenology of QCD. Next we turn to another simpli�cation
of QCD which reveals other approximate symmetries.

As outlined in Sec. 2.1.1 the masses of the three light quarks are (much)
smaller than typical hadronic scales (≈ 1GeV). Therefore mass terms of the
light quarks can be treated as a perturbation of a Lagrangian where these
masses are dropped,

L0 = −1
2

TrFµνFµν + ψ̄ iγµD
µ ψ (2.19)

where now ψ collects the three light quark �elds

ψ =

u
d
s

 . (2.20)

The Lagrangian (2.19) does not contain any dimensionful parameter. The
corresponding classical theory possesses dilation invariance, i.e. the corre-
sponding action is invariant with respect to the following transformations of
�elds and space-time variables:
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x→ x′ = e−σ x ,

ψ(x)→ ψ′(x′) = e3σ/2 ψ(x) ,
Aµ(x)→ A′µ(x

′) = eσ Aµ(x) .
(2.21)

Here σ is an arbitrary real number, σ ∈ R. If this symmetry was realized,
QCD would look the same at all distances, since no scale is provided by the
theory. Consequently all hadrons (and even all nuclei) would be massless.
Even more important, there would be no running, i.e. scale dependence of
the coupling constant. Of course, this dilation symmetry is explicitly broken
by the quark masses. But even then, one would expect no running of the
coupling at high energies where all quark (and hadron masses can safely be
neglected. However, the dilation symmetry is an anomaly, i.e. the (approxi-
mate) symmetry exists only on the classical level, but is spoiled by quantum
e�ects. In that way, ΛQCD, the scale of QCD, emerges from quantization. One
calls this e�ect �trace anomaly� for the following reason: Still one can de�ne
an order parameter associated with this anomaly, namely the expectation
value of the trace of the energy-momentum tensor Θµν , given by

〈Θ µ
µ 〉 =

βQCD

g3
〈TrFµνFµν〉︸ ︷︷ ︸

dominant

+
∑

q=u,d,s

(1 + γQCD)mq〈q̄q〉 . (2.22)

The last term on the right hand side of (2.22) comes from the explicit breaking
of the dilation symmetry due to the �nite quark masses. On the other hand,
the �rst term, the �gluon condensate,� is actually the numerically dominant
one. It solely comes from quantum e�ects encoded in βQCD, the beta function
of QCD which governs the running of the coupling constant. We note in
passing that quantum e�ects in�uence also the last term on the right hand
side of (2.22) via the scale dependence of the quark masses controlled by
γQCD. Below in Sec. 2.2.6 we will compare the temperature dependence of
the gluon condensate and therefore of the trace anomaly with the temperature
dependence of other order parameters.

If the masses of the quarks are neglected their chirality (handedness) be-
comes a good quantum number: A free massless Dirac particle does not
change its chirality. Even more important, also the QCD interaction does
not change it and the gluons couple to the left- and right-handed states with
the same strength. Formally this can be seen by splitting the quark �elds into
left- and right-handed contributions, ψ = ψL + ψR. The Lagrangian (2.19)
becomes6

L0 = −1
2

TrFµνFµν + ūL iγµD
µ uL + ūR iγµD

µ uR + d̄L iγµD
µ dL

+ d̄R iγµD
µ dR + s̄L iγµD

µ sL + s̄R iγµD
µ sR (2.23)

6 Note that q̄L means (qL)†γ0.



62 2 QCD and its thermodynamics

where we have explicitly displayed all �avor components to stress that one
has just six copies of basically the same object, a massless quark with �xed
handedness. Neglecting the quark masses is called �chiral limit�. Since the
interaction does not distinguish between the di�erent �avors one can mix
them without changing the physics. One can perform this mixing indepen-
dently for the left- and for the right-handed sector. This suggests a symmetry
with respect to a large group, namely the chiral group UL(3) × UR(3). For
the following discussion it is more appropriate to structure this group in a
somewhat di�erent way,

UL(Nf )× UR(Nf ) = UV (1)× SUV (Nf )× SUA(Nf )× UA(1) , (2.24)

and to discuss separately the implications of the various subgroups. The
indices V and A indicate �vector� and �axial(-vector)� and refer to the Lorentz
transformation properties of the conserved currents which are attributed to
the respective symmetry. We have also taken the freedom to use the number
of �avors Nf instead of 3. In that way we are more �exible to discuss isospin
symmetry (Nf = 2) separately.

Global transformations with respect to UV (1) just change the phase of all
quark species in the same way. The corresponding conserved charge is the
baryon number. This symmetry is present in the QCD Lagrangian (2.1) not
only in the massless limit (2.19). Therefore, the baryon number is an exactly
conserved quantum number of the strong interaction and serves to specify
di�erent types of hadrons (baryons, antibaryons, mesons, cf. Tabs. 2.1 and
2.2). An isolated many-body system is also characterized by a �xed baryon
number which can be incorporated grand canonically by a baryo-chemical
potential µ (see also Sec. 2.2).

Next we study the following chiral transformations U ∈ SUV (3)×SUA(3)
which leave the Lagrangian (2.19) invariant:

ψ → Uψ , Aµ → Aµ (2.25)

with

U = eiαaτaeiβaτaγ5 (2.26)

with �avor matrices τa and arbitrary real numbers αa, βa with a = 1, 2, 3.
We note in passing that αa = ±βa results in purely right/left-handed trans-
formations which leave the respective other component untouched.

The symmetry with respect to SUV (3) is extremely well realized for the
subgroup SUV (2) of u and d (isospin symmetry). This is due to the smallness
of the di�erence between mu and md (cf. Tab. 2.1). Mass splitting within
the isospin multiplets are on the order of a few MeV. Also the symmetry
breaking pattern with respect to the rest of SUV (3) which involves the heavier
strange quark mass is well understood � at least for the masses. Turning
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to SUA(Nf ) we note that a generator (there are three/eight independent
ones for SUA(2)/SUA(3)) of such an axial transformation changes sign under
parity transformation L→ R. Thus, acting on a state of de�nite parity, e.g.,
a proton at rest, such a generator should create another state with opposite
parity. If the chiral symmetry was realized trivially, we would have observed
such opposite parity partners for hadrons, including the proton, with small
mass splitting (vanishing in the chiral limit). There are no such single-particle
states. On the other hand, spontaneous breaking of a continuous symmetry,
such as the chiral symmetry, by the vacuum of QCD would mean that the
vacuum is degenerate. There is a continuum of such vacua and the action of
SUA(2) on the vacuum would transform di�erent vacua into each other (as a
rotation would in a ferro magnet). Furthermore, the action of each generator
of chiral SUA(Nf ) on the vacuum creates a pseudoscalar particle, whose rest
energy is zero, by the symmetry; this is a re�ection of the Goldstone theorem.
These particles � three π mesons for SUA(2) � are observed, albeit with
small masses (mπ � mρ,mp, cf. Tab. 2.2) which are due to nonzero mu and
md. For SUA(3) one �nds the �avor octet of light pseudoscalars, i.e. besides
the pions one has the kaons and the eta (cf. Tab. 2.2).

One of the clearest indications that the chiral symmetry is hidden (spon-
taneously broken) can be seen in the τ -decay data of τ → ντ +nπ: The weak
interaction couples to the left-handed quark currents, i.e. to V −A with

V bµ =
1
2
ψ̄γµτ

bψ , Abµ =
1
2
ψ̄γµγ5τ

bψ . (2.27)

(Note that this axial-vector �avor current Abµ should not be mixed up with
the gluon potential Aµ.) Decays with even (odd) number of pions contribute
to V (A). Therefore one can obtain from the τ -decay both spectral infor-
mations, the one contained in V and the one contained in A. On the other
hand, V and A are connected by a chiral transformation. Thus, if chiral sym-
metry was realized for the vacuum and its excitation spectrum, the spectral
informations contained in V and A would be the same � up to small dif-
ferences of a few MeV. These spectral informations are obtained from the
(Fourier transforms (FT) of the) correlators, schematically v1 ∼ FT〈V V 〉.
These spectra and their di�erence are shown in Fig. 2.3. One observes the
ρ-peak in the vector (v1) channel, the bump of the a1 in the axial-vector
(a1) channel and broad structure at higher energies.7 Thus the di�erence be-
tween the two spectra does not vanish, not even approximately. Obviously,
in vacuum chiral symmetry is hidden.

The situation is very similar to the already mentioned ferro magnet: In
spite of a rotational invariance of the spin-spin interaction, in the ground
state (�vacuum�) all spins are aligned which causes a macroscopic magne-
tization pointing in some direction chosen to be the z axis. Therefore, full

7 In principle, there is also the one-pion contribution in the axial-vector channel which is
not displayed since it would be a delta function at the invariant mass of the pion.
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Fig. 2.3 Isovector-vector and isovector-axialvector spectra and their di�erence as obtained
by the ALEPH collaboration [20].

rotational invariance is broken down to the symmetry with respect to rota-
tions around the z axis. The excitation spectrum in the z direction is distinct
from the excitation spectrum in the x or y direction, just like in QCD the
v-spectrum is distinct from the a-spectrum. If the ferro magnet is heated, the
magnetization vanishes and rotational invariance gets restored. The magne-
tization is an order parameter for the breakdown of full rotational invariance.
In Sec. 2.2.6.1, order parameters of chiral symmetry breaking are introduced
and their dependence on energy and particle density (or temperature and
chemical potential) is discussed.

Finally we turn to the last subgroup on the right hand side of (2.24), the
UA(1) symmetry. If this symmetry was realized and unbroken, we would not
�nd interactions which violate the intrinsic parity.8 The decay of the omega

8 The intrinsic parity is de�ned as P (−1)s where P denotes the parity of the state and s
its spin [21].
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meson (intrinsic parity +1) into three pions (intrinsic parity −1) is a counter
example. On the other hand, if the symmetry was hidden, there should be a
ninth Goldstone boson connected to it. The appropriate candidate would be
the η′ meson which, however, is too heavy (cf. Tab. 2.2). In fact, the UA(1)
symmetry is destroyed by quantization, i.e. it is an anomaly.

The symmetry pattern of QCD is summarized in Tab. 2.3. One column con-
cerns the order parameters connected to the possible restoration or breaking
of the respective symmetry as a function of temperature T or baryo-chemical
potential µ. These order parameters are further discussed in Sec. 2.2. In the
present Sec. 2.1 we have only scratched the surface of thermodynamics and
phase transitions. Sec. 2.2 is devoted to a much more detailed discussion of
these issues.

2.2 Phases of QCD

We discuss here the most relevant thermodynamics framework as well as
symmetry and universality arguments with a bearing on the phase structure
of strongly interacting matter.

2.2.1 General thermodynamics

Due to the vast number of excited degrees of freedom in a many-body system,
e.g. a system created in a heavy-ion collision, it is both impractical and
uninteresting to consider individual microscopic states. Rather, it is desirable
to consider entire ensembles of individual states characterized by suitable
macroscopic parameters. This approach forms the foundation for statistical
mechanics which takes a particular simple form in the thermodynamic limit
dealing with idealized systems that are spatially uniform and su�ciently large
to render �nite-size e�ects insigni�cant. We start this section with a brief
reminder of general thermodynamic features of particular relevance to our
subsequent discussion.

2.2.1.1 Microcanonical treatment

Most basic is the microcanonical ensemble which encompasses, with equal
probability, all microstates within a narrow energy band around speci�ed
values of the energy E as well as possible other quantite is of interest, such as
conserved �charges�. The key quantity is the entropy which is the logarithm of
the number of states in the ensemble, S(E, V ) = lnΩ(E, V ). In the thermo-
dynamic limit of uniform bulk matter, the volume V acts as a trivial scaling
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parameter and it is therefore convenient to work with the corresponding inten-
sive variables. The control parameter is then the energy density ε = E/V and
the key thermodynamic function is the entropy density σ(ε) = S/V , which
then depends only on the ratio E/V = ε. This simplest case is illustrated in
Fig. 2.4 for an idealized system having a �rst-order phase transition.
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Fig. 2.4 First-order phase transition for a system without conserved charges. The entropy
density σ(ε) (upper left) exhibits a convex anomaly and, consequently, there are two sepa-
rate points (dots) that have a common tangent (lying above σ(ε)). These points represent
the coexisting low-density (blue) and high-density (red) phases. Between these the uni-
form phase (green) is thermodynamically unstable, so a Gibbs phase mixture (dashed
black line) is preferred. The entropy density σ(ε) determines the inverse temperature
β(ε) = ∂εσ = 1/T (upper right), and these two functions combine to give the pres-
sure p(ε) = Tσ− ε (lower left). While σ(ε), T (ε) and p(ε) are all single-valued functions,
the convexity in σ(ε) causes β(ε) and p(ε) to be non-monotonic. As a consequence, the
equation of state p(T ) (lower right) is triple-valued in the coexistence region.

For scenarios relevant to compressed baryonic matter, it is required to
specify also some (or all) of the conserved charges, such as the net baryon
number B, the net electric charge Q, and the net strangeness S. To illustrate
this case, we discuss the microscopic ensemble characterized by a given energy
E and a given �particle number� N which represents, for example, the net
baryon number. (The treatment can readily be extended to an arbitrary
number of such additional charges, although it becomes increasingly tedious.)
The starting point is then the entropy S(E,N, V ). This key function responds
to changes in the speci�ed parameters as follows,
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δS = βδE + αδN + πδV , (2.28)

where the coe�cients are simply related to the temperature T , the chemical
potential µ, and the pressure p,

β =
1
T

=
(
∂S

∂E

)
NV

, α = −µ
T

=
(
∂S

∂N

)
EV

, π =
p

T
=
(
∂S

∂V

)
EN

.

(2.29)

In the thermodynamic limit, S, E, and N are proportional to V and we need
only consider the corresponding densities, σ ≡ S/V , ε ≡ E/V , and ρ ≡ N/V ,
in terms of which we have

Temperature : 1/T = β(ε, ρ) = ∂εσ(ε, ρ) , (2.30)

Chemical potential : −µ/T = α(ε, ρ) = ∂ρσ(ε, ρ) , (2.31)

Pressure : p/T = π(ε, ρ) = σ(ε, ρ)− β(ε, ρ)ε− α(ε, ρ)ρ .
(2.32)

A familiar example of a �rst-order phase transition occurs for nuclear matter9

in the temperature range of the nuclear binding energy per nucleon (0<T <
20 MeV) around and below the nuclear saturation density ρ0 = 0.16fm−3.
Due to the interplay between the long-range attraction and the short-range
repulsion of the force between nucleons, the system behaves like a Van der
Waals gas. As a result, nuclear matter behaves as a liquid at densities near
the saturation value, where as it is a gas of individual nucleons at low densi-
ties. Various thermodynamic representations of this nuclear liquid-gas phase
transition (cf. Sect. 2.2.3.4) are schematically illustrated in various repre-
sentations in Fig. 2.5.

Phase equilibrium:

By considering two such thermodynamic systems in contact and demanding
that the resulting total entropy S = S1 + S2 be stationary, δS = 0, one �nds
that the systems are in mutual thermodynamic equilibrium if their intensive
quantities match, β1 = β2 = β0, α1 = α2 = α0, and π1 = π2 = p0, i.e. if
they have the same temperature, chemical potential, and pressure. It readily
follows that the tangents of the entropy density function σ(ε, ρ) at the two
coexistence phase points (ε1, ρ1) and (ε2, ρ2) are identical,

σ(ε1, ρ1) + β0(ε2 − ε1) + α0(ρ2 − ρ1) = σ(ε2, ρ2) . (2.33)

9 Details on many-body descriptions of nuclear matter can be found in Sect. 3.3.
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Fig. 2.5 The phase diagram for nuclear matter in di�erent representations, calculated
in a schematic model (a classical gas in a density-dependent mean �eld with properties
with properties similar to a Van der Waals gas). In all four representations, the solid line
delineates the phase coexistence boundary which starts in the zero-temperature vacuum,
goes through the critical endpoint (c.e.p.), and terminates at nuclear matter in its ground
state (g.s.); in any of the diagrams, two thermodynamcially coexisting pieces of bulk matter
are represented by a pair of phase points that lie on the phase coexistence boundary and
have the same value of the ordinate. The spinodal boundaries are shown by the dashed
curves, the lower one in green (A) and upper one in red (B). Top left: The equation of
state p(ρ, T ) for a number of temperatures (this representation is closely related to the
familiar Van der Waals diagram that shows the pressure p versus the volume per particle,
v = 1/ρ). Top right: The same boundaries in the ρ�ε phase plane. In both upper panels
the lines at constant temperature T =0 and T =Tc are also indicated. Bottom left: The
boundaries in the ρ�T phase plane. Bottom right: The boundaries in the µ�T phase plane,
in which the lower and upper branches of the phase coexistence boundary coincide.

Thermodynamic stability:

To second order, the response of the entropy S(E,N, V ) to variations in the
ensemble parameters E, N , and V can be written as S ≈ S0 + δS + δ2S,
where S0 is the entropy of the reference ensemble. The thermodynamic sta-
bility properties are therefore determined by the eigenvalues of the curvature
matrix of the entropy function. We �rst note that if E and N are changed in
proportion to the change in V , then the entropy also changes in proportion to
V since the densities ε and ρ remain unchanged. For this trivial scaling, the
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second variation vanishes, δ2S = 0. So the associated curvature eigenvalue is
zero and the scaling mode can be left out of further consideration.

The response to a change of non-scaling type is determined by the curva-
ture properties of the entropy density, as encoded into the curvature matrix,(

σεε σερ
σρε σρρ

)
≡
(

∂2
εσ(ε, ρ) ∂ρ∂εσ(ε, ρ)

∂ε∂ρσ(ε, ρ) ∂2
ρσ(ε, ρ)

)
. (2.34)

When σ(ε, ρ) is concave, as is normally the case, both (generally all) eigen-
values are negative, and a(ny) small change in ε and ρ produces a decrease
of the entropy density. Such a uniform system is therefore mechanically sta-
ble. (However, the system may be only metastable thermodynamically, as
explained below.) But as soon as one of the eigenvalues is positive, the corre-
sponding density changes will increase the entropy density and the uniform
system is then mechanically unstable. This instability re�ects the thermo-
dynamic preference of the system for splitting into two di�erent systems in
mutual equilibrium and is thus characteristic of a �rst-order phase transition.

It is important to recognize that the phase points representing these co-
existing systems generally lie well outside the region of convexity (as seen in
Figs. 2.4 and 2.5). Therefore, generally, the intermediate phase region within
which a uniform system is thermodynamically unstable consists of an outer
region where the entropy density is still concave and an inner region where
it is convex. In the convex region (often referred to as the spinodal region)
small undulations of uniform matter are ampli�ed which leads towards a
phase separation, whereas uniform matter in the concave coexistence region
is mechanically metastable, i.e. it is stable against small modulations whereas
su�ciently large redistributions may increase the entropy and lead to phase
separations. Thus, in Fig. 2.5, within the lower metastable region (situated
between the low-density phase coexistence boundary and spinodal A) the
system is an undercooled gas of nucleons, while within the upper metastable
region (between the high-density phase coexistence boundary and spinodal
B) contains superheated nuclear liquid.

These general features are easily understood from the simpler (chargeless)
case illustrated in Fig. 2.4. This �gure also brings out the fact that when σ
is convex its �rst derivatives are non-monotonic. Therefore, the relationship
between the underlying mechanical densities ε and ρ and the corresponding
thermodynamic quantities T and µ is not one-to-one in the phase-coexistence
region. (For example, the �equation of state� p(T, µ) is triple-valued through-
out that region.) As a result, those latter variables are sometimes less con-
venient in the presence of a phase transition. This is especially true for dy-
namically evolving systems, where the mechanical densities (ε and ρ) change
continuously and are partly subjected to conservation laws, while the ther-
modynamic variables (T , µ, p, σ, . . . ) are not (see e.g. Sect. 5.3.2, Fig. 5.2 in
Part III �Collision Dynamics�).
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The microcanonical framework presented above is most relevant for situ-
ations where the system is characterized by de�nite values of the mechanical
parameters (E, N , and V ), as tends to be the case for isolated systems or in
microscopic dynamical treatments.

2.2.1.2 Canonical treatment

When the system can exchange energy with its environment only the average
value of the energy can be speci�ed. This is done in terms of the temperature
T , or its inverse β. The density of states Ω(E,N, V ) is then replaced by the
corresponding Legendre transform, the canonical partition function,

ZT (N,V ) =
∫
dE Ω(E,N, V ) e−E/T = V

∫
dε eV [σ(ε,ρ)−β(ε,ρ)ε] . (2.35)

While we here consider only the thermodynamic limit of uniform matter, the
above relationship between the canonical partition function and the density
of states holds generally. Here and below we denote thermodynamic quan-
tities in the canonical or grand canonical treatment by subscripts T or Tµ,
respectively.

An expansion of the entropy density to second order around the value ε̄T (ρ)
determined by the vanishing of the linear term in the exponent, ∂εσ(ε, ρ) .= β,
makes it possible to carry out the integral in the saddle point approximation
(if the curvature of the entropy is negative at that point, ∂2

εσ(ε, ρ) < 0). Up
to an additive constant, this procedure yields

ζT (ρ) ≡ 1
V

lnZT (N) = σ(ε̄T (ρ), ρ)− βε̄T (ρ) , (2.36)

in terms of which we may recover the energy density as well as express the
chemical potential and the pressure,

ε̄T (ρ) = ∂βζT (ρ) ,

αT (ρ) = −µT (ρ)
T

= ∂ρζT (ρ) , (2.37)

πT (ρ) =
pT (ρ)
T

= −ρ2∂ρ
ζT (ρ)
ρ

.

We note that the transformation from the microcanonical to the canonical
description requires that the function β(ε, ρ) can be inverted to give ε̄T (ρ).
While this is always possible locally, it cannot be done globally inside a phase
coexistence region where β is a non-monotonic function of ε (see Fig. 2.4).
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2.2.1.3 Grand canonical treatment

The grand canonical treatment is appropriate for systems that can also
exchange conserved charge(s) (�particles�) with the environment. The ba-
sic quantity is then the normalization constant for the Gibbs ensemble,
ZTµ(V ) =

∑
k exp(−Ek/T + µNk/T ), where the sum is over all indi-

vidual states k (cf. Eq. (2.5)). Thus it can be expressed as a Legendre
transform of the microcanonical phase-space volume Ω(E,N, V ) =

∑
k =

exp(S(E,N, V )),

ZTµ(V ) =
∫
dN

∫
dE Ω(E,N, V ) e−E/T−µN/T

= V

∫
dρ

∫
dε eV [σ(ε,ρ)−β(ε,ρ)ε−α(ε,ρ)ρ] , (2.38)

where β = 1/T and α = −µ/T . While we here consider only the thermo-
dynamic limit of uniform matter, the above relationship between the grand
partition function and the density of states holds generally. (The analogous re-
lation for the canonical partition function ZT (N,V ) was given in Eq. (2.35).)
The integral may be carried out in the saddle point approximation, in which
the entropy density σ(ε, ρ) is expanded to second order around any phase
point (ε̄, ρ̄) at which the linear term in the exponent vanishes, requiring
∂εσ(ε, ρ) .= β and ∂ρσ(ε, ρ) .= α. For each such stationary phase point,
the resulting Gaussian integral can then be carried out provided that the
eigenvalues of the local curvature matrix of σ(ε, ρ) are negative.

More generally, the grand canonical treatment requires that the functions
β(ε, ρ) and α(ε, ρ) can be inverted to give ε̄Tµ and ρ̄Tµ. When this is possible,
we obtain the grand potential ZTµ(V ), where

ξTµ ≡
1
V

lnZTµ(V ) = σ(ε̄Tµ, ρ̄Tµ)− βε̄Tµ − αρ̄Tµ = πTµ, (2.39)

From this key function we can then recover the mechanical densities, ε̄Tµ =
∂βξTµ and ρ̄Tµ = ∂αξTµ. We note that pTµ = TξTµ which is recognized as
the �rst law of thermodynamics, E = TS+µN−pV . Furthermore, we readily
�nd the familiar relations σ = ∂T p and ρ = ∂µp.

An important advantage of the Gibbs ensemble is that the associated
grand partition function can be expressed as an integral over paths or as
�eld con�gurations evolving in imaginary time. This connection has already
been introduced in Sec. 2.1, Eq. (2.7).
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2.2.1.4 Phase structure

We close this general reminder of thermodynamics by a brief discussion of
phase structure. As an illustration, we show in Fig. 2.5 the phase diagram
for nuclear matter in various representations.

In the presentation of the microcanonical treatment, we saw already how
the phase structure of a given system can readily be determined by con-
sidering the curvature properties of the entropy density in the ρ�ε phase
plane: The occurrence of one or more positive eigenvalues in the entropy
curvature matrix signals the presence of a �rst-order phase transition. The
associated region of thermodynamic instability is delineated by pairs of phase
points (ρ1, ε1) and (ρ2, ε2) that represent systems that have matching values
of temperature, chemical potential, and pressure and therefore can coexist in
mutual thermodynamic equilibrium. In the thermodynamically stable region,
the relationship between the mechanical variables (ε and ρ) and the thermo-
dynamic variables (T and µ) is one-to-one and the transformation between
the di�erent treatments discussed above is simple.

By contrast, inside the phase region of thermodynamic instability the in-
verse relations are triple-valued and one must carefully keep track of the over-
laid phase sheets. Generally, the instability region consists of an outer region
adjacent to the border within which the entropy remains concave and these
systems are mechanically metastable (it would require a �nite disturbance to
induce a thermodynamic phase separation). But in the central region, where
the entropy function turns convex (in one or more dimensions), uniform mat-
ter is mechanically unstable and even small deviations from uniformity will
become ampli�ed and such matter will seek to phase separate spontaneously.

The canonical representation describes the system in terms of the temper-
ature T and the density ρ. For a given temperature T , a �rst-order phase
transition is present if two di�erent densities, ρ1 and ρ2 have the same chem-
ical potential µ. As the temperature is increased, the corresponding coex-
istence densities grow progressively similar until they coincide at T = Tc,
the critical temperature. These coexistence points, from (ρ1, T = 0) through
(ρc, Tc) to (ρ2, T = 0) delineate the unstable region which again can be di-
vided into a metastable region adjacent to the boundary and a central region
characterized by spinodal instability. We note that this representation yields
a continuous behavior of the various quantities, such as the entropy density
σT (ρ), the pressure pT (ρ), and the chemical potential µT (ρ).

In the grand canonical representation the density ρ is replaced by the
chemical potential µ and, as a result, the entire unstable phase region col-
lapses into a single phase-transition line across which the various quantities
(such as ρ̄Tµ, ε̄Tµ, and pTµ) are discontinuous. This line, which thus repre-
sents a cut rather than a boundary, terminates at the critical point (µc, Tc)
where there is a second-order phase transition.
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Fig. 2.6 The (normalized) integrand PT (ε) ∼ exp((σ(ε)− ε/T )V ) in the expression for
the canonical partition function ZT (V ) for the idealized chargeless case displayed in Fig.
2.4, shown for a narrow range of temperatures near the coexistence value T0 for which the
energy densities ε1 and ε2 are in thermodynamic equilibrium. (Here and in Fig. 2.4 the
softest point, where the speed of sound squared has its minimum, has been used as a scale
for ε, σ, and p.)

Crossing the phase boundary:

The Legendre transforms from the microcanonical to the canonical (2.35) or
grand canonical (2.38) descriptions provide a useful mean for elucidating how
a phase boundary may be crossed while maintaining global thermodynamic
equilibrium. To illustrate this, we consider the schematic example exhibited in
Fig. 2.4 where there are no conserved charges. The integrand in the Legendre
transform is then exp((σ(ε) − βε)V ) and, for any speci�ed value of T , this
function expresses the relative weight PT (ε) of the di�erent values of ε in the
canonical ensemble. Fig. 2.6 shows PT (ε) for a range of temperatures near
the coexistence temperature T0. In the stable regions well below or above T0,
PT (ε) displays a single peak around the value ε̄T . But near T0 the distribution
turns bimodal, exhibiting peaks centered near the coexistence values ε1 and
ε2. (We note that PT (ε) is convex in the spinodal region for any T .) Since the
peaks have their maxima where the exponent in the Legendre integrand is
stationary, the corresponding two values of ∂εσ(ε) are identical and therefore
the peaks are shifted in the same direction, e.g. they both move down when
T is decreased from T0 while they move up when T is increased from T0.

As T is increased from below to above T0, the strength steadily shifts from
the lower peak to the higher one. Right at the phase coexistence tempera-
ture T = T0 the two peak values are identical, PT (ε1) = PT (ε2) (though the
relative strengths of the two bumps clearly di�er). It is important to note
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that the average energy at a given temperature, 〈ε〉T =
∫
εPT (ε)dε increases

continuously with T but exhibits a rapid rise at T moves past T0. As the
volume is increased the peaks become narrower and in the thermodynamic
limit, V →∞, only the one with the highest value remains signi�cant. Thus,
in this limit the energy density ε̄T jumps from ε1 to ε2 at T0 and the inter-
mediate region of energy density cannot be addressed within the framework
of global thermodynamic equilibrium.

After the above illustration, we now turn to the more realistic case where
we have one conserved charge and let us �rst consider the canonical treat-
ment. The exponent in the Legendre transform (2.35) is then [σ(ε, ρ)−ε/T ]V
and, for speci�ed values of T and ρ, a given ε value contributes to the inte-
gral (2.38) in proportion to PTρ ∼ exp([σ(ε, ρ)− ε/T ]V ). Above the critical
temperature, T > Tc, PTρ(ε) has only one peak (centered at ε̄T (ρ)). But as
T is decreased below Tc, the distribution PTρ(ε) bifurcates and displays two
peaks centered at the corresponding coexistence energies, ε1(T ) and ε2(T ),
signaling the presence of a �rst-order transition.

Finally, let us consider the grand canonical description of systems with
one conserved charge, as considered above. The exponent in the Legendre
transform (2.38) is then p(ε, ρ)V and, for speci�ed values of T and µ, a given
phase point (ρ, ε) contributes to the Legendre transform (2.38) in proportion
to PTµ(ρ, ε) ∼ exp(p(ε, ρ)V ). Away from the coexistence region PTµ(ρ, ε)
displays only one peak (centered at (ρ̄Tµ, ε̄Tµ)). But for (µ, T ) phase points
near the transition line the distribution PTµ(ρ, ε) displays two peaks that
are centered near the corresponding coexistence values, (ρ1, ε1) and (ρ2, ε2).
Their relative prominence changes as the phase point is moved across the
transition line, the peak values being equal just at the crossing.

2.2.2 Types of phase transitions

We discuss here a number of phase transitions that are particularly relevant
to the topic of this book.

2.2.2.1 Spontaneously broken symmetries: QCD chiral symmetry

Global symmetries often play essential role in determining the phase struc-
ture of a system. We recall that there are two ways a global symmetry can be
realized on (thermodynamic) states. Trivial: transformation of the symmetry
acting on every quantum state in the ensemble maps the ensemble on itself.
Spontaneously broken: transformation creates another ensemble which, by
symmetry, must have exactly the same values of ε and (if the generators of
the symmetry and the baryon charge commute) of n. The typical example
of the spontaneous breaking of a symmetry is a uniaxial ferromagnet below
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the Curie temperature. The symmetry, Z2 in this case, �ips all spins. Be-
low the Curie temperature such transformation creates a state with �ipped
magnetization � a distinct macroscopic state.

It is clear that in the situation where the vacuum, or thermal state is de-
generate, the variables such as energy and baryon density, which are identical
for di�erent degenerate states, are not su�cient to describe the system fully.
One can specify the state further by using another variable which is not in-
variant under the symmetry transformation. Such a variable is called order
parameter. For example, magnetization is an order parameter in the case of
the ferromagnet. In the case of QCD the choice convenient theoretically is
the chiral condensate � the expectation value of the quark bilinear operator
〈q̄q〉. This issue is further discussed below in Sec. 2.2.6.

A point worth keeping in mind is that unlike energy or baryon number, the
operator q̄q does not commute with the Hamiltonian of QCD, i.e, the station-
ary states are not eigenstates of the chiral condensate. This is not a problem,
because each individual state can be characterized by the expectation value
of q̄q in this state. What we do have to take into account, however, is that
the operator q̄q being a product of two quantum �elds at the same point has
short distance singularities. To de�ne q̄q properly one needs to regularize it,
e.g., by splitting the points. Unlike energy or baryon number, which by virtue
of being conserved quantities, are insensitive to renormalization, the operator
q̄q and its expectation value depends on the renormalization procedure and
the associated scale. Therefore, the de�nition of the chiral condensate should
be accompanied by the speci�cation of the renormalization procedure and
scale, which is what we shall always imply. It is helpful that the dependence
on the scale is weak (logarithmic) and thus, in practice, we will not need to
worry about this issue. We shall imply the renormalization scale on the order
of 1 GeV in what follows. Experimental data indicate that the value of the
chiral condensate in vacuum is approximately

〈ūu〉 ≈ 〈d̄d〉 ≈ (−250 MeV)3. (2.40)

One important advantage of the order parameter such as q̄q is that this
operator enters linearly into the Hamiltonian. The coe�cient mq is the pa-
rameter which explicitly breaks the chiral symmetry. It is the analog of the
magnetic �eld H in the case of the ferromagnet. For non-zero mq the proba-
bility distribution is skewed � favoring the value of 〈q̄q〉 which minimizes the
energy for given mq. Since, by conventional choice of sign, the contribution
to the energy is +mq q̄q, positive mass favors negative chiral condensate. It is
worth pointing out that the quark mass, similar to the operator q̄q, is renor-
malization dependent (there is no mass shell for a quark), but the product
mq q̄q is not � and it is a matter of fact that only this combination emerges
in all physically observable relations, e.g., the pion mass is proportional to
mq〈q̄q〉.
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The value of pressure also depends on mq. Viewing the pressure p(T, µ)
as the Legendre transform of the energy ε(s, n), according to Eqs. (2.39) and
(2.36), it is easy to show that

∂p

∂mq

∣∣∣∣∣
T,µ

= − ∂ε

∂mq

∣∣∣∣∣
s,n

= −〈q̄q〉, (2.41)

where derivatives are taken with corresponding arguments �xed, as indicated.

2.2.2.2 Second-order transitions

Similarly to the rotational symmetry in the ferromagnet, the spontaneously
broken chiral symmetry in QCD is restored at some critical temperature.

Using the order parameter as an additional thermodynamic variable, one
can see how the phase transition is accomplished by looking at the probability
distributions of that order parameter in an ensemble at given T (and µ). In the
broken phase there will be two (or more, depending on the type of symmetry
and the order parameter, or even a manifold of) distinct peaks related by the
symmetry, which merge into a single peak at the critical temperature. Such
a transition is called second-order phase transition.

The symmetry is not necessary for the second order phase transition. One
can achieve such a transition generically by tuning parameters to maintain
two coexisting peaks of the probability distribution at equal height, as they
converge. On the phase diagram this corresponds to staying on the �rst-order
transition line and moving towards the critical point, where the transition
ends. Ordinary critical points are therefore often referred to as second order
transitions.

However, if the two coexisting peaks are related by a (spontaneously bro-
ken) symmetry, their heights are automatically the same. This eliminates one
additional tuning parameter needed to achieve criticality. As a result second-
order transitions are more ubiquitous among symmetry restoration transi-
tions, than among generic phase transitions. In QCD, in the chiral limit, this
allows a whole line of critical points on a Tµ phase diagram to exist � as
is the case with chiral restoration transition in QCD for low µ (see below).
Only a single critical point survives from this line when the chiral symmetry
is explicitly broken by the quark masses.

Of course, a broken symmetry can also be restored by a generic �rst or-
der transition � if the peak corresponding to symmetric phase emerges and
outgrows the broken symmetry peaks before the latter converge.

Similar to the critical point, the symmetry restoration transition is also
a branching point for the partition function Z as a function of the symme-
try breaking parameter (H in ferromagnet, or mq in QCD). It is a point
where pressure and all other thermodynamic functions are singular. On the
Tµ plane, the phases with di�erent realizations of the symmetry (trivial vs
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spontaneously broken) must be separated by a continuous line of such critical
points (or by a �rst order transition line).

Very generically, the order parameter can be used to predict that a phase
transition must be associated with a singularity (non-analyticity) of some sort
in thermodynamic functions. Indeed, if the order parameter is exactly zero
in some phase (usually, because it is protected by an exact symmetry), the
analyticity must be lost at the phase boundary so that the order parameter
can change its value (to non-zero value in the broken phase).

2.2.2.3 Critical behavior at a second-order phase transition

The most important property of the second-order phase transition is the
divergence of the correlation length. If we consider local values of variable such
as energy, density or order parameters, these values �uctuate. The correlation
length of these �uctuations in a generic thermodynamic system is of the order
of the characteristic microscopic length (1/ΛQCD in QCD, or interatomic
spacing in a ferromagnet). This is not the case at a critical point (second-
order transition) � the correlation length becomes in�nite.

This phenomenon can be described using the e�ective potential for the
order parameter. We denote the order parameter generically as σ. To describe
spatial correlations we consider probability distribution for a spatially varying
parameter σ(x), P[σ(x)]. To determine the correlation length ξ we calculate
the thermal expectation value of σ(x)σ(y),

〈σ(x)σ(y)〉 =
∫
Dσ(x)P[σ(x)]σ(x)σ(y) ∼ exp(−r/ξ) , (2.42)

for r ≡ |x− y| → ∞.
The logarithm of the probability density P de�nes the corresponding

Ginzburg-Landau e�ective potential Ω[σ(x)] as a functional of σ(x) which
we expand in spatial derivatives of σ(x):

− logP[σ(x)] ≡ Ω[σ(x)]/T =
∫
d3x

[
V (σ) + (1/2)(∇σ)2 + . . .

]
(2.43)

(we chose normalization of σ to reduce the gradient term to the above canon-
ical form).

Mean-�eld critical behavior:

The saddle point, or mean-�eld, or Gaussian approximation to the path in-
tegral in Eq. (2.42) amounts to expanding Ω[σ(x)] around its minimum � a
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constant (mean � hence the name) �eld σ0 and dropping all terms beyond
quadratic. The Gaussian path integral is then easy to take:

〈σ(x)σ(y)〉mean field = σ2
0 +

exp(−r/ξ)
r

, with r = |x− y|, (2.44)

where the correlation length ξ is related to the curvature of the potential
V (σ) at its minimum:

ξ = (V ′′(σ))−1/2
∣∣∣
σ=σ0

, (2.45)

At the critical point (or second order phase transition), two coexisting
minima of V continuously merge into one, and the curvature vanishes. Thus
ξ diverges. If the curvature vanishes linearly with a parameter which is being
varied, e.g., temperature, as it is generically the case, the correlation length
diverges as

ξ ∼ |T − Tc|−1/2 , (2.46)

where Tc denotes the critical temperature. This is the well-known result of
the Ginzburg-Landau theory of the phase transitions, which is not correct
generically, as we discuss now.

The mean-�eld/saddle-point approximation, or neglecting terms beyond
quadratic in Ω[σ] is not justi�ed in most cases, in particular, very close to the
transition, where the correlation length becomes very large compared to typ-
ical microscopic scale. This approximation is valid only if the non-Gaussian
terms (higher order than σ2) can be neglected in Ω[σ(x)]. For example, the
leading higher order term, λσ4, would be negligible compared to the quadratic
term ξ−2σ2 if λσ2 � ξ−2 (for simplicity we consider σ0 = 0). The typical
value of σ2 relevant in this case could be estimated as the Gaussian (mean-
�eld) average of σ(x)σ(y) at |x − y| ∼ ξ.10 Using the correlator Eq. (2.44),
or by a simple dimensional counting, we �nd σ2 ∼ ξ2−d, where d = 3 is the
dimension of space. Thus, higher order terms, i.e., non-Gaussian �uctuations,
are negligible if

λξd−4 � 1 � Ginzburg criterion. (2.47)

For d < 4 (that includes the relevant case d = 3) the mean-�eld approxima-
tion is invalid for large ξ. The value d = 4 is the upper critical dimension for
this critical �eld theory.

10 The naive average 〈σ2〉 is the correlator 〈σ(x)σ(y)〉 at x → y, and it is divergent. This
short-distance divergence can be regularized by subtracting the same average at ξ = ∞,
since the short-distance behavior is independent of ξ. This counterterm arises naturally
from additive renormalization (shift) of Tc. The subtracted value of 〈σ2〉 is of order ξ2−d
as stated in text.
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Non-mean-�eld critical behavior, scaling and universality:

To anticipate and/or understand the correct result beyond the mean-�eld
approximation, one observes that at the critical point, i.e., in the limit ξ →
∞ the system becomes scale invariant. Therefore, one should expect the
correlator to follow a power law:

〈σ(x)σ(y)〉 ∼ 1
r1+η

, for r = |x− y| � ξ, (2.48)

where η is the critical exponent. Calculation of the exponent η (which equals
twice the anomalous dimension of the order parameter �eld σ) requires ap-
plication of renormalization group methods to the 3-dimensional �eld theory
de�ned by the action Ω[σ(x)] at the critical point ξ → ∞. (A review of the
renormalization group method is given in Sec. 4.7.)

One of the remarkable consequences of the renormalization group is the
universality of critical phenomena. Indeed, the critical indices are determined
by critical points of the e�ective theory for the order parameter σ and do
not depend on the detailed microscopic nature of the order parameter or
the underlying microscopic theory itself. The critical behavior of di�erent
microscopic theories fall into broad universality classes, each described by a
critical point of a 3-dimensional theory. In general, microscopic theories which
have the same global symmetries, and their pattern of breaking/restoration
at their respective critical points, fall in the same universality class.

Another important critical exponent is de�ned by the power at which the
correlation length diverges at the critical point:

ξ ∼ |T − Tc|−ν (2.49)

This exponent is related to the anomalous dimension of the mass operator,
i.e., the term σ2, of the critical �eld theory. In the mean �eld theory of
Ginzburg-Landau η = 0 and ν = 1/2. In the most common universality class
of the Ising model (described by a single-component scalar �eld theory),
η ≈ 0.04 and ν ≈ 0.63.

The divergence of the correlation length Eq. (2.49) is the source of the non-
analyticity of all thermodynamic functions at the critical point. For example,
the divergence of the susceptibility of the order parameter

χ =
∫
d3x〈σ(x)σ(y)〉 (2.50)

can be calculated by substituting Eq. (2.48) into Eq. (2.50) for r � ξ and
truncating the diverging integral at r ∼ ξ:

χ ∼ ξ2+η ∼ |T − Tc|−ν(2+η). (2.51)

We see that the exponent γ de�ned as χ ∼ |T −Tc|−γ is not independent, but
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is related to η and ν. The same is true about other commonly used exponents
α, β, δ, etc.

The scaling invariance means that for large but �nite ξ, the value of ξ
remains the only relevant scale in the system. If we change ξ by an arbitrary
factor s (e.g., by changing T − Tc), and then rescale all the quantities by
appropriate powers of s then all relations must remain correct.11 In other
words, the system is self-similar under scaling transformation.

The scaling invariance at the critical point allows to apply simple dimen-
sional counting, in which all non-trivial properties are in the anomalous scal-
ing dimensions of the variables. For example, assigning, by convention, scaling
dimension [r] = −1 to distance, we see that according to Eq. (2.48) the order
parameter has the scaling dimension [σ] = (1 + η)/2, and according to Eq.
(2.49) the thermal variable t = T − Tc has scaling dimension ν.

Using this counting, for example, one can derive the dependence of the
correlation length on the value of the external symmetry breaking parameter
h, which in the Ising model is the magnetic �eld, which introduces a term hσ
into Ω(σ). It is easy to see that at t = 0 correlation length will be �nite for
h 6= 0 and will diverge when h→ 0. The scaling dimension of h can be found
from [hσd3x] = 0: [h] = 3 − (1 + η)/2 = (5 − η)/2. Therefore, by scaling, at
t = 0 the relationship between ξ and h must be

ξ ∼ h−2/(5−η). (2.52)

This is a non-rigorous, but a very handy way of generating many useful scaling
relations.

As another example, given the above scaling dimensions [t] = ν and [h] =
(5− η)/2, the correlation length must depend on t and h as

ξ = h−2/(5−η)F (x), where x = h t−(5−η)ν/2, (2.53)

and F (x) is a dimensionless function of the �dimensionless� scaling variable
x.12 This function is universal and it obeys F (0) = const to match Eq. (2.52),
and F (x → ∞) ∼ x(5−η)/2 to match Eq. (2.49). A particularly relevant
example for us will be the approach to the critical point along a ray t/h =
const < ∞. Because (5 − η)ν/2 > 1, we �nd x → 0 along this ray and Eq.
(2.53) shows that ξ grows with h as in Eq. (2.52). I.e., ξ grows with the same
power for all t/h = const rays, except along the temperature axis h = 0,
where it grows fastest (2.49).

11 Up to inverse powers of the correlation length � the corrections to scaling, which vanish
as ξ →∞.
12 It is customary to write x = ht−βδ, which is equivalent to Eq. (2.53), if one expresses
β and δ in terms of the two independent exponents η and ν.
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2.2.3 QCD phase diagram at low temperatures

After this general introduction we shall now tour the QCD phase diagram
in the T -µ plane. One can expect the phase diagram of QCD to have many
subtleties. We can anticipate some of these by noticing that there are several
small parameters, whose interplay may produce subtle, competing e�ects that
will lead to new states of matter: the up and down quark masses are small
on the natural mass scale of QCD. In addition, the strange quark mass is
comparable to the QCD scale, and it might produce additional exotic states
in the phase diagram, especially in the low-T region. In realistic environments,
one must also take electromagnetism into account. We shall not even try to
attack the full problem. Instead, we shall strip as much from it as we possibly
can while still keeping the most basic QCD features in. We shall �nd that even
such a �stripped� version of QCD (F. Wilczek coined the name �QCDLite�
for it) is an interesting and challenging problem.

Thus we consider pure SU(3)color QCD with (i) electroweak interac-
tions turned o� and with (ii) two massless quarks. There is then an ex-
act SU(2)L×SU(2)R×U(1)B global symmetry of the action, which is spon-
taneously broken down to SU(2)V×U(1)B at zero and su�ciently low tem-
peratures by the formation of a condensate, 〈q̄q〉. Many features of QCD
indicate that this is a reasonable approximation, e.g., the lightness of pions,
the success of current algebra relations, etc. (We will comment below on the
inclusion of electromagnetic interactions and strange quarks.) This theory is
described by the grand canonical partition function given in Eq. (2.7).

Both the temperature T and the baryo-chemical potential µ (as well as the
pressure p) are intensive parameters. For a system in thermodynamic equi-
librium, these quantities are the same for any of its smaller subsystems. In
contrast, the densities, such as the entropy density s and the baryon density
n, of extensive quantities can di�er for two subsystems even when they are in
equilibrium with each other. This happens in the phase coexistence region,
e.g., a glass containing water and ice. It is more convenient to describe the
phase diagram in the space of intensive parameters, T and µ (the pressure
is not an independent parameter, but a function of T and µ). In particular,
the �rst-order phase transition which we shall encounter is characterized by
one value of µ but two values of n � the densities of the two coexisting
phases (cf. the corresponding discussion in Sec. 2.2.1, illustrated in Fig. 2.5).
Another reason for working with these coordinates is that �rst-principle lat-
tice calculations (cf. Sec. 3.2) are performed using T and µ as independent
variables that can be controlled while the densities are measured. The results
of relativistic heavy-ion collision experiments are also often analyzed using
this set of parameters.
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2.2.3.1 Zero temperature

We begin by considering the phase diagram as µ is varied along the line
T = 0. Strictly speaking, we are not dealing with thermodynamics here since
the system is in its ground state. This fact leads to a simple property of the
function n(µ), where from now on n denotes the number density of fermions:
Below some value µ0 one �nds (see e.g. [22] for more details)

n(µ) = 0 for µ < µ0 . (2.54)

What is the value of µ0? As a trivial example, consider a free theory of
massive fermions with mass m carrying one unit of baryon charge. One �nds
µ0 = m for such a theory. When µ > m, the ground state is the Fermi sphere
with radius pF =

√
µ2 −m2. Therefore, n(µ) = (µ2 −m2)3/2/(3π2). Thus,

we see that, even in a trivial theory, the function n(µ) has a singularity at
µ = µ0. The existence of some singularity at the point µ = µ0, T = 0 is a
robust and model independent prediction. This follows from the fact that a
singularity must separate two phases distinguished by the value of the density
n, which plays the role of the order parameter: the function n(µ) ≡ 0 cannot
be continued to n(µ) 6= 0 without a singularity.

2.2.3.2 Nuclear matter

The exact value of µ0 and the form of the singularity are somewhat di�erent in
QCD and in the real world (QCD+) which includes other interactions, most
notably electromagnetic interactions. Since we are not primarily interested
in this T = 0 low-density region we just state that the di�erence between µ0

and the nucleon mass is small on typical hadronic scales and refer to [22] for
further details.

For larger values of the chemical potential, i.e. for µ − µ0 = O(10 −
200 MeV), we traverse the domain of nuclear physics with the possibility
for various phase transitions. In particular, a transition to neutron matter
(Z � A) is probably similar to the transition in QCD at µ = µ0. In this do-
main, one may encounter such phenomena as nuclear matter crystallization
[23, 24], superconducting phases of neutron matter and quark matter [25�28],
and, due to the strange quark in QCD+, kaon condensation [23, 29] and a
transition to strange quark matter [30, 31]. Moving along the µ axis to the
right is equivalent to increasing the pressure: p =

∫
ndµ. Thus, this picture is

roughly what one might encounter in moving towards the center of a neutron
star from the iron crust at the surface.

Our knowledge of n(µ) is scanty for densities of order one to ten times n0

and µ−µ0 = O(10− 200 MeV) both in QCD and in QCD+. We can only be
sure that n(µ) is a monotonically increasing function, which follows from the
requirement of thermodynamic stability.
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2.2.3.3 Quark matter

The behavior of n(µ) again becomes calculable in the region of very large
µ � ΛQCD. In that case, the Pauli exclusion principle forces the quarks
to occupy ever higher momentum states, and, due to asymptotic freedom,
the interaction of quarks near the Fermi surface is (logarithmically) weak.
The baryon charge density is proportional to the volume of a Fermi sphere
of radius µ/3, n(µ) ≈ Nf(µ/3)3/(3π2). At low temperatures, only quarks
near the Fermi surface contribute to the Debye screening of the gauge �elds.
The square of the screening mass, m2

D, is proportional to the area of the
Fermi surface: m2

D ∼ g2µ2. This means that color interactions are screened
on lengths O(1/gµ) = O(

√
ln(µ/ΛQCD)/µ). This motivates the conclusion

that nonperturbative phenomena such as chiral symmetry breaking should
be absent at su�ciently large µ. Therefore, in QCD with two massless quarks
one should expect at least one other phase transition, at a value of µ which
we de�ne as µ1 � a transition characterized by the restoration of chiral
symmetry.

The situation in QCD+, with a strange quark, is somewhat more subtle. As
has been observed by Alford, Rajagopal and Wilczek [32] at su�ciently large
µ one must reach a phase in which chiral symmetry is broken by a completely
di�erent mechanism than it is in the QCD vacuum, the mechanism which the
authors named Color-Flavor-Locking (CFL). The CFL phase of QCD+ is a
subject of many recent studies (see, e.g., Refs.[33�36] for reviews) . The mass
of the strange quark again crucially a�ects the phase diagram. The question
of whether this transition to CFL occurs from the chirally symmetric phase
µCL > µ1, or before the chirally symmetric phase even sets in at zero T is
open.13 Sending ms to in�nity will relieve us from this question.

What is the value of µ1 in QCD, and is it �nite? Very little reliable informa-
tion about the phase transition at µ1 is available. However, several di�erent
approaches agree on the conclusion that the value of µ1 is �nite and that
µ1−µ0 is on the order of the typical QCD scale ΛQCD ≈ 200 MeV ≈ 1 fm−1.
For example, equating the quark pressure minus the MIT bag constant to the
pressure of nuclear matter yields such an estimate (see, e.g., [38]). A simpler
thermodynamic model, which is similar to the MIT bag, but neglects the
pressure on the nuclear matter side gives µ1 = 3

√
πB1/4 ≈ 1.1 GeV. Here,

we should also point out another interesting distinction between QCD and
QCD+: the e�ect of the strange quark in QCD+ is to decrease the value of µ1

compared to that of QCD. It has even been conjectured that this e�ect might
be su�cient to drive µ1 below µ0, which would make normal nuclear matter
metastable [30, 31]. Another model which predicts the phase transition at
�nite µ1 is the Nambu-Jona-Lasinio model, which focuses on the degrees of
freedom associated with the spontaneous chiral symmetry breaking and leads
to a similar estimate for µ1 [39].

13 Perhaps, there is no transition at all, as conjectured by Schäfer and Wilczek [37].
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What is the order of this phase transition? The MIT bag model predicts
that it is a �rst-order transition since the density, n, of the baryon charge
is discontinuous. Unfortunately, analysis of the Nambu-Jona-Lasinio model
shows that the order of the transition depends on the values of parameters,
most notably, on the value of the cuto�. A larger cuto� leads to a second-
order transition, a smaller to a �rst-order transition [39]. A random matrix
model at T = 0 predicts a �rst-order phase transition [40]. Here we shall use
more general methods to analyze features of the phase diagram of QCD at
�nite density and temperature. We base our subsequent analysis of the phase
diagram of QCD with two massless quarks on the following expectations: (i)
µ1 ∼ µ0 +O(200 MeV) and (ii) the transition is of �rst order.

2.2.3.4 Nuclear liquid-gas transition at �nite T and µ

We have used the density n as an order parameter, to show that there is a
singularity at µ = µ0 and T = 0. It was important for that argument that n
is exactly zero for all µ < µ0. At nonzero T , however, n is not strictly 0 for
any µ > 0. Hence, at �nite T the density n cannot be used to predict phase
transitions as it can at zero T .

Nevertheless, we can use a continuity argument to deduce that the �rst-
order phase transition at T = 0, µ = µ0 has to remain a �rst-order phase
transition for su�ciently small T . Therefore, there must be a line emerging
from the point T = 0, µ = µ0 in the T - µ diagram Fig. 2.9. One can think
of this transition as boiling the nuclear �uid. Indeed, the basic character of
the nuclear force, being attractive at large distances but strongly repulsive
at short distances, invariably leads to a behavior similar to that of a Van der
Waal gas. The corresponding properties of this liquid-gas phase transition
were illustrated and discussed in more detail in connection with Fig. 2.5, in
which the features of the nuclear two-phase system were displayed in di�erent
thermodynamic representations.

As there is no symmetry-breaking order parameter which distinguishes
the two phases, there is no reason why these two phases cannot be connected
analytically. As in a typical liquid-gas transition, it is natural to expect that
the �rst-order phase transition line terminates at a critical point with the
critical exponents of the three-dimensional Ising model. The temperature of
this critical point can be estimated from the binding energy per nucleon in
cold nuclear matter, T0 = O(10 MeV), cf. Figs. 2.5 and 2.9. Signatures of
this point are seen in heavy-ion collisions at moderate energies (i.e., ≈ 1
GeV per nucleon), and the critical properties of this point have been studied
through measurements of the yields of nuclear fragments [38, 41]. In par-
ticular, the reported critical exponents are in agreement with those of the
three-dimensional Ising model [41].

Additional phase transitions which might occur at T = 0 would give rise to
additional phase transition lines. One could expect two generic situations. If
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there is a breaking of a global symmetry (e.g., translational symmetry in the
case of nuclear matter crystallization), the phase transition line must separate
such a phase from the symmetric phase at higher temperature without any
gaps in the line. Otherwise, the transition can terminate at a critical point.

2.2.4 QCD transitions and chiral symmetry

Now we turn to the more general case where the temperature is not small
or vanishing. Symmetry considerations will help to characterize the di�erent
phases of QCD.

2.2.4.1 Chiral symmetry argument

In the chiral limit � the idealized limit when 2 lightest quarks, u and d,
are taken to be massless, the Lagrangian of QCD acquires chiral symme-
try SU(2)L×SU(2)R, corresponding to SU(2) �avor rotations of (uL, dL) and
(uR, dR) doublets independently. The ground state of QCD breaks the chiral
symmetry spontaneously locking SU(2)L and SU(2)R rotations into a single
vector-like SU(2)V (isospin) symmetry and generating 3 massless Goldstone
pseudoscalar bosons � the pions. The breaking of the chiral symmetry is a
non-perturbative phenomenon.

At su�ciently high temperature T � ΛQCD, due to the asymptotic free-
dom of QCD, perturbation theory around the approximation of the gas of
free quarks and gluons (quark-gluon plasma � QGP) should become appli-
cable. In this regime chiral symmetry is not broken. Thus we must expect a
transition from a broken chiral symmetry vacuum state to a chirally symmet-
ric equilibrium state at some temperature Tc ∼ ΛQCD. The transition is akin
to the Curie point in a ferromagnet � where the rotational O(3) symmetry
is restored by thermal �uctuations (chiral O(4)=SU(2)×SU(2) symmetry in
QCD). Thermodynamic functions of QCD must be singular at the transition
point � as always when the transition separates thermodynamic states with
di�erent realization of global symmetry.

Thus, the region of broken chiral symmetry on the TµB phase diagram
must be separated from the region of the restored symmetry by a closed
boundary as shown in Fig. 2.7.

2.2.4.2 Pisarski-Wilczek argument

The chiral symmetry argument alone is not su�cient to determine the order
of the temperature driven chiral symmetry restoration transition. A more
elaborate argument, based on universality, advanced by Pisarski and Wilczek
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Fig. 2.7 Phase diagram of QCD with massless quarks dictated by the chiral symmetry ar-
gument. The order of the transition (solid magenta line) is not determined by this simplest
argument.

[42] asserts that the transition cannot be of second order for three massless
quarks.

In a simpli�ed form, the logic of Ref. [42] is as follows. Let us assume that
the transition is of the second order. Then the critical behavior of the sys-
tem (long-distance behavior of correlation functions, singular contributions to
thermodynamic functions, etc.) is determined by the long-wavelength modes
which, in the case of the second order transition in a theory with Nf light
quarks, are the N2

f − 1 pions of the spontaneously broken SU(Nf)A axial �a-
vor symmetry plus the critical mode � the magnitude of the chiral condensate
σ ∼ q̄q.

Universality implies that the critical behavior is the same as in any local
theory in 3 dimensions with the same global symmetry breaking pattern and
the same set of critical modes. In our case, a representative example of the
universality class is an SU(Nf)× SU(Nf) sigma model of an Nf ×Nf matrix-
valued �eld Σ. It turns out, that for Nf = 3, the model cannot be critical:
there is a relevant term cubic in the order parameter �eld, detΣ, which always
destabilizes the symmetric minimum of the e�ective potential for Σ via a �rst
order transition, before the curvature of the minimum vanishes (i.e., before
criticality is reached). Hence, QCD with Nf = 3 massless quark �avors must
undergo a �rst order chiral restoration transition.

2.2.4.3 Nf = 2 chiral limit and tricritical point

For two massless quarks the transition can be either second or �rst order. As
lattice and model calculations show, both possibilities are realized depend-
ing on the value of the strange quark mass ms and/or the baryo-chemical
potential µB .

The point on the chiral phase transition line where the transition changes
order is called tricritical point, see Fig. 2.8. The location of this point is one
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Fig. 2.8 The order of the chiral symmetry restoration transition for 2 massless and one
massive quarks. The dashed line (red) is the second order transition, the solid line (blue) is
the �rst order transition. In the low T region: chiral symmetry is broken in nuclear matter.
Details of the phase structure at high µB are omitted.

of the unknowns of the QCD phase diagram with 2 massless quarks. In fact,
even the order of the transition at µB = 0, which many older and recent
studies suggest is of the second order (as shown in Fig. 2.8) is still being
questioned (see, e.g., recent review [43]).

Neither can it be claimed reliably (model or assumption independently)
that the transition, if it begins as a 2nd order at µB = 0, changes to �rst or-
der. However, numerous model calculations show this to be the case. Lattice
calculations also support such a picture. Recent advances in the understand-
ing of QCD at low T and large µB , reviewed, e.g., in [33�36], also point
at a �rst order transition (at low-T , high-µB) from nuclear matter to color
superconducting quark matter phase. Fig. 2.8 re�ects this consensus.

At low temperature, nuclear matter (which is expected to be still bound in
the chiral limit) should be placed on the broken symmetry side of the chiral
transition line as shown in Fig. 2.8.

2.2.4.4 Physical quark masses and crossover

When the up and down quark masses are set to their observed �nite val-
ues, the diagram assumes the shape sketched in Fig. 2.9. The second order
transition line (where there was one) is replaced by a crossover � the critical-
ity needed for the second order transition in Fig. 2.8 requires tuning chiral
symmetry breaking parameters (quark masses) to zero. In the absence of the
exact chiral symmetry (broken by quark masses) the transition from low- to
high-temperature phases of QCD need not proceed through a singularity. Lat-
tice simulations do indeed show that the transition is a crossover for µB = 0
(most recently and decisively Ref.[44], see also Ref.[43] for a review).14

14 This fact is technically easier to establish than the order of the transition in the chiral
limit � taking the chiral limit is an added di�culty.
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This transitional crossover region is notoriously di�cult to describe or
model analytically � description in terms of the hadronic degrees of freedom
(resonance gas) breaks down as one approaches crossover temperature (often
called Tc), and the dual description in terms of weakly interacting quarks
and gluons does not become valid until much higher temperatures. Recent
terminology for the QCD state near the crossover (T ∼ (1− 2)Tc) is strongly
coupled quark-gluon plasma (sQGP).

Transport properties of sQGP have attracted considerable attention. For
example, generally, the shear viscosity η is a decreasing function of the cou-
pling strength. The dimensionless ratio of η/~ to the entropy density s tends
to in�nity asymptotically far on either side of the crossover � in dilute hadron
gas (T → 0) and in asymptotically free QGP (T → ∞). Near the crossover
η/s should thus be expected to reach a minimum [45]. The viscosity can
be indirectly determined in heavy-ion collisions by comparing hydrodynamic
calculations to experimental data. Such comparison [46] indeed indicates that
the viscosity (per entropy density) of this �crossover liquid� is relatively small,
and plausibly is saturating the lower bound conjectured in [47].

cr
os

so
ve

r

1

0.1

T, GeV

0 µB, GeV

point
critical

matter
phases

quark

CFLnuclear
mattervacuum

hadron gas

QGP

Fig. 2.9 The contemporary view of the QCD phase diagram with physical quark masses
� a semiquantitative sketch.

2.2.4.5 Physical quark masses and the critical point

The �rst order transition line is now ending at a point known as the QCD crit-
ical point or end point.15 The end point of a �rst order line is a critical point
of the second order. This is by far the most common critical phenomenon in
condensed matter physics. Most liquids possess such a singularity, including
water. The line which we know as the water boiling transition ends at pres-
sure p = 218 atm and T = 374◦C. Along this line the two coexisting phases

15 The QCD critical point is sometimes also referred to as chiral critical point which
sets it apart from another known (nuclear) critical point, the end-point of the transition
separating nuclear liquid and gas phases (see Fig. 2.9). This point occurs at much lower
temperatures O(10MeV ) set by the scale of the nuclear binding energies (see Sec. 2.2.3).
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(water and vapor) become less and less distinct as one approaches the end
point, resulting in a single phase at this point and beyond.

In QCD the two coexisting phases are hadron gas (lower T ), and quark-
gluon plasma (higher T ). What distinguishes the two phases? As in the case
of water and vapor, the distinction is only quantitative � one is denser than
the other � and more obviously so as we approach the critical point, where
even the quantitative distinction vanishes. In QCD the situation is similar
� since the chiral symmetry is explicitly broken by quark masses, the two
phases cannot be distinguished by realizations (broken vs restored) of any
global symmetry.16

It is worth pointing out that beside the critical point, the phase diagram
of QCD in Fig. 2.9 has other similarities with the phase diagram of water.
A number of ordered quark matter phases must exist in the low-T high-
µB region, which are akin to many (more than 10) con�rmed phases of ice.
This issue is discussed in much more detail in Sec. 3.5. For asymptotically
large µB , QCD with 3 quark �avors must be in a color-�avor locked (CFL)
state [32, 33, 35, 36]. Concerning the location of the QCD critical point we
refer to the QCD lattice calculations in Sec. 3.2.

2.2.5 Universality and QCD transitions

2.2.5.1 Universality at the Nf = 2 chiral restoration transition

At those values of µ for which the chiral symmetry restoration transition is
of second order, the singularities of the thermodynamic observables can be
described using universality and scaling principles. In the symmetry broken
phase the full chiral symmetry SU(2)L×SU(2)R is broken down to an SU(2)
subgroup, the isospin. The critical theory can be written in terms of σ and π
�elds as a linear O(4) sigma model (in accordance with SU(2)×SU(2)∼O(4)),
in which the symmetry is spontaneously broken down to O(3) by a non-
vanishing expectation value of the σ �eld.

The exponents for the O(4) sigma-model universality class are ν ≈ 0.75
and η ≈ 0.04. The correlation length ξ diverges at the chiral transition ac-
cording to Eq. (2.49). The chiral order parameter σ ∼ 〈q̄q〉 vanishes as

16 The last statement may appear to contradict the observation that an asymptotically
free gas of quarks and gluons is di�erent from the hadron gas: the quarks and gluons
are con�ned in the latter, while they are free in the former. However, decon�nement �
a powerful concept to discuss the transition from hadron to quark-gluon plasma, strictly
speaking, does not provide a distinction between the phases. In QCD (not pure Yang-
Mills theory), because of the light quarks, even in vacuum (T = 0) the con�ning potential
cannot rise in�nitely � a quark-antiquark pair inserted into the color �ux tube breaks it.
The energy required to separate two test color charges from each other is �nite (see also
the discussion of center symmetry and the Polyakov loop in Secs. 2.1.3, 4.4 and 4.5).
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σ ∼ |T − Tc|β (2.55)

where β = ν(1 + η)/2 ≈ 0.39.

2.2.5.2 Universal properties of the tricritical point

By analogy with an ordinary critical point, where two distinct coexisting
phases become identical, one can de�ne the tricritical point as a point where
three coexisting phases become identical simultaneously. A tricritical point
marks an end-point of three-phase coexistence. In order to see this in QCD,
it is necessary to consider another dimension in the space of parameters �
the quark mass mq � see Fig. 2.10. This parameter breaks chiral symmetry
explicitly. In such a three-dimensional space of parameters, one can see that
there are two surfaces (symmetric with respect to mq → −mq re�ection) of
�rst-order phase transitions emanating from the �rst-order line atmq = 0. On
these surfaces or wings with mq 6= 0, two phases coexist: a low density phase
and a high density phase. There is no symmetry distinguishing these two
phases since chiral symmetry is explicitly broken when mq 6= 0. Therefore,
each surface can have an edge which is a line of critical points. These lines, or
wing lines, emanate from the tricritical point. The �rst-order phase transition
line can now be recognized as a line where three phases coexist: the high T
and density phase and two low density and T phases with opposite signs of
mq and, hence, also of 〈q̄q〉. This line is called, therefore, a triple line.

T

tricritical point, m = 0

critical line, mq = 0

mq

triple line, mq = 0

µB

line of end points, mq 6= 0

surface of 1st order
transitions

Fig. 2.10 A three-dimensional view (T, µB , mq) of the QCD phase diagram near the
tricritical point.
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Critical behavior near the tricritical point can now be inferred from uni-
versality. The upper critical dimension for this point is 3. Therefore the scal-
ing behavior near this point is described by mean �eld exponents with only
logarithmic corrections. The e�ective Landau-Ginzburg theory for the long-
wavelength modes, σ ∼ 〈q̄q〉, near this point requires a σ6 potential. In par-
ticular, the following exponents in the symmetry plane mq = 0 are readily
found using mean �eld σ6 theory (as noted above, the actual singularities in-
clude additional, logarithmic corrections [48]). The discontinuity in the order
parameter 〈σ〉 = 〈q̄q〉 along the triple line as a function of the distance from
the critical point µ3, T3 (measured either as T3 − T or µ− µ3) behaves like

∆〈q̄q〉 ∼ (µ− µ3)1/2 . (2.56)

The discontinuity in the density, n = dV/dµ, across the triple line behaves
like

∆n ∼ (µ− µ3)1 . (2.57)

The critical behavior along the second-order line is everywhere the same as
at the point µ = 0, T = Tc: the σ ∼ 〈q̄q〉 vanishes on the second-order line
with three-dimensional O(4) exponents Eq. (2.55). At the tricritical point,
however, the exponent with which 〈q̄q〉 vanishes is given by Landau-Ginzburg
theory as

〈q̄q〉 ∼ (T3 − T )1/4 . (2.58)

There are many other universal properties in the vicinity of a tricritical
point which can be derived from the σ6 Landau-Ginzburg theory. One can,
for example, show that the m = 0 second-order line, the wing lines, and the
triple lines approach the triple point with the same tangential direction: The
second-order line approaches from one side while the wing lines and the triple
line approach from the opposite side. For a more detailed description of the
properties of tricritical points, see ref. [48].

2.2.5.3 Scaling and universality at the QCD critical point

For �xed mq 6= 0 one �nds a line of �rst order transitions which ends in
a critical point (cf. Fig. 2.10). What is the universality class of the QCD
critical point? The critical point is an end-point of a �rst order transition
(coexistence curve) between two phases, which are not distinguished by any
symmetry. This type of critical points is the most common and corresponds
to Ising model, or liquid-gas phase transition universality class. The critical
points of this class are described by a �eld theory for a single-component
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scalar �eld φ = σ − σ0.17 In the Ising model, the role of φ is played by the
magnetization. In QCD, as in the liquid-gas case, the �eld to play the role of
the order parameter, can be chosen to be any thermodynamic variable which
jumps across the �rst order transition, e.g., 〈q̄q〉, n or even ε, or any linear
combination thereof. The most common, convenient, and natural choice is
〈q̄q〉 since this is the same order parameter which is relevant also near the
tricritical point, and simpli�es a uni�ed description of real QCD as well as
its chiral limit.

The signatures of the critical point depend crucially on the magnitude
of the correlation length, which is a function of the distance |T − TE | and
|µ − µE | from the critical point. Applying universality and scaling, one can
describe this dependence near the critical point in terms of the universal
critical exponents, which for the Ising model universality class are given by
ν ≈ 0.63 and η ≈ 0.04. Near the critical point the correlation length behaves
as

ξ ∼ |a(T − TE) + b(µ− µE)|−2/(5−η) (2.59)

where a and b are some non-universal coe�cients. Along the direction where
the linear combination in Eq. (2.59) vanishes the universal scaling predicts
that ξ ∼ |a′(T − TE) + b′(µ− µE)|−ν with di�erent coe�cients a′, b′.

One consequence of this is that, because ν > 2/(5− η) for the Ising model
universality class, the region around the critical point where the correlation
length ξ exceeds a given value ξ0 (a contour line) is stretched along the
direction where the particular combination given in Eq. (2.59) vanishes. For
qualitative illustrations we refer to [49] and to Sec. 4.7.

The divergence of the correlation length ξ translates into the divergence of
susceptibilities. For example, the baryon number susceptibility ξB diverges as
ξ2+η as the susceptibility of the order parameter should Eq. (2.51). Since sus-
ceptibilities are proportional to the magnitude of �uctuations, a critical point
could be discovered in heavy-ion collisions by observing a non-monotonous
behavior (rise and fall) of �uctuation signatures [50�52] as the phase diagram
of QCD is scanned, e.g., by varying the collision energy.

2.2.6 Order parameters and changes in the symmetry
pattern

2.2.6.1 Order parameters of chiral symmetry breaking

One of the most direct order parameters of chiral symmetry breaking is the
pion decay constant fπ de�ned by

17 Pion excitations π are massive throughout the Tµ plane at mq 6= 0 and decouple from
the critical theory.
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〈0|Abµ|πc(p)〉 = iδbcfπpµ . (2.60)

Here Abµ is the axial-vector current introduced in (2.27). In a medium (de-
noted by Ω) the appropriate generalization is 〈Ω|Ab0|πc(p)〉 = iδbcfπp0

(see e.g. [53]). Unfortunately, model-independent calculations of in-medium
changes of fπ are only available for very special in-medium situations (see
below).

As already discussed, frequently used order parameters are the two-quark
condensates 〈ūu〉, 〈d̄d〉 and 〈s̄s〉 or the corresponding two- or three-�avor
averages. As compared to the pion decay constant there are much more cal-
culations available for the in-medium changes of the two-quark condensates
(see below). The problem with these condensates, however, is that there is
so far no relation derived from �rst principles which directly connects two-
quark condensates with observable quantities.18 In addition, the two-quark
condensates might vanish even if chiral symmetry is still broken (see e.g. [55]).

As a complementary order parameter one might use a particular four-quark
condensate [56, 57]

〈OχSB〉 =
〈
(ūγµγ5λ

au− d̄γµγ5λ
ad)2 − (ūγµλau− d̄γµλad)2

〉
(2.61)

which is related to the second moment of the di�erence of spectra v1−a1

shown in Fig. 2.3. Therefore, this four-quark condensate is closely connected
to an observable quantity. If v1−a1 vanishes, also the four-quark condensate
(2.61) has to vanish. More general, if chiral symmetry is restored, both the
two- and this particular four-quark condensate must vanish. Note, however,
that strictly speaking the opposite is not true. In any case, it is instructive
to compare the in-medium behavior of two- and four-quark condensate to
obtain estimates for intrinsic uncertainties.

2.2.6.2 In-medium changes of order parameters

In this section the in-medium dependence of the order parameters introduced
above is discussed. At least in principle the temperature dependence of these
order parameters can be studied within lattice QCD. However, also lattice
QCD has some inherent restrictions and problems which improve only rather
slowly and only gradually with increasing computer power: One problem
concerns the treatment of light quarks. It turns out that with the present
computational power it is di�cult to deal with quarks which are as light as
they are in reality (cf. Tab. 2.1). On the other hand, the size of the light quark
masses determines the pion mass. Starting with too heavy quarks lattice
QCD calculations unavoidably result in too heavy pion masses. Therefore

18 In the famous Gell-Mann�Oakes�Renner relation [54] the two-quark condensate appears
together with the quark mass which is also not an observable.
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the properties of pions and all observables which are rather sensitive to the
light quark masses cannot be directly determined from the lattice so far.
(Unfortunately it is not always clear a priori for a given observable how
sensitive to the quark masses it actually is.) We have already discussed a
second problem: The inclusion of a �nite baryo-chemical potential µ causes
the appearance of a weighting function in (2.7) which is no longer positive
de�nite.

For these reasons also other approaches to the in-medium change of order
parameters have their merits and are used in the following. Among the sys-
tematic approaches discussed in Sec. 2.1.2 chiral perturbation theory is an
important tool to determine in-medium changes as long as the system under
consideration is su�ciently dilute (see below). Concerning �nite temperature
systems the calculations from lattice QCD and from chiral perturbation the-
ory are to some extent complementary: The latter can only be used reliably
at low temperatures. There, the most abundant particles are the pions which
are too heavy in present day lattice calculations. Therefore, at least the on-
set of the change of an order parameter might come out too weak in lattice
calculations, but can be reliably determined from chiral perturbation theory.

The temperature change (for µ = 0) of the two-quark condensate and of
the Polyakov loop has been calculated within lattice QCD [58]. A remarkable
aspect found there is the fact that both transitions seem to appear at exactly
the same temperature. This aspect is far from being completely understood.
In addition, it is not clear whether this fact remains true for �nite chemical
potentials. Indeed, one cannot generally expect that all order parameters
drastically change at the very same temperature. As a counter example we
already refer to Fig. 2.14 below: There the in-medium change of the two-
quark and the gluon condensate as obtained from a resonance gas model are
compared. One observes that the gluon condensate drops much later than the
two-quark condensate. Details about the resonance gas model are discussed
below. Concerning further results from lattice QCD we refer to Sec. 3.2.

To understand not only the transition region, but also the onset of in-
medium changes we concentrate for the rest of this section on the hadronic
phase and on analytical calculations. We focus on order parameters of chiral
symmetry breaking and on the trace anomaly. Note that the Polyakov loop
is not accessible by purely hadronic models.

Concerning analytical calculations, model independent statements can be
made for (i) a system at low temperature and vanishing baryo-chemical po-
tential and (ii) a system at �nite baryo-chemical potential and vanishing
temperature. System (i) is described by a gas of pions as the lightest degrees
of freedom. If the temperature is low enough, all heavier states are suppressed
by their thermal Boltzmann factors and can safely be neglected. System (ii) is
described by a Fermi sphere of nucleons. If the baryon density is low enough
one can neglect the nucleon-nucleon interactions. For higher temperatures
and/or densities model assumptions must be added to determine the change
of the order parameters.
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We now present in a compact list the changes of the introduced order
parameters in leading order of the pion and nucleon density, respectively.
Afterwards we will comment on the di�erent results and discuss further im-
provements:

fπ(T )
fπ

= 1− 2%π,s
3f2
π

,

fπ(%N )
fπ

= 1− (0.26± 0.04)
%N
%0

,

〈q̄q〉pionic med.

〈q̄q〉vac
= 1− %π,s

f2
π

,

〈q̄q〉nucl. med.

〈q̄q〉vac
= 1− σN%N

f2
πM

2
π

≈ 1− 0.3
%N
%0

,

〈OχSB〉pionic med.

〈OχSB〉vac
= 1− 8%π,s

3f2
π

,

〈OχSB〉nuclear med.

〈OχSB〉vac
= 1− 2σN%N

f2
πM

2
π

≈ 1− 0.7
%N
%0

(2.62)

with the quark �eld q denoting u or d, the scalar pion density19

%π,s = 3
∫

d3k

(2π)3 2Ek
1

eEk/T − 1
Mπ→ 0−→ 1

8
T 2 (2.63)

the nuclear density %N = 4
∫

d3k
(2π)3 Θ(kF −|k|), the nuclear saturation density

%0 and the nucleon sigma term σN ≈ 45MeV.
Comparing the respective formulae of (2.62) which are in the same column

shows that a bold extrapolation of these formulae to the point where the
respective order parameter vanishes would lead to di�erent critical densities.
This indicates a breakdown of the linear-density approximation. In other
words, one should not trust any of the formulae of (2.62) to the point where
the respective order parameter vanishes. For such large pion/nucleon densities
higher order terms in the respective density become important. Such e�ects
are in general hard to account for in a model independent way. In addition,
increasing the density of cold nuclear matter this system might not end up in
a chirally restored phase, but in a color superconductor with some remaining
chiral symmetry breaking. (This depends on the type of color superconductor,
see Sec. 3.5 for more details.)

The leading order change of the pion decay constant with temperature
(i.e. for system (i)) has been worked out e.g. in [59, 60]. The corresponding
case of cold nuclear matter (system (ii)) has been studied e.g. in [53]. Model
independent results for the change of fπ beyond the leading order in the
respective density are not available so far.

19 Note that a scalar density is only a well-de�ned concept for a non-interacting system.
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The quark condensate is obtained from the logarithmic derivative of the
partition function with respect to the quark mass [61]. Also here, for cold
nuclear matter there are no model independent results beyond the leading
order. For a pion gas described by chiral perturbation theory the situation
is better. The partition function and its quark mass derivative have been
evaluated in [61] up to three loops.20 The result in lowest order in the pion
density (i.e. neglecting interactions) is included in (2.62). The result of the
full three-loop calculation is depicted in Fig. 2.11. Recently this result has

Fig. 2.11 Drop of the quark condensate in an interacting pion gas plus non-interacting
other hadron states [61]. The shaded area signals the uncertainty for the resonance sigma
terms.

been generalized to �avor SU(3) by considering a gas of pions, kaons and etas
[62]. The result is shown in Fig. 2.12. Since the kaons and etas are (much)
heavier than the pions the former are less populated in a thermal medium.
This explicit �avor breaking causes a di�erent thermal behavior of the strange
quark condensate as compared to the sum of up and down quark condensate.

For the �nite-temperature calculations presented above the medium con-
tained only Goldstone bosons. One can improve on that (with minor model
assumptions) by taking into account all known hadron species � albeit ne-
glecting their interactions (resonance gas approximation). One can look at
this approximation from two di�erent points of view: First, it is a general-
ization of the linear-density approximation used in (2.62) by considering also
other degrees of freedom. Second, one might start from the stable states,
i.e. pions and nucleons and their �avor partners. Going beyond the linear-
density approximation means to account for correlations between the stable
states. Clearly the strongest correlations appear just in the channels where
hadronic resonances are formed. The latter line of reasoning already indicates
that the resonance gas approximation can be meaningful at �nite tempera-

20 �One-loop� corresponds to non-interacting pions.
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Fig. 2.12 Drop of the quark condensates in a gas of pions, kaons and etas [62]. (Note
that the label �One loop ChPT� concerns the scattering phase shifts and corresponds to a
three-loop evaluation of the pressure.)

tures, but not for cold nuclear matter. In the latter system one would need
nucleon-nucleon correlations to go beyond the linear-density approximation.
Clearly they are not encoded in hadronic resonances. Nonetheless, one can
use the resonance gas also for �nite baryo-chemical potential � as long as the
temperature is not too low. For vanishing chemical potential the resonance
gas approximation � together with the three-loop evaluation of the pres-
sure within chiral perturbation theory (see above) � has been used in [61]
to determine the drop of the quark condensate. Actually one would need the
sigma terms for all resonances. Strictly speaking this information is not avail-
able. Simple estimates can be made and an error attributed to the results.
This leads to Fig. 2.11. An extension of the resonance gas approximation to
�nite baryo-chemical potential is shown in Fig. 2.13 where the contour line
is displayed for which the (up and down) quark condensate vanishes. In the
right panel of Fig. 2.13 the end point on the right hand side of the respective
contour line corresponds to the case of vanishing temperature. As already
discussed one should not trust the resonance gas approximation in this area.

The drop of the four-quark condensate (2.61) in a pion gas in leading
order in the density has been calculated in [64]. The dependence on the
nuclear density cannot be calculated model independently. Using the large-
Nc approximation [65] (where Nc denotes the number of colors) one gets the
result given in (2.62). With the same approximation (large-Nc) the drop of
the four-quark condensate can be calculated for a resonance gas along the
same lines as for the two-quark condensate [63]. The results are also shown
in Fig. 2.13. Interestingly, the line where the four-quark condensate vanishes
remains constant in energy density for a large range of baryon densities.
The di�erences between the lines shown in Fig. 2.13 might be seen as an
uncertainty for the determination of the line of chiral symmetry restoration.
For a discussion of further uncertainties (concerning the resonance sigma
terms) see [63].
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a resonance gas as functions of temperature T and baryo-chemical potential µ (left panel)
and as functions of energy density ε and baryon density %B (right panel). See [63] for
details. For orientation, the point of cold nuclear matter has been included in the right
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The resonance gas approximation can also be used to determine the in-
medium change of the gluon condensate. This is depicted in Fig. 2.14 in
comparison to the change of the two-quark condensate [66].21 One observes
that the gluon condensate is still nearly constant in the region where the
two-quark condensate already vanishes. Only at higher temperatures also the
gluon condensate drops. As already discussed this is in qualitative contrast
to the comparison between two-quark condensate and Polyakov loop which
according to lattice calculations change at the very same temperature � at
least for vanishing chemical potential. Hence not all condensates have their
drastic changes at the very same point.
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Fig. 2.14 Comparison of temperature and µ dependence of two-quark (left) and gluon
condensate (right) [66]. Both condensates are normalized to their respective vacuum values.
The chemical potential µ = µB is given in MeV.

21 Note that the assumption in [61, 63] about the resonance sigma terms deviates to some
extent from the corresponding assumption made in [66] which is based on [67], cf. the
corresponding discussion in [63].
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From the hadronic calculations one gets a chiral transition with a temper-
ature of roughly 200 MeV for vanishing chemical potential. This temperature
drops with increasing chemical potential. The energy density at the transition
is roughly 1 GeV/fm3 with large uncertainties. Actually these numbers are
in good agreement with lattice calculations. Further applications of the reso-
nance gas approximation are discussed in Sec. 4.2. The presented analytical
calculations describe the drop of order parameters in purely hadronic scenar-
ios. It should be clear that such calculations do not tell whether in the end
there is a phase transition or only a crossover. Such deeper questions involve
the relevant degrees of freedom of both sides of the transition. Therefore one
needs lattice QCD to shed light on these questions (see Sec. 3.2).





Chapter 3

Equation of state and phase boundaries
of strongly interacting matter

In the present chapter our knowledge about the di�erent areas of the QCD
phase diagram is reviewed, starting at high temperatures and vanishing
baryo-chemical potentials and ending up at low temperatures and high net
baryon densities.

3.1 The coupling constant expansion of the QCD
pressure

As is well known by now, at temperatures substantially below the critical tem-
perature Tc hadronic matter behavior is accurately described by a hadron
resonance gas [10]. However, near the critical temperature things become
quite complicated: the system is fully non-perturbative and numerical lattice
Monte Carlo simulations remain the only �rst principles method for obtain-
ing reliable results. The status of these simulations is described in Sec. 3.2.
(Concerning the hadron resonance gas see also Sec. 4.2.) At temperatures suf-
�ciently far above the critical temperature, well into the quark-gluon plasma
phase, the QCD coupling constant becomes small and perturbative methods
are applicable. However, this is not the whole story: due to the infrared sin-
gularities in the gluonic sector, the perturbative loop expansion breaks down
at some �nite order, as shown by Linde [68] and Gross, Pisarski and Ya�e
[69] already more than 25 years ago. For the pressure this happens at order
g6.

The perturbative expression for the pressure has recently been calculated
to order g6 ln 1/g, the highest perturbatively computable order, �rst at van-
ishing baryon chemical potential µ by Laine et al. [70], but soon generalized
to non-zero µ by Vuorinen [71, 72]. These calculations are valid for T >∼ 2Tc,
µ<∼πT . At large µ and arbitrary T the result is known to order g4 [73].

A striking feature of the coupling constant expansion is the slow con-
vergence. Only at temperatures higher or around ∼ 100Tc the convergence

101
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becomes uniform. This is due to the large value of the QCD coupling constant
even signi�cantly above the transition temperature. This causes signi�cant
deviations from the ideal Stefan-Boltzmann law; at T ∼ 10Tc these are still
of order 12%, and at 100Tc 7%.

The perturbative calculations mentioned above are done using massless
quarks. While non-vanishing quark masses pose no fundamental problems
for perturbation theory, the computations become technically very cumber-
some, and the result is known only to order g2 [74, 75]. However, in [75] an
interpolation method was used to estimate the e�ect of physical quark masses
to the full perturbative pressure. This was then connected to the resonance
gas behavior at low temperatures, resulting in a phenomenological result for
the physical QCD pressure for all temperatures.

For precision results it would be important to know the pressure also at
order g6 and higher. Because this is the lowest order where genuinely non-
perturbative physics starts to contribute, the magnitude of these contribu-
tions can be signi�cant. This problem can be addressed using a combination
of perturbative analysis and lattice Monte Carlo simulations of e�ective 3-
dimensional theories [76�78].

The slow convergence of the perturbative expansion has spurred the de-
velopment of various approaches to reorganize the perturbative expansion
so that the convergence improves, especially at temperatures close to the
transition temperature. These resummation techniques [79�91] have the fea-
ture that these include some relevant physical ingredients � Debye screening
mass, for example � in the de�nition of the method. Thus, as opposed to the
standard perturbation theory which is an expansion around vacuum, these
include thermal quasiparticles from the outset. The cost to pay is that the
methods are somewhat non-systematic, and it becomes technically very dif-
�cult to calculate the results to high orders.

3.1.1 Perturbative expansion at high temperatures

The expansion of the QCD pressure is now known up to order g6 ln 1/g,
after 25 years of e�ort. In parametric order the expansion in terms of QCD
coupling constant g is as follows:
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p/pSB = 1 Stefan-Boltzmann ideal gas
+ g2 2-loop (Shuryak 78 [92], Chin 78 [93])
+ g3 resummed 2-loop (Kapusta 79 [74])
+ g4 ln 1/g resummed 2-loop (Toimela 83 [94])
+ g4 resummed 3-loop (Arnold, Zhai 94 [95, 96])
+ g5 resummed 3-loop (Zhai, Kastening 95 [97])
+ g6 ln 1/g resummed 4-loop (Laine et al. 03 [70])
+ g6 not perturbatively computable (Linde 80 [68])1

+ g7

+ . . .

(3.1)

Here the ideal gas Stefan-Boltzmann pressure for SU(3) gluons and Nf mass-
less quarks is

pSB =
π2T 4

45
(8 +

21Nf
4

). (3.2)

Explicit expressions for the coe�cients can be found in [70]. Recently the
calculation was extended to the order O(g6 ln 1/g) pressure in the full elec-
troweak standard model [99, 100]. It should be noted that the expansion
contains odd powers and logarithms of g, not present in standard perturba-
tive expansions at T = 0. Moreover, the g6 term is not computable in loop
expansion [68, 69]. These facts are due to infrared divergences which are in-
evitable at �nite temperature perturbation theory; these divergences are of
physical origin and give rise to a hierarchy of energy scales which will be
discussed below. It is possible to proceed further in the large Nf -limit, where
all-orders result in the full (T, µ) -plane has been obtained [101�104].

The coe�cients of the expansion depend on temperature T , chemical po-
tentials µ, and the number of quark �avors Nf . We shall �rst assume that
the quarks are massless and that the quark chemical potentials are zero; mass
e�ects and �nite baryo-chemical potential will be discussed further below.

How well does the expansion work? In Fig. 3.1 the pressure is shown term
by term for Nf = 0 case, and compared with the available lattice data [105,
106]. We can see that the convergence of the perturbative expansion is very
slow and non-uniform; only when T >∼ 40 . . . 100ΛMS there is apparent term-
by-term convergence. On the left panel of Fig. 3.1 the unknown g6-coe�cient
has been tuned so that the result �ts the lattice simulation data [105, 106]
at T = 3�4ΛMS. While this gives a surprisingly good �t (the behavior even
approximates the lattice results all the way down to Tc), this is probably
spurious: there is no reason to assume that the remaining higher order terms
would give a negligible contribution. Indeed, the dependence on the unknown
g6 coe�cient is large: adjusting it within a reasonable range we obtain the
family of curves on the right panel in Fig. 3.1.

1 partial non-pertubative result (Renzo et al. 06) [98]
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Fig. 3.1 Left: Perturbative QCD pressure order-by-order at Nf = 0, normalized to the
ideal gas pressure, as a function of T/ΛMS (to convert to units of Tc, use Tc/ΛMS ≈ 1.2).
The last term is plotted using an optimized O(g6) constant for the �t to the lattice data
[105, 106]. The latter are the dots labeled by �4d lattice�. Right: Dependence of the O(g6)
result on the so far undetermined constant [70].

That said, it can be expected that the true pressure of QCD will be close
to the �tted curve on the left panel of Fig. 3.1; i.e. the �tted g6-term is a fair
approximation of all the remaining higher order contributions. Thus, from
a practical point of view, one can take the lattice+�tted perturbative curve
to be currently the best available result for the pressure. This approach has
been analyzed in detail by Laine and Schröder in [75]. The resulting pressure
for pure glue (Nf = 0) QCD is shown on Fig. 3.2. The obtained interpolating
curve is an accurate determination of the pressure of the theory.

The slow convergence of the perturbative expansion indicates that the
QCD plasma remains e�ectively strongly coupled up to temperatures some-
what larger than 10Tc. At T ∼ 10ΛMS ∼ 8Tc, the interpolating curve still
deviates ∼ 12% from the Stefan-Boltzmann gas value.

3.1.2 Quark mass e�ects and pressure in real QCD

In the calculations leading to the results shown in Fig. 3.1 quark masses were
set to zero. (In the actual �gures Nf = 0, thus the masses do not matter.)
However, the real masses of the strange and charm quarks cannot be neglected
if we want to obtain precise results for the pressure. While non-zero quark
masses do not cause any conceptual problems for perturbation theory, in
practice the computations become technically cumbersome. In this case the
pressure has been calculated only up to order O(g2), originally by Kapusta
almost 30 years ago [74], and recently in a more complete form by Laine and
Schröder [75].
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Fig. 3.3 Left: The pressure of physical QCD, obtained by interpolating the low-
temperature hadron resonance gas model and the high-temperature perturbative result
including 3 (u,d,s) and 4 (u,d,s,c) quarks with physical masses. The shaded region is the
transition region. Right: The �equation of state� w = p/e and the square of the speed of
sound c2s, using the phenomenological result for Nf = 4 pressure. 1/3 is the free �eld value
for both quantities [75].

While the full O(g6 ln 1/g) result has not been calculated, it is nevertheless
possible to approximate the contribution of the massive quarks to the full
perturbative pressure. It is obvious that when we change the mass of one
�avor from zero to in�nity while keeping the other quark masses at zero, we
are smoothly interpolating between Nf and Nf − 1 massless �avors (and at
the same time the pressure decreases). Thus, what is needed is a prescription
for interpolating the known boundary values to the physical quark masses.
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The choice of the interpolation method is not unique. One way to proceed
is to de�ne an e�ective number of massless quark �avors, N eff

f , by matching
the pressure at order g2:

pg0+g2(mq = 0, N eff
f ) = pg0+g2(mphys.

q ). (3.3)

The full pressure can be estimated by insertingN eff
f to the known O(g6 ln 1/g)

-formula for massless quarks. Alternatively, as was done in [75], we can cal-
culate a correction factor

pg0+g2(mphys.
q , Nf = 4)

pg0+g2(Nf = 0)
(3.4)

and multiply the full Nf = 0 pressure with this correction. Naturally, here
one could also use the known perturbative result for Nf = 4, mq = 0 as the
baseline which is corrected, but Nf = 0 has the advantage that the quenched
pressure is well determined near the transition by lattice simulations.

In [75] the pressure in the low temperature phase is modeled using the
hadron resonance gas model [10]; this has been recently observed to match
the lattice simulations with dynamical fermions quite well near the critical
temperature, if the resonance masses are adjusted to correspond to the (un-
physical) quark masses used in simulations [107] (cf. Sec. 4.2). The resonance
gas gives the pressure directly in physical units, and the phenomenological
high-temperature curve is matched to that by tuning ΛMS so that the slopes
of the curves match in the transition/crossover region. The resulting pressure
is shown on the left panel in Fig. 3.3. The curves have been computed using
physical quark masses for u,d,s -quarks and u,d,s,c -quarks (Nf = 3 and 4). It
can be readily observed that the charm quark gives a signi�cant contribution
to the pressure already almost immediately above the transition region.

In addition to the pressure itself, its �rst and second derivatives have
important thermodynamic applications. The equation of state and the speed
of sound can be expressed as dimensionless ratios

w(T ) =
p(T )
e(T )

=
p(T )

Tp′(T )− p(T )
(3.5)

c2s(T ) =
p′(T )
e′(T )

, (3.6)

where e(T ) is the energy density. These are shown for the physical Nf = 4
pressure on the right panel of Fig. 3.3 [75].

Clearly, there is a signi�cant amount of structure around the critical region.
Here the transition is, by construction, continuous (at most second order):
the derivative of the pressure is tuned to be continuous through the transi-
tion region. The discontinuity is seen in higher order derivatives, especially in
c2s, which jumps almost discontinuously when we go over to the perturbative
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curve. A jump in c2s would indicate a second order transition, whereas in a
smooth crossover all derivatives are continuous. Obviously the results remain
quite sensitive to the interpolation between the low- and high-temperature
domains, and precise numerical lattice simulations in the transition region
are required. Furthermore, the phenomenological approach used here cannot
describe the chiral phenomenology of full QCD near the transition tempera-
ture.

Recent lattice simulations with dynamical quarks indicate that the tran-
sition is most likely a continuous crossover [108�111]; see also Sec. 3.2. They
also show w and c2s to go signi�cantly below the minimum shown in Fig. 3.3
in the transition region. Also, these quantities either decrease or remain at
most constant when the temperature is decreased; hence, the peak seen in
Fig. 3.3 around T ∼ 100MeV is missing. This is due to the unphysically heavy
quarks used in simulations, making lattice pions signi�cantly heavier than the
physical ones. Thus, available lattice data cannot be directly compared with
the phenomenological physical pressure, and simulations with much lighter
quarks are needed.

3.1.3 Beyond perturbation theory

It would be very interesting to know the non-perturbative O(g6) coe�cient
for the pressure, because it receives contributions from very di�erent physics
than the lower orders. In order to calculate it (and higher order terms) we
have to rely on numerical lattice Monte Carlo simulations. Perhaps the most
e�cient way to access these terms is to use simulations of 3-dimensional
e�ective theories.2

The derivation of these theories relies on the fact that at high enough
temperatures the QCD coupling constant g is small, and we have a hierar-
chy of dynamical scales πT � gT � g2T . The �hard� πT scales include all
non-static bosonic modes and all fermionic modes. The �soft� electric and
�supersoft� magnetic scales, gT and g2T , describe only static bosonic 3-dim.
modes. A crucial point here is that the infrared divergences rendering the
physics non-perturbative a�ect only scales g2T . Thus, we can integrate over
k ∼ πT -modes and, in turn, over k ∼ gT -modes perturbatively, obtain-
ing e�ective theories describing scales k <∼ gT (Electrostatic QCD, EQCD)
and k <∼ g

2T (Magnetostatic QCD, MQCD), respectively [112�115]. These
theories are purely bosonic and 3-dimensional, thus very suitable for numer-
ical analysis, while still fully retaining the non-perturbative infrared physics
of QCD. In particular, the theory describing g2T -scales (MQCD) is just 3-
dimensional SU(3) gauge theory.

2 E�ective theories are also used to organise the perturbative calculations described in Sec.
3.1.1.
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We emphasize here that while the e�ective theories can be used to calcu-
late non-perturbative contributions to the coupling constant expansion, they
cannot describe phenomena where the expansion fails, e.g. physics at very
close proximity to the transition temperature. In this case one has to rely on
standard full 4-dimensional lattice simulations.

Let us look at the ongoing progress in the determination of the O(g6)
contribution to the pressure. This term is a sum of two parts: a genuinely
non-perturbative part involving scale g2T (and calculable from MQCD), and
the perturbatively computable �matching� part including contributions from
scales πT , gT . Here the non-perturbative part turns out to be simpler to
evaluate: it can be elegantly and robustly computed using lattice simulations
of MQCD [77, 78]. On the other hand, the perturbatively computable part
remains undetermined. In order to determine it full 4-loop calculations in
�nite-T QCD are required, which is technically an extremely challenging
problem.3 Thus, the full resolution of the order g6 term for the QCD pressure
awaits for the completion of this 4-loop calculation.

To go beyond O(g6) again becomes more di�cult. However, the static
part of O(g7) coe�cient (involving scales gT and g2T but not πT ) can be
calculated with lattice simulations of EQCD. This has been attempted in [76].
While the method was seen to work well in describing the overall behaviour
of the pressure, the precision of the results was not su�cient to determine
the O(g7) coe�cient. Substantially increased accuracy is needed in order to
resolve the issue.

3.1.4 Resummation methods

So far, we have only discussed systematic order-by-order expansions in the
QCD coupling constant. While this is a well-de�ned and robust approach,
it is obvious that the convergence of the expansion is bad, as seen from
Figs. 3.1. Various �resummation� methods have been developed to address
this issue. These reorganize the expansion in a way which tries to improve
the convergence, especially at temperatures closer to the transition temper-
ature. There are several non-equivalent ways to do the resummation: these
go under names �screened perturbation theory� (SPT) [79, 80, 88, 89], �hard
thermal loop e�ective theory� (HTLPT) [82, 90, 91], and �Φ-derivable� ap-
proximations [81, 85�87, 117]. These approaches have been recently reviewed
in [118, 119].

An essential feature in these approaches is that typically some relevant
thermal phenomenology is included in the formalism from the outset: quasi-
particles, Debye screening, damping, etc. Thus, as opposed to standard per-

3 Recently, 4-loop O(g6) pressure has been computed by Gynther et al. for massless O(N)
scalar theory, where it is perturbatively computable [116]. One of the aims of this computa-
tion was to explore methods for handling the more challenging QCD 4-loop computation.
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turbation theory which is an expansion around empty vacuum, the starting
point here is a �thermal� vacuum around which to make the expansion. The
price to pay is that the expansions typically cannot be carried out to as
high order as in perturbation theory. Thus, these approaches typically re-
produce the standard perturbative expansion (3.1) only to some low order,
depending on truncations, but include certain contributions from all higher
orders. However, none of these approaches includes the physics of the super-
soft magnetostatic g2T -sector (neither does the standard perturbation theory,
of course).

In addition to the �physical� approaches listed above, purely mathematical
extrapolation schemes have been introduced. These are constructed, based on
the �rst few terms of the perturbative series, using Padé approximants [120�
122] or Borel summation techniques [123, 124]. However, we shall not discuss
these methods here further.

Let us look closer at screened perturbation theory [79], which is the sim-
plest of the above approaches. Consider a scalar �eld φ Lagrangian, to which
we add and subtract an extra mass term. One is interpreted as a change of
the original mass, the other one as a perturbation:

L = L0 +m2φ2 + δ
g2

4!
φ4 − δm2φ2 = L′0 + δL′int. (3.7)

If δ = 1 we obtain the original theory, and the loop expansion of the mod-
i�ed theory becomes an expansion in δ. The mass parameter m2 is a priori
completely arbitrary, and it becomes an optimization parameter. At �nite
temperature the optimal values are close to the thermal screening mass of
the scalar theory, which is of order gT . In scalar theory this approach leads to
dramatic improvement in convergence over the standard perturbation theory
[88]. However, inclusion of thermal mass to the �free� Lagrangian leads to
temperature-dependent counterterms which can cause di�culties in calcula-
tions.

The screened perturbation theory cannot be directly applied to non-
Abelian gauge theories. The generalization to QCD is the hard thermal loop
perturbation theory (HTLPT), which is also based on adding and subtracting
a correction term:

L = [LQCD + (1− δ)LHTL]g2→δg2 (3.8)

Again, δ = 1 is the standard QCD, and the expansion is done around δ = 0.
Here LHTL is constructed so that already the free propagator (δ = g2 = 0)
gives thermal quasiparticles, screening (Debye mass), and Landau damping.
All of these phenomena depend on electric modes gT . Thus, the starting
point of the expansion is more physical, and the hope is that the expansion
is better behaved. However, the calculations become technically very di�cult
already at 2-loop level. For quenched QCD the pressure has been calculated
by Andersen et al. to 2-loop order [90], with the result shown in Fig. 3.4.
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Fig. 3.4 The pressure calculated using hard thermal loop perturbation theory to 1-loop
(light gray band) and 2-loop (dark gray) order. The calculation is compared to 4-dim.
lattice data (dots) and to e�ective theory results obtained in [76] and discussed in Sec.
3.1.3 [90].

Comparing HTLPT with the standard perturbation theory we can see
that the stability of the expansion is, indeed, greatly improved. However,
near the transition temperature it overshoots the 4-dimensional lattice results
signi�cantly where data is available. The 2-loop result includes the standard
perturbative result up to order g4 ln 1/g after which they di�er; especially
the physics of the magnetic sector is not included in HTLPT.

It has been suggested that the too large value for the HTLPT pressure can
be due to the fact that it does not describe the hard modes correctly to high
enough accuracy in coupling constant expansion. Thus, in [125] a hybrid ap-
proach was advocated: apply screened perturbation theory to EQCD. In this
approach the hard ∼ T modes are treated using normal perturbation the-
ory as EQCD is derived. The results obtained appear to match the available
lattice results better than with the direct HTLPT calculation [118, 125].

In the third resummation method mentioned above, �Φ-derivable� ap-
proach, the variational parameter is not the mass term as in SPT but the full
exact propagator. The method was derived already in the 60's by Luttinger
and Ward [126] and Baym [117]. It is based on the fact that the thermo-
dynamic potential can be expressed in terms of an expansion of 2-particle
irreducible (2PI) skeleton graphs. While the Φ-derivable approach has sev-
eral desirable features it is also very di�cult to solve, and in practice one has
to rely on approximations. Like the HTLPT, when applied to a scalar �eld
theory it o�ers considerably improved convergence of the expansion of the
pressure. The method has been applied to QCD pressure by Blaizot, Iancu
and Rebhan [85�87] and Peshier [81]; for all details, we refer therein. While
the results, especially for entropy, numerically are close to the results ob-
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tained with HTLPT or lattice simulations, it is very di�cult to push these
calculations beyond leading order.

3.1.5 Perturbative expansion at �nite chemical potential

At high temperature and quark chemical potential µ� T/g the perturbative
expansion remains as sketched in Eq. (3.1). The calculation of its coe�cients
has been carried out for massless quarks to order g6 ln g by Vuorinen [72].

The problems with the convergence of the perturbative series are somewhat
milder in the contributions to the pressure involving the chemical potential.
The results obtained in strict perturbation theory [72], at least when using
an optimized choice of the renormalization scale, agree reasonably both with
results from resummations based on Φ-derivable approximations [127, 128]
and with available lattice data [129, 130] as long as the temperature is not
too close to the decon�nement transition. Fig. 3.5 shows a comparison [104]
of the perturbative three-loop result for ∆P = P (T, µ)−P (T, 0) with lattice
data from Ref. [130], where the di�erence between the optimized perturbative
result and the lattice data is about 10% at the upper end of the temperature
range considered. This di�erence is in fact of the order of the estimated
discretization errors [131].

Fig. 3.5 The di�erence ∆P = P (T, µ)− P (T, 0) divided by T 4 given by the three-loop
result of Ref. [72] for µ/T = 0.2, . . . , 1.0 (bottom to top) versus lattice data from Ref. [130]

(not yet continuum-extrapolated!) assuming Tµ=0
c = 0.49ΛQCD [132]. Dashed and dash-

dotted lines correspond to the perturbative result with two di�erent choices of optimized
renormalization scales and the shaded areas display the spread when the renormalization
scale is varied by a factor of 2 about the central value.
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The perturbative expansion of diagonal quark number susceptibilities fol-
lows the same pattern as shown in Eq. (3.1), except that now the coe�cient
of order g6 is perturbatively computable (albeit not computed so far).

O�-diagonal susceptibilities χij = ∂2P/∂µi∂µj with di�erent �avor indices
i 6= j di�er in that the perturbative expansion at the point µi = µj = 0 starts
only at order g6T 2 ln 1/g. In QCD one �nds for massless quarks [127]

χi 6=j |µ=0 ∼ −
10
9

(αs/π)3T 2 ln 1/αs. (3.9)

This term is due to C-odd contributions to the dimensionally reduced e�ective
theory of EQCD [133�135]. Initially lattice results at high temperature [136]
appeared to be in contradiction with (3.9), which was interpreted as a further
indication of the nonperturbative nature of the quark-gluon plasma. However,
newer lattice results now do agree in sign and order of magnitude [137, 138]. A
detailed quantitative comparison of the perturbative results for both diagonal
and o�-diagonal susceptibilities with (3-dimensional) lattice simulations of
EQCD has recently been carried out in Ref. [139].

At zero temperature and high chemical potential the perturbative expan-
sion of the pressure does not involve odd powers of the coupling g, but does
involve ln 1/g terms starting at order g4. In contrast to the results obtained
at high temperature and chemical potential µ� T/g, the nonanalytic terms
in the coupling constant require a resummation of nonstatic self energy con-
tributions, namely the so-called hard-dense-loop (HDL) part [140�143]. On
the other hand, perturbation theory at zero temperature is free of Linde's
magnetic mass problem [68] which at �nite temperature renders the contri-
bution proportional to g6T 4 nonperturbative. A complete result of the T = 0
high-µ pressure to order g4 has been obtained already in 1977 by Freedman
and McLerran [144�146] and subsequently by Baluni [147], but the coe�cient
to order g4 involved sizeable numerical uncertainties. An accurate calculation
to order g4 has been provided more recently by Vuorinen [72].

At small nonzero temperatures T � gµ, the perturbative series is more
complicated and involves logarithms and fractional powers of g and of T/µ.
Physically, this is caused by the weakly screened low-frequency magnetic
�elds rather than electrostatic Debye screening. The leading temperature
contribution to the pressure is of order g2T 2µ2 lnT−1, which gives rise to a
T lnT−1 term in the low-temperature entropy characteristic of non-Fermi-
liquid (NFL) behavior (also referred to as �anomalous speci�c heat�). The
(positive) coe�cient of this logarithmic term was calculated �rst by Holstein
et al. in 1973 [148] (corrected 1995 in Ref. [149]) for a nonrelativistic electron
gas, where its e�ect is probably too small for experimental detection. In QCD,
which has 8 times more gauge bosons and a much larger coupling, the e�ect
is correspondingly bigger. Moreover, it has been shown in Ref. [150] that the
T lnT−1 term is not modi�ed by (perturbative) higher order corrections even
when the logarithm gets nonperturbatively large. A complete calculation of
the leading term beyond logarithmic accuracy was performed by Ipp et al.
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Fig. 3.6 Non-Fermi-liquid speci�c heat for low-temperature (but non-super-conducting)
massless QCD and QED normalized to the Stefan-Boltzmann result. With g2eff ≡ g2Nf/2,
geff = 2 and 3 correspond to αs ≈ 0.32 and 0.72, respectively, in Nf = 2 QCD. The
dotted lines represent the naive perturbative result to order g2. The QED result is enlarged
by a factor 20 to make its tiny NFL e�ects visible in this plot.

[151, 152] (the corresponding NFL term in the quark propagator was later
calculated completely in Ref. [153]). If one de�nes the NFL regime by the
criterion that the T -dependent contribution to the interaction pressure is
positive rather than (as usually the case) negative, the upper temperature of
the NFL regime is obtained as [73]

TNFL

µ
≈ 0.064(Nf/2)1/2g. (3.10)

This temperature is at the same time a rather sharp lower limit for the appli-
cability of dimensional reduction and the e�ective theory EQCD. Because of
the smallness of the prefactor in (3.10) the latter actually permits remarkably
low values of T/µ. For temperatures below TNFL one �nds strong deviations
from naive, unresummed �rst-order perturbation theory, leading eventually
to a speci�c heat in excess of the Stefan-Boltzmann value as shown in Fig.
3.6.

As discussed in detail later in Sec. 3.5, at su�ciently small temperatures
(T ∝ exp(−3π2/

√
2g) and therefore not visible in a series expansion in g) one

expects a transition to a color superconducting phase which limits the above
NFL regime for normal-conducting quark matter from below. Extrapolating
the weak-coupling results for TNFL and for the critical temperature of color
superconductivity to larger coupling, the perturbative result suggests a small
but �nite range of NFL behavior as displayed in Fig. 3.7.

The e�ects of the anomalous speci�c heat of normal quark matter and
the speci�c heat expected for the various phases of color superconductivity
on neutron star cooling have been studied in Ref. [154]. This crucially in-
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Fig. 3.7 The dividing line between the regime of dimensional reduction (DR) which is
governed by the e�ective theory of EQCD and that of non-Fermi-liquid behavior (NFL) as
given by Eq. (3.10) for Nf = 3 (full lines) and Nf = 2 (dashed lines), in comparison with
the weak-coupling result ((3.59) for a spin-zero condensate) for the critical temperature of
color superconductivity (CSC) when extrapolated to large coupling.

volves also NFL e�ects on the neutrino emissitivity through the NFL quark
dispersion relations [153].

3.1.6 Summary of the present status

The pressure of the quark-gluon plasma phase is of fundamental importance
in heavy-ion collision experiments and precision cosmology. At very high
temperatures the QCD coupling constant becomes small and perturbation
theory is applicable. The perturbative expansion for the pressure of high-
temperature QCD is now known up to order g6 ln 1/g [70], 29 years after the
�rst non-trivial O(g2) contribution was obtained. This is the highest order
fully computable in perturbation theory. The results are physically applicable
when T >∼ 2− 3Tc and µ<∼πT .

The most striking features of the perturbative expansion are the slow con-
vergence and large order-by-order �uctuations in the expansion. These sig-
nal the well-known fact that QCD remains strongly coupled also within the
quark-gluon plasma. Despite the large �uctuations, it is possible to �t the
perturbative result to the pressure determined with quenched lattice simu-
lations [70, 75]. Thus, combining these two results, we obtain interpolated
quenched QCD pressure for all temperatures. From the resulting curve we
can observe that deviations from the ideal gas Stefan-Boltzmann law are sig-
ni�cant: at T ∼ 2Tc, the deviation is ∼ 30%, at T ∼ 10Tc 12%, and even at
T ∼ 100Tc around 7%. Thus, deviations from the ideal gas are signi�cant at
all temperatures relevant for heavy-ion experiments.
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In order to go beyond g6 ln 1/g non-perturbative lattice simulations are
required. The non-perturbative part of the O(g6) contribution has already
been measured from lattice simulations; however, in order to relate this to
QCD pressure, a perturbative 4-loop matching computation is required. This
has not been accomplished yet.

At low temperatures and high quark chemical potential, where lattice QCD
is unfortunately unavailable, the perturbative expansion obtained by means
of dimensionally reduced e�ective theories breaks down for T . 0.1gµ. For
such temperatures the perturbative expansion, which has been worked out
to order g4, involves the nonstatic hard-dense-loop e�ective theory. It is no
longer restricted to orders below g6, since Linde's magnetic mass problem [68]
disappears in the limit of zero temperature. However, as discussed below in
Sec. 3.5, at parametrically exponentially small (but potentially sizeable) tem-
peratures important additional contributions are provided by phases of color
superconductivity. Above the critical temperature of color superconductivity,
the perturbative result suggests a small but �nite range of non-Fermi-liquid
behavior of QCD, involving a characteristic anomalous speci�c heat contri-
bution.

For full QCD the pressure has been calculated only for massless quarks.
However, because the pressure behaves smoothly when the quark masses are
varied, it is possible to use an interpolation in order to obtain a phenomeno-
logical result for QCD with a physical quark mass spectrum. Combining the
high-temperature perturbative pressure with a hadron resonance gas behavior
at low temperature, we obtain a �best e�ort� result for the full QCD pres-
sure at all temperatures [75]. One of the striking features is that the charm
quark mass has a signi�cant e�ect almost immediately above the transition
temperature. It is important to understand the interrelations between such
a �best e�ort� result and the results from lattice QCD: On the one hand, the
calculation of the pressure within lattice QCD typically uses too heavy up
and down quark masses (see, however, the most recent results discussed in
Sec. 3.2). Therefore, the results from a combined resonance gas plus pertur-
bative QCD calculation might be regarded as more physical. On the other
hand, without calculations from lattice QCD we would not know whether the
resonance gas results are reasonable (see also Sec. 4.2). In addition, the de-
scription of the pressure in terms of resonance gas + perturbative expansion
will certainly be incorrect in some details; for example, the way these two
expansions are glued together at Tc determines the nature of the transition.
Hence, full lattice QCD is still the most powerful guideline in the transition
region from hadronic to quark-gluon matter. The next section is devoted to
the results for thermodynamic properties obtained with this �rst-principle
method.
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3.2 Thermodynamic properties from lattice QCD

During recent years our knowledge of the thermodynamics of strongly inter-
acting elementary particles greatly advanced [58]. Lattice calculations now
allow to study also the thermodynamics at non-zero quark chemical poten-
tial (µq). Most of the approaches developed for this purpose [155�159] are still
limited to the regime of high temperature and small values of the chemical
potential, T >∼ 0.9T0, µq/T <∼ 1 (where T0 denotes the transition temperature
at vanishing chemical potential). An exception is the density of state method
which can be used at larger chemical potentials (see below) [160]. In spite of
the fact that most approaches are limited to small chemical potentials, they
already allow to analyze the density dependence of the QCD equation of state
in a regime relevant for a wide range of energies explored by heavy-ion exper-
iments and may even be su�cient to establish or rule out the existence of a
second order phase transition point in the QCD phase diagram. The existence
of such a critical point as endpoint of a line of �rst order phase transitions
that separates at low temperature the low and high density regions in the
QCD phase diagram, is suggested by many phenomenological models. For
small values of µq/T lattice calculations suggest that the transition from low
to high temperature is not a phase transition; the transition during which
bulk thermodynamic quantities, e.g. the energy density, change rapidly and
the chiral condensate drops suddenly, is a continuous, rapid crossover. It thus
has been speculated [50] that a 2nd order phase transition point exists some-
where in the interior of the QCD phase diagram. The generic form of the
QCD phase diagram which is not without dispute in the lattice community
[1, 2] is shown in Fig. 1.1.

In the past �ve years considerable progress was made to explore this phase
diagram and determine some of its features even quantitatively (especially for
µq = 0). At non-zero µq the infamous sign problem prohibits direct lattice
calculations. Therefore there was little progress for a long time. Recently,
several methods have been introduced to circumvent this problem and make
predictions for small µq values. At large chemical potentials where the sign
problem becomes the most severe, usually QCD-like models are applied on
the lattice. These will not be discussed here.

In the following we will �rst discuss some important aspects of the tech-
niques developed in lattice QCD. Especially we will focus on the problem
how to extract information at non-vanishing chemical potential. Afterwards
we will present recent lattice results for the equation of state, the transition
temperature, the location of the critical point and various susceptibilities.
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3.2.1 Lattice formulation

We recall from Sec. 2.2 that thermodynamical quantities can be obtained
from the partition function which can be given by a Euclidean path-integral
(cf. Sec. 2.1, Eq. (2.7)):

Z =
∫
DUDΨ̄DΨe−SE(U,Ψ̄,Ψ), (3.11)

where U and Ψ̄ , Ψ are the gauge and fermionic �elds and SE is the Euclidean
action. Note that here the gauge links U instead of the gauge potentials Aν
are used to characterize the gauge �elds. This representation is more appro-
priate for the discretized version of QCD. The formal integral DUDΨ̄DΨ is
carried over all possible gauge and fermionic �eld con�gurations. Note, that
the above expression is formally the same as the partition function in statis-
tical mechanics. One has to take all gauge and fermionic �eld con�gurations,
calculate the corresponding Euclidean actions and use them as Boltzmann-
weights for the summation. The lattice regularization of the QCD action is
not unique. There are several possibilities to use improved actions which have
the same continuum limit as the straightforward unimproved ones. On the
one hand the advantage of improved actions is that the discretization er-
rors are reduced and therefore a reliable continuum extrapolation is possible
already from larger lattice spacings. On the other hand, calculations with
improved actions are usually more expensive than with the unimproved one.

Usually SE can be split up as SE = Sg + Sf where Sg is the gauge action
containing only the self interactions of the gauge �elds and Sf is the fermionic
part. The gauge action has one parameter, the gauge coupling g. In lattice
QCD one uses instead β = 6/g2. This quantity should not be confused with
the inverse temperature.4 The parameters of Sf are the quark masses mf

and the chemical potentials µf , where f denotes the quark �avor. For the
fermionic action the two most widely used discretization types are the Wil-
son and staggered fermions. As most recent works at �nite T and µf apply
staggered fermions in the following we focus on this case.

The fermionic part of the action is always bilinear, so the Grassmann-
integration can be carried out according to∫

DΨ̄DΨe−Ψ̄M(U)Ψ = detM(U), (3.12)

where M is the fermion matrix depending on the gauge �elds. Staggered
fermions describe four �avors (usually referred to as 'taste') of quarks, there-

4 Increasing β = 6/g2 corresponds to decreasing the gauge coupling. In turn, this is con-
nected to a decrease of the lattice spacing a due to asymptotic freedom. The temperature
is connected to the inverse of the lattice spacing, cf. Eq. (3.14) below. Thus increasing
β = 6/g2 e�ectively increases the temperature.
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Fig. 3.8 The order of the phase transition (at vanishing chemical potential) as a function
of the quark masses [58].

fore the fourth root trick is usually applied to get the partition function of
Nf �avors:5

Z =
∫
DU [detM(U)]Nf/4 e−Sg(U). (3.13)

The appearance of the fractional power of the determinant leads to some
di�culties which will be discussed later. Note, however, that this is only
speci�c to the staggered formulation. Possible future studies with Wilson
fermions will not su�er from these di�culties.

To understand the results presented in the following for di�erent number
of �avors it is useful to introduce the following notation used in the lattice
community: Nf �avor lattice calculations mean Nf �avors with same mass,
whereas lattice calculations with 2+1 �avors mean 2 light �avors and one
heavier one. (Of course, this is closest to the physical situation of the two
light �avors up and down and the heavier strange one.) As already discussed
in Sec. 2.2 the order of the transition from hadronic matter to the quark-
gluon plasma depends on the number of active �avors and their masses. For
three quarks and for vanishing chemical potential this is depicted in Fig. 3.8.

For the actual calculations �nite lattice sizes of N3
s Nτ are used. The phys-

ical volume and the temperature are related to the lattice extensions as:

V = (Nsa)3, T =
1

Nτa
. (3.14)

5 The locality of a theory with fourth root is recently intensively studied; see e.g. Ref. [161�
163].
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Therefore lattices with Nτ ≥ Ns are usually referred to as zero temperature
lattices while the ones with Nτ � Ns are �nite temperature lattices.

3.2.2 Lattice methods at �nite chemical potential

In lattice QCD the computation of Z (or more often its derivatives) is done
via Monte-Carlo techniques involving importance sampling. An ensemble of
con�gurations is generated with the distribution p ∝ (detM)Nf/4 e−Sg(U).
This requires, however, that the fermionic determinant is positive and real. It
is easy to understand the importance and the consequences of this condition
by using the simplest importance sampling method, the Metropolis algorithm.
The usual Metropolis update of any system consists of two steps. In the �rst
step one changes the �eld con�guration (in QCD it means one changes the
gauge con�guration U). We denote this change by U → U ′. This change
of the gauge �eld would result in a change of the Euclidean action. Thus,
this new gauge con�guration would give another Boltzmann-weight in the
partition function (see Eq. (3.11)). In the second step the suggested U ′ can
be accepted or rejected by the following probability

P (U → U ′) = min [1, exp(−∆Sg) det(M [U ′])/det(M [U ])] . (3.15)

Since the probability is a real number between 0 and 1, the above expression
can be interpreted as a probability only for real positive determinants. The
positivity of the fermionic determinant is guaranteed for µ = 0 and for purely
imaginary µ-s by the γ5 hermiticity of the fermion matrix (Dirac operator):

γ5Mγ5 = M† ⇒ det(γ5) det(M) det(γ5) = det(M)∗ ⇒ det(M) = det(M)∗ .
(3.16)

It also follows from this equation that the eigenvalues of M and M† are the
same. Therefore the eigenvalues of M are either real or come in complex
conjugate pairs. In the continuum, or in the staggered regularization the real
eigenvalues can only be positive, equal to the quark mass, so the determinant
is positive. (For Wilson fermions the positivity is only guaranteed close to
the continuum limit or using an even number of degenerate quark �avors.)

Unfortunately, at non-zero chemical potentials the determinant can have
arbitrary complex values. Even if we take the real part of the integrand (since
we know that Z is real) the sign is not always positive thus spoiling the above
Metropolis accept/reject step and any other importance sampling method.
This is the infamous sign problem: direct simulations applying importance
sampling at µ > 0 are not possible.

Recently several methods have been developed to extract information for
�nite µ from simulations at zero or purely imaginary µ values. These tech-
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niques are, however still restricted to �nite T and relatively small µ. The
validity region in baryonic chemical potential is approximately µ<∼ 3T . The
three up to now most successful methods will be discussed in the following.

3.2.2.1 Multi-parameter reweighting

One of the possibilities to extract information at µ 6= 0 is the Glasgow
method [164]. It is based on a reweighting in µ. An ensemble is generated
at µ = 0 and the ratio of the fermion determinants at �nite µ and µ = 0
is taken into account as an observable. This method was used to attempt
to locate the phase transition at low T and �nite µ, however it failed even
on lattices as small as 44. The reason is the so-called overlap problem. The
generated con�gurations (only hadronic ones) do not have enough overlap
with the con�gurations of interest (e.g. in the case of a phase transition a
mixture of hadronic and quark-gluon dominated ones).

A simple, but powerful generalization of the Glasgow method is the overlap
improving multi-parameter reweighting [165]. The partition function at �nite
µ can be rewritten as:

Z =
∫
DUe−Sg(β,U)[detM(m,µ,U)]Nf/4

=
∫
DUe−Sg(β0,U)[detM(m0, µ = 0, U)]Nf/4

×

{
e−Sg(β,U)+Sg(β0,U)

[
detM(m,µ,U)

detM(m0, µ = 0, U)

]Nf/4}
, (3.17)

where the second line contains a positive de�nite action which can be used
to generate the con�gurations and the terms in the curly bracket in the last
line are taken into account as an observable. The expectation value of any
observable can then be written in the form:

〈O〉β,m,µ =
∑
O(β,m, µ)w(β,m, µ)∑

w(β,m, µ)
(3.18)

with w(β,m, µ) being the weights of the con�gurations de�ned by the curly
bracket of Eq. (3.17).

The main di�erence from the Glasgow method is that reweighting is done
not only in µ but also in the other parameters of the action (at least in β, but
possibly also in m). This way the overlap can be improved. If the starting
point (β0, m0 and µ0 = 0) is selected to be at the µ = 0 transition point
then a much better overlap can be obtained with transition points at higher
µ. A schematic �gure shows the main di�erences between the two techniques
(see Fig. 3.9). One can in general de�ne the best weight lines along which �
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Fig. 3.9 Comparison of the Glasgow method and the new (multi-parameter reweighting)
method. The Glasgow method collects an ensemble deep in the hadronic phase, attaches
weights to the individual con�gurations and attempts to get information about the phase
diagram, thus information about con�gurations on the other side of the transition line.
There is no overlap between the original typical con�gurations (hadronic phase) and the
con�gurations of the new phase. This is the reason why the method fails. The new tech-
nique (overlap improving multi-parameter reweighting) determines the transition line in a
di�erent way. First one tunes the system to the transition point at µ=0. At this point the
con�guration ensemble contains con�gurations from both phases. A simultaneous reweight-
ing is done in β (or in other words in the temperature � cf. footnote 4) and also in µ.
Since we are looking for the transition line, thus for an equal �mixture� of the two phases,
a careful change of the two parameters keeps the system in this mixed phase. The overlap
between µ=0 and µ 6=0 is much better, the transition line can be determined.

starting from a given point (β0,m0, µ0) � the overlap is maximal. This can
be done e.g. by minimizing the spread of the w weights.

There is still one potential problem with reweighting methods: The over-
lap between the di�erent con�gurations might shrink with increasing volume
[159, 166, 167]. Hence the observable (3.18) one is interested in might dissolve
into numerical noise when approaching the in�nite volume limit. We will come
back to that point below when comparing the three di�erent techniques.

3.2.2.2 Taylor expansion with and without multi-parameter
reweighting

The use of Eq. (3.17) requires the exact calculation of determinants on each
gauge con�guration which is computationally expensive, in particular for
large lattices. Instead of using the exact formula, one can perform a Tay-
lor expansion for the determinant ratio in the weights [156] (for simplicity
assuming no reweighting in the mass):

ln
[
detM(µ)
detM(0)

]Nf/4
=

∞∑
n=1

µn

n!
∂n ln [detM(0)]Nf/4

∂µn
≡

∞∑
n=1

Rnµ
n . (3.19)
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Taking only the �rst few terms of the expansion one gets an approximate
reweighting formula. The advantage of this approximation is that the coe�-
cients are derivatives of the fermion determinant at µ = 0, which can be well
approximated stochastically. Indeed, the problem mentioned above � that
the overlap between di�erent con�gurations might shrink with increasing vol-
ume � is of no concern here since everything is well-behaved at vanishing
chemical potential. On the other hand, due to the termination of the series
and the errors introduced by the stochastic evaluation of the coe�cients it
might appear that this Taylor expansion method does not work for as large µ
values as the full technique. Indeed, it has been shown in Ref. [168] that even
for very small lattices (i.e. 44) the phase of the determinant is not reproduced
by the Taylor expansion for aµ ≥ 0.2 .

From Eqs. (3.17), (3.19) one sees that a Taylor expansion is performed
for the exponent, i.e. the action, of the integrand of the path integral. The
reweighting technique as the basis of (3.19) is important for the determination
of the transition line (cf. Fig. 3.9). However, for the calculation of thermo-
dynamic quantities, e.g. the pressure, in a given phase one can directly start
with the partition function displayed in the �rst line of Eq. (3.17). One per-
forms a Taylor expansion just for the (logarithm of the) partition function,
i.e. for the whole path integral and not for the exponent of the integrand.
We already refer to Eq. (3.28) below which forms the basis for the results
presented later for the pressure at non-vanishing chemical potential and for
the susceptibilities.

3.2.2.3 Simulations at imaginary µ

The fermion determinant is positive de�nite, if we use a purely imaginary
chemical potential. Hence, reweighting techniques are not required in this
case. If the transition line Tc(µ) is an analytic function, we can determine
it for imaginary µ values and analytically continue back to real values of µ
[158, 159, 169]. The analytic continuation is in general impossible from just
a �nite number of points. However, taking a Taylor expansion in µ or µ/T
one gets:

Tc(µ)− Tc(0)
T

= a2

(µ
T

)2

+ a4

(µ
T

)4

+ . . . (3.20)

The coe�cients ai can be determined from imaginary µ simulations. One
simply measures Tc(µ) for imaginary µ-s and �ts it with a �nite order poly-
nomial in µ/T . Recently, a generalization of this method was proposed by
using a more general form of the action which still preserves the positivity of
the fermion determinant [170].

Recently, instead of using the grand-canonical partition function a canon-
ical approach was also applied to study QCD at non-zero density [171, 172].
This technique involves a Fourier integral for which the fermion determinant
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at imaginary µ values is needed. The sign problem emerges as �uctuations
during the evaluation of this Fourier integral.

3.2.2.4 Di�erences and similarities of the three techniques

Although the three described methods seem di�erent they are intimately
connected. The connection between exact reweighting and Taylor expansion is
obvious: The latter is an approximation of the former. Using all non-vanishing
orders in the Taylor expansion should give exactly the same results as exact
reweighting, provided that the latter still works well in the in�nite volume
limit.

The connection between reweighting and analytic continuation is not so
straightforward. Since the phase diagram for imaginary µ is �tted by a poly-
nomial it yields the µ derivatives at µ = 0 (the closest point to the real µ
domain, since µ2 is the natural variable). In this sense it should give the same
results as the Taylor expansion method in the same order. Thus, under the
condition speci�ed above and for moderate µ values the imaginary µ method
should also agree with exact reweighting.

Indeed, the agreement of all three methods is demonstrated in Fig. 3.10
for a model case. In order to avoid di�culties when comparing di�erent dis-
cretizations, di�erent quark masses, di�erent choices to transform lattice data
into physical units and exact/non-exact Monte-Carlo generators the three
methods have been applied using identical circumstances. The same phase
diagram as in [159] is taken and the corresponding determination for the cur-
vature of the transition line is used. The result of [159] is perfectly reproduced
(up to four digits) by multi-parameter reweighting with full determinants and
also by the Taylor expansion technique [173]. As the chemical potential gets
larger the results start to deviate. This might be attributed to the higher
order µ terms, which are missing both from the imaginary chemical potential
method and from the Taylor expansion technique.

As we mentioned previously in the case of staggered fermions a fractional
power of the fermion determinant is taken in order to have less than four
�avors. For µ > 0 this leads to an additional di�culty. The fourth root of
a complex number cannot be taken unambiguously. There are several ways
to circumvent this problem. It has been shown in Ref. [174] that near the
continuum limit these ambiguities dissappear and a unique fourth root can
be de�ned. It has also been argued, however, that current lattices are not yet
close enough to the continuum in this sense. The procedure the authors of
Ref. [174] propose does not work on todays lattices. An alternative method
to choose among the Riemann leaves is given in Ref. [155] which assumes
analyticity of the fourth root along the real µ axis. Close to the contin-
uum where the previous procedure can be applied the two methods choose
the same roots. Since both Taylor expansion and analytic continuation from
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Fig. 3.10 The Nf = 2 phase diagram of Ref. [159] obtained via analytic continuation
from imaginary µ (solid line; dotted lines show the uncertainty) and the same system
calculated by exact multi-parameter reweighting (boxes) and Taylor expansion up to µ4

order (circles) [173]. There is a perfect agreement. To enhance the di�erences the results
were matched at µ = 0 within the uncertainties. The errors are smaller than the symbol
sizes. The labels �au� and �eta� denote chemical potential and temperature, respectively,
in lattice units.

imaginary chemical potentials implicitly assumes analyticity they correspond
to the same choice.

After this introduction into the calculational techniques of lattice QCD at
�nite chemical potentials we turn to the presentation of results.

3.2.3 The equation of state from lattice QCD

To determine the equation of state (EoS) we introduce the grand canonical
potential, Ω(T, V, zf ), normalized such that it vanishes at vanishing temper-
ature,

Ω(T, V, zf ) = T lnZ(T, V, zf )− p0 . (3.21)

The quantity p0 = lim
T→0

T lnZ(T, V, 1) denotes the vacuum contribution to the
pressure.
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Here T denotes the temperature, V the volume, and zf = eµf/T is a set
of fugacities related to the chemical potentials µf for di�erent quark �avors,
e.g. f = u, d, s for up, down and strange quarks.

From (3.21) we obtain pressure (p) and energy density (ε)

p =
1
V
Ω(T, V, zf ) , ε =

T 2

V

∂Ω(T, V, zf )/T
∂T

, (3.22)

which both vanish at vanishing temperature. Using these relations one can
express the di�erence between ε and 3p, i.e. the thermal contribution to the
trace of the energy-momentum tensor Θµµ(T ), in terms of a derivative of the
pressure with respect to temperature, i.e.

ε− 3p
T 4

= T
∂

∂T
(p/T 4) , (3.23)

In a lattice calculation of bulk thermodynamic quantities Eq. (3.23) is, in
fact, the basic observable that is determined. The pressure is then obtained
through integration and it then is straightforward to extract the energy den-
sity.

Net particle numbers in di�erent �avor channels are obtained as derivatives
with respect to the corresponding quark chemical potentials or fugacities,

nf
T 3

=
1

V T 3

∂p/T 4

∂µf/T
=

zf
V T 3

∂p/T 4

∂zf
. (3.24)

With this one also obtains the entropy density for non-zero values of the
chemical potentials,

s

T 3
=
ε+ p

T 4
−
∑
f

nfµf
T 4

. (3.25)

We stress that the normalization process introduced here for the grand canon-
ical potential, Eq. (3.21), puts the pressure and energy density to zero in the
vacuum; in practice this means they are set to zero at a suitably chosen
small temperature value. As a consequence any non-perturbative structure
of the QCD vacuum, e.g. quark and gluon condensates, which may lead to a
non-vanishing vacuum pressure and/or energy density will show up as non-
perturbative contributions to the high temperature part of these thermo-
dynamic observables. This is similar to the normalization used e.g. in the
bag model as well as the hadronic resonance gas, but di�ers from the nor-
malization used e.g. in perturbative calculations at high temperature and
phenomenological (quasi-particle) models used to describe the physics of the
high temperature phase of QCD. This should be kept in mind when com-
paring results for the EoS with analytic and model calculations. Note also
that these ambiguities in normalizing pressure and energy density at zero
temperature drop out in the entropy density.
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At present there are several groups which perform lattice calculations for
�nite temperature (and density). Concerning the presentation of results we
will not collect all results of all groups, but rather concentrate in the present
Sec. 3.2.3 mainly on results from the RIKEN-BNL-Columbia-Bielefeld col-
laboration.

3.2.3.1 Vanishing baryon number density

Most information on the structure of the high temperature phase of QCD and
the nature of the transition itself has been obtained through lattice calcula-
tions performed in the limit of vanishing baryon number density or vanishing
quark chemical potential (µf = 0). We recall that this limit is most relevant
for our understanding of the evolution of the early universe and also is the
regime which can be studied experimentally in heavy-ion collisions at RHIC
(BNL) and soon also at the LHC (CERN). The experimental accessibility of
this regime of dense matter also drives the desire to go beyond a qualitative
analysis of the QCD phase transition and to aim at a numerically accurate
determination of basic parameters that characterize the thermodynamics of
dense matter at high temperature.

The transition to the high temperature phase of QCD is related to the
restoration of chiral symmetry as well as decon�nement; the sudden decrease
of the chiral condensate at the transition temperature T0 and the sudden lib-
eration of quark and gluon degrees of freedom, which leads to a rapid increase
in the energy density, are clearly visible in many numerical calculations.

The decon�ning features of the QCD transition are often discussed in
terms of the Polyakov loop expectation value, which gives the change in free
energy of a thermal medium due to the presence of an external static quark
source (cf. Sec. 2.1, Eq. (2.18)),

e−Fq(T ) = 〈L〉 ≡ lim
|x|→∞

(
〈L(0)L†(x)〉

)1/2
, (3.26)

where L(x) denotes the Polyakov loop de�ned at a lattice site x. In Fig. 3.11
we show some results for the chiral condensate [175] and the Polyakov loop
expectation value [176].

While the early studies of the QCD equation of state with dynamical quark
degrees of freedom have been performed with only moderately light quarks
and quark masses that have been held �xed in units of the temperature
[131, 177, 178], computing resources now improved to use a more realistic
setup. Recent studies of the equation of state therefore concentrated on cal-
culations with a realistic or almost realistic quark mass spectrum performed
along lines of constant physics, i.e. with light and strange quark masses �xed
in units of hadron masses rather than the temperature [109, 110, 179, 180].
To reduce cut-o� e�ects induced by the �nite lattice spacing in the high
temperature limit and in order to improve on the chiral properties of the
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Fig. 3.11 Left: The light quark chiral condensate in QCD with 2 light up, down and a
heavier strange quark mass (open symbols) and in 3-�avor QCD with degenerate quark
masses (full symbols) [175]. Right: The Polyakov loop expectation value in the SU(3) gauge
theory and in 2-�avor QCD [176].

discretized fermionic part of the QCD Lagrangian, recent calculations have
been performed with improved staggered fermions, that remove O(a2) dis-
cretization errors in bulk thermodynamic observables [109, 179, 180]. These
calculations have been performed on lattices with temporal extent Nτ = 4
and 6. We show in Fig. 3.12 the results for (ε−3p)/T 4 obtained in calculations
with two di�erent improved actions, asqtad [109, 179] and p4fat3 [180, 181].
The calculations performed with these two di�erent actions still di�er some-
what on coarse lattices with temporal extent Nτ = 4. They are, however, in
remarkably good agreement for Nτ = 6.

The results shown in Fig. 3.12 have been obtained with the physical value
of the strange quark mass and almost physical light quark mass values that
correspond to a pion mass of about 210 MeV. The scale that is used to
de�ne the temperature scale has been determined from properties of the zero
temperature, heavy quark potential, i.e. the distance r0 at which the slope
of the potential takes on a particular value,(

dVq̄q(r)
dr

)
r=r0

=
1.65
r20

. (3.27)

Reading Fig. 3.12 with the scale Tr0 given on the upper x-axis thus is an
absolute prediction of QCD on the line of constant physics as speci�ed above.
In the continuum limit all calculations performed with di�erent regularization
schemes have to converge to a unique result for this basic observable. In
a next step one has to determine r0 in physical units. This is, at present,
not without dispute. In fact, calculations performed with improved Wilson
fermions tend to yield larger values for r0 than those performed with improved
staggered fermions. However, it seems that calculations with the latter are
well controlled and cross-checked through the calculation of several di�erent
observables. We adopt here the value determined for r0 from studies of level
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Fig. 3.12 The di�erence of energy density and three times the pressure in units of T 4

versus temperature obtained from calculations on lattices with temporal extent Nτ = 4
and 6 [109, 179�181]. The temperature scales, Tr0 (upper x-axis), and T [MeV] (lower
x-axis), have been obtained by extracting the scale parameter r0 from calculations of the
heavy quark potential at zero temperature and by using r0 = 0.469 fm. The curves show
results for a resonance gas that includes resonances up to mass 1.0 GeV, 1.5 GeV and
2.0 GeV, respectively (lower to upper curve).

splittings in the charmonium system [182]. This yields r0 = 0.469 fm, and
�xes the temperature scales in units of MeV in the following �gures that
show lattice results in absolute units, namely Figs. 3.13 and 3.14. We stress
that this is an absolute scale, independent of any ambiguities which may be
related to extracting or de�ning a transition temperature in QCD.

Using standard thermodynamic relations other thermodynamic observ-
ables can be extracted from (ε− 3p)/T 4 as explained above. We show in Fig.
3.13 results for the energy and entropy densities as well as three times the
pressure from calculations performed on lattices with temporal extent Nτ = 6
with two di�erent improved staggered fermion actions [109, 179, 181].

3.2.3.2 Non-zero baryon number density

Studies of the QCD equation of state have recently been extended to the case
of non-zero quark chemical potential (µf ) [155�159]. To apply such calcula-
tions to situations encountered in heavy-ion collisions, it is convenient to �rst
consider the case of vanishing strange quark chemical potential (µs = 0) and
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Fig. 3.13 The energy density (circle) and three times the pressure (line) in units of
T 4 as well as the normalized entropy density (squares) in units of T 3 times 3/4 versus
temperature. Shown are results from calculations obtained with two di�erent improved
staggered fermion actions for QCD with a physical value of the strange quark mass and
almost physical, degenerate mass values for the up and down quarks on lattices with
temporal extent Nτ = 6. The temperature scales, Tr0 (upper x-axis), and T [MeV] (lower
x-axis), have been obtained by extracting the scale parameter r0 from calculations of the
heavy quark potential at zero temperature and by using r0 = 0.469 fm. Open symbols are
from calculations with the asqtad action [109, 179], �lled symbols are from calculations
with the p4fat3 action [181].

non-zero quark chemical potential (µq = (µu + µd)/2 > 0).6 Calculations of
bulk thermodynamic quantities for µq > 0 based on the reweighting approach
[129, 184], using the Taylor expansion of the partition function [111, 130, 138],
as well as analytic continuation of calculations performed with imaginary val-
ues of the chemical potential [158] show that the µq-dependent contributions
to energy density and pressure are dominated by the leading order (µq/T )2

correction for values of µq relevant for the description of dense matter formed
at RHIC (µq/T ' 0.1) as well as at the SPS (µq/T <∼ 0.6).

For the EoS calculation we will focus on a discussion of Taylor expansions
of the partition function of 2-�avor QCD around µq = 0. In this case the
equation of state has been analyzed for the physical conditions that corre-
spond to expanding, equilibrated matter created in a heavy-ion collision. This
expansion follows lines of constant entropy per baryon.

6 At high temperature the net strange quark number vanishes for µs = 0 up to O(g3) in
perturbation theory. Close to Tc and at low temperature the non-vanishing o�-diagonal
susceptibilities [138, 183], i.e. strangeness-quark number correlations, indicate that small
but non-zero µs = 0 may have to be considered to conserve strangeness.
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At �xed temperature and small values of the chemical potential the pres-
sure may be expanded in a Taylor series around µq = 0,

p

T 4
=

1
V T 3

lnZ =
∞∑
n=0

cn(T,mq)
(µq
T

)n
, (3.28)

where the expansion coe�cients are given in terms of derivatives of lnZ, i.e.

cn(T,mq) =
1
n!

∂n lnZ
∂(µq/T )n

. The series is even in (µq/T ) which re�ects the

invariance of Z(T, µq) under exchange of particles and anti-particles. The
quark number density is easily obtained from this expansion as a derivative
with respect to the quark chemical potential,

nq
T 3

=
1

V T 3

∂ lnZ(T, µq)
∂µq/T

∣∣∣∣
T

=
∞∑
n=2

ncn(T,mq)
(µq
T

)n−1

. (3.29)

Of particular importance to the physics addressed at FAIR with the CBM
experiment is a detailed study of interacting dense hadronic matter. At RHIC
energies it has been found that a traditional resonance gas model, constructed
from a large (exponentially rising) set of non-interacting resonances provides
a good approximation of the conditions met at chemical freeze out. It will
be important to check how well such a model can describe properties of the
QCD equation of state at non-zero density. First trials along this line were
rather encouraging [107, 185] as will be discussed in detail in Sec. 4.2.

The Taylor expansion for the energy and entropy density require knowledge
on the temperature dependence of the expansion coe�cients of the pressure.
They can then be obtained using Eq. (3.23). For the energy density one �nds

ε

T 4
=

∞∑
n=0

(3cn(T,mq) + c′n(T,mq))
(µq
T

)n
(3.30)

with c′n(T,mq) = Tdcn(T,mq)/dT . A similar relation holds for the entropy
density [111],

s

T 3
≡ ε+ p− µqnq

T 4
=

∞∑
n=0

((4− n)cn(T,mq) + c′n(T,mq))
(µq
T

)n
.(3.31)

Knowing the dependence of the energy density and the pressure on the
quark chemical potential one can eliminate µq in favor of a variable that
characterizes the thermodynamic boundary conditions for the system under
consideration [111]. In the case of dense matter created in heavy-ion collisions
this is a combination of entropy and baryon number. Both quantities stay
constant during the expansion of the system.



3.2 Thermodynamic properties from lattice QCD 131

 150

 200

 250

 300

   0  100  200  300  400  500  600  700  800  900

µB [MeV]

T [MeV]

RHIC

SPS

AGS
(FAIR)

µB/T=0.24 µB/T=1.63

µB/T=2.47

S/NB=30
45

300
freeze-out

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 0.8  1.0  1.2  1.4  1.6  1.8  2.0  2.2

p/ε

T/T0

S/NB=30
45

300
p4fat3, Nq=0
asqtad, Nq=0

Fig. 3.14 Equation of state of 2-�avor QCD on lines of constant entropy per baryon
number. The left hand �gure shows three lines of constant S/NB in the QCD phase diagram
relevant for the freeze-out parameters determined in various heavy-ion experiments. Note
that the baryo-chemical potential µB is three times the quark chemical potential, i.e.
µB = 3µq . The right hand �gure shows the equation of state on these trajectories of
constant S/NB [111].

It is straightforward to see that in an ideal quark-gluon gas with 2 massless
�avors lines of constant S/NB are de�ned by µq/T = const,

S

NB
= 3

37π2

45 +
(µq
T

)2
µq
T + 1

π2

(µq
T

)3 . (3.32)

In the zero temperature limit, however, the resonance gas reduces to a de-
generate Fermi gas of nucleons and the chemical potential approaches a �nite
value to obtain �nite baryon number and entropy, i.e. µq/T ∼ 1/T .

In the left hand part of Fig. 3.14 we show the resulting isentropic lines in
the T − µq plane on which S/NB stays constant, together with the experi-
mentally determined freeze-out lines for several heavy-ion experiments. The
lattice results shown here are still based on calculations with only moderately
light quarks on rather coarse lattices. The temperature and chemical poten-
tial scales in this �gure thus are no more accurate than about (10-20)%. The
isentropic lines still have to be determined with lighter quarks and a proper
extrapolation to the continuum limit has to be performed. Nonetheless, it
is apparent that the isentropic lines agree with the straight line, ideal gas
behavior at large temperature and bend in the freeze-out region, where the
physics of an (interacting) resonance gas becomes dominant.

The right hand part of Fig. 3.14 shows the isentropic equation of state
as function of temperature obtained from a 6th order Taylor expansion of
pressure and energy density [111]. The ratio p/ε is presented for three di�erent
entropy and baryon number ratios, S/NB = 30, 45 and 300, which correspond
roughly to isentropic expansions of matter formed at the AGS (FAIR), SPS
and RHIC, respectively. In this �gure we also added results from the recent
study of the thermodynamics of (2+1)-�avor QCD with an almost realistic
quark mass spectrum at µq ≡ 0. It is quite remarkable that p/ε is to a good
approximation independent of S/NB and also shows no signi�cant quark mass
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from the isentropic equation of state [111], Eq. (3.33).

dependence when the temperature is rescaled by the corresponding transition
temperature. For temperatures larger than the transition temperature the
equation of state, p(ε), is well described by a simple ansatz,

p

ε
=

1
3

(
1− A

1 +B ε

)
, (3.33)

The insensitivity of the isentropic equation of state on S/NB also implies
that the velocity of sound at constant entropy,

vS =

√
dp
dε

=

√
dp/dT
dε/dT

(3.34)

is similar along di�erent isentropic expansion trajectories. In fact, the pa-
rametrization given in Eq. (3.33) suggests that the velocity of sound ap-
proaches rather rapidly the ideal gas value, v2

S = 1/3. In Fig. 3.15 we summa-
rize results for v2

s obtained in lattice calculations for an SU(3) gauge theory
[105], for 2-�avor QCD with Wilson fermions [108], (2 + 1)-�avor QCD with
staggered fermions [110] as well as from the isentropic equation of state for
2-�avor QCD with only moderately light quarks [111].
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3.2.4 The transition temperature at vanishing chemical
potential

The transition from the low to the high temperature phase of QCD goes
along with signi�cant changes in thermodynamic observables. As is obvious
from the discussion of the equation of state given in the previous section the
transition takes place in a well de�ned narrow temperature interval. As the
transition in QCD with physical quark mass values is a continuous crossover
rather than a true phase transition accompanied by singularities in derivatives
of the QCD partition, its location is usually analyzed by considering several
susceptibilities that are sensitive to �uctuations in the thermal medium. The
location of maxima of these observables are taken as estimates for the tran-
sition temperature. For a crossover transition this naturally involves some
ambiguity. It is, however, worth noting that the temperature scale intro-
duced, for instance, in Fig. 3.13 is independent of any convention used to
de�ne the transition temperature. Moreover, it also is helpful to realize that
in simulations of QCD with varying quark masses it has been found that the
quark mass dependence of the transition temperature is weak; the transition
temperature in the chiral limit sets a sensible lower limit and is close to that
of QCD with its physical quark mass spectrum. Despite of this the value of
the transition temperature at vanishing chemical potential is still under in-
tensive investigation. Current estimates suggest values between ∼ 150 MeV
and ∼ 190 MeV [175, 186�189]. It is stressed, e.g. in [187] that the di�erences
found between the calculations in [187] and in [186] are not entirely due to a
di�erent de�nition of the transition temperature. The remaining di�erences
can only be settled by improved calculations on �ner lattices. This discussion
will be resumed in Sec. 3.2.7.

3.2.5 Results for the location of the transition line and
of the critical point

In the following we review lattice results for the transition line separating
di�erent phases and for the critical point.

3.2.5.1 Transition line

All the methods discussed in Sec. 3.2.2 have been used to give the transition
line. The results are in agreement although di�erent regularizations and quite
coarse lattices were used. Up to now most results were obtained for one set
of lattice spacings, namely on Nτ = 4 lattices. We recall that results for
the equation of state from Nτ = 4 and Nτ = 6 have been presented in Sec.
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3.2.3. Note that di�erent discretizations should agree only at vanishing lattice
spacings, thus in the continuum limit. At non-vanishing lattice spacings one
usually has di�erent results for di�erent lattice actions.

Using multi-parameter reweighting, the phase diagram was determined for
4 and 2+1 �avors of staggered fermions [155, 165, 190]. For the physically
interesting latter case both semi-realistic and realistic quark masses were
used. The phase diagram using physical quark masses is shown in Fig. 3.20
which will be discussed later in more detail.

The phase diagram obtained via Taylor expansion [156] is shown on the
left panel of Fig. 3.16. Two �avors of p4 improved staggered fermions were
used in this analysis. The critical point of Ref. [155] is also shown as a com-
parison. Note that although di�erent lattice actions were used at a �nite
lattice spacing there is a good agreement.

The right panel of Fig. 3.16 shows the phase diagram obtained by analytic
continuation from imaginary µ. The same method was also applied to four
�avors of staggered fermions in Ref. [158]. Consistent results were found with
a generalization of the method which made it possible to reach somewhat
larger values of µ [191].

In the case of multi-parameter reweighting the absolute temperature scale
was determined by a T = 0 spectrum determination while in the case of the
other methods only perturbative β functions were applied.

The latest result on the transition line comes from a combination of multi-
parameter reweighting and the density of states method [160]. The phase
diagram of four �avor staggered QCD was determined up to three times
larger chemical potentials than with previous methods. A triple point was
found around 900 MeV baryonic (300 MeV quark) chemical potentials (see
Fig. 3.17).

Besides the transition line the equation of state can also be determined us-
ing the discussed methods. We refer to Refs. [129, 184] using multi-parameter
reweighting, Refs. [111, 130] and Sec. 3.2.3 for Taylor expansion and Ref. [169]
for analytic continuation from imaginary µ.

3.2.5.2 Critical point

One of the most important features of the phase diagram is the possible
critical point separating a crossover region from a �rst-order phase transition
regime. If such a point exists, its location is an unambiguous prediction of
QCD.

Since phase transitions are sharp only in the thermodynamic limit of in-
�nitely large volumes, the determination of the order of the phase transition,
and the location of the associated critical point, is done by means of �nite-
size scaling analysis. There are di�erent ways to locate the critical point. One
can use Lee-Yang zeroes, Binder cumulants or the convergence radius of the
free energy density. These techniques will be discussed below. They can be
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Fig. 3.16 Left: The phase diagram obtained from the Taylor expansion method by using
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Fig. 3.17 The phase diagram of four �avor staggered QCD obtained with the density of
states method on Nτ = 4 lattices. A triple point was found at around 300 MeV quark
chemical potential [160].

applied directly, by determining the appropriate observables at �nite µq us-
ing one of the methods described before. Another possibility is to start from
a non-physical point (using small quark masses) where the critical point is
located at zero or purely imaginary µ values and then determine the quark
mass dependence of the critical point and extrapolate to the physical quark
masses. The extrapolation, as usual, introduces uncontrolled errors.

At �nite volumes the transition between the hadronic and quark-gluon
phases is always continuous, the free energy density is analytic for all real
values of the parameters of the action. Nevertheless, the partition function
has zeroes even for �nite volumes at complex values of the parameters. For
a �rst-order phase transition these zeroes approach the real axis when the
volume is increased � thus generating the singularity of the free energy for
real parameter values. A detailed analysis shows that the imaginary part of
these Lee-Yang zeroes scales as 1/V for large volumes. For a crossover the
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Fig. 3.18 The continuum extrapolated susceptibility T 4/(m2∆χ) as a function of
1/(T 3

c V ). For a true phase transition the extrapolation to in�nite volume should be con-
sistent with zero. On the other hand, for an analytic crossover the in�nite volume extrap-
olation yields a non-vanishing value. The continuum-extrapolated susceptibility shows no
volume dependence compatible with a phase transition, though the volume changes by a
factor of �ve. For comparison, the asymptotic behavior for �rst-order and O(4) (second-
order) phase transitions is shown by dotted and dashed lines [44].

Lee-Yang zeroes do not approach the real axis when the volume is increased.
Therefore inspecting the volume dependence of the imaginary parts of the
Lee-Yang zeroes one can distinguish a �rst-order transition from an analytic
crossover (see, however, [167] where potential problems are discussed).

Binder cumulants can also be used to locate critical points. In the in�nite
volume limit they converge to 1 in case of �rst order phase transitions and
speci�c values (determined by the universality class) for second order phase
transitions. For details see e.g. [192] where the critical point of three �avor
QCD at µq = 0 was determined using this technique.

The convergence radius of the Taylor expansion of the free energy gives the
distance from the expansion point to the nearest singularity. If all expansion
coe�cients are positive then the singularity is at a real value of the expansion
parameter which can then only be the critical point. As discussed before,
this can only happen at in�nite volume. The expansion coe�cients have to
be extrapolated to in�nite volume, one has to be ensured that they are all
positive and then the convergence radius can be calculated from them.

A necessary (but not su�cient) condition of the existence of the critical
point is a crossover at µq = 0. Recently it has been shown in Ref. [44] using
staggered fermions that this is indeed the case (see Fig. 3.18). The transition
temperature has also been determined as already discussed in Sec. 3.2.4.

It should be emphasized again that there is no fundamental reason known
so far that a critical point must exist in the phase diagram of strongly inter-
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acting matter. Indeed, di�erent lattice methods which addressed this issue
have found di�erent (preliminary) answers as will be discussed in the fol-
lowing. To qualitatively understand these results it is useful to extend the
diagram shown in Fig. 3.8 into the region of �nite chemical potentials. This
is shown in Fig. 3.19 taken from [193]. Two possibilities are depicted in Fig.
3.19, namely that the region of true phase transitions located in Fig. 3.8 at
(unphysically) small quark masses either is extended (left plot) at �nite µ or
shrinks further (right plot). Of course, even in the second case the surface
might bend again, but that would happen only at rather large chemical po-
tentials. Therefore, the curvature dmc/dµ

2 at µ = 0 is an interesting quantity
to study. Here mc is the critical quark mass (e.g. in the limit of three �avors
with equal mass). We will come back to this quantity below.
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Fig. 3.19 The critical surface in the space of quark masses and chemical potential for
positive (left) and negative (right) curvature, see also Fig. 3.8. For the physical point being
in the crossover region for µ = 0, a phase transition at �nite µ will only arise in the
scenario (left) with positive curvature, where the region of true phase transitions expands
with µ. Figures taken from [193].

The multi-parameter reweighting combined with the Lee-Yang-zero anal-
ysis was used to locate the critical point. The �rst study was done with semi-
realistic quark masses corresponding to a pion mass of ≈ 230MeV [155]. The
critical point was found at TE = 160 ± 3.5 MeV and µE = 725 ± 35 MeV.
(Note that this is the value for the baryo-chemical potential µB = 3µq.) The
whole study was repeated using larger volumes and physical quark masses in
[190]. The results can be seen in Fig. 3.20. The critical point is located at
TE = 162±2 MeV and µE = 360±40 MeV. One can see that the critical point
moved to a smaller value of µq as the quark masses were decreased. This is
in complete agreement with expectations. It is important to emphasize again
that both of these results were obtained for one set of lattice spacings, the
continuum extrapolation is still missing.
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Fig. 3.20 The phase diagram obtained with multi-parameter reweighting using 2+1 �a-
vors of standard staggered fermions corresponding to the physical pion mass [190]. The
dotted part of the transition line is the crossover region while the solid line is of �rst or-
der. The box shows the critical endpoint separating them. µB denotes the baryo-chemical
potential: µB = 3µq .

The Taylor expansion technique was used to determine the mass depen-
dence of the critical point as discussed above. Starting from the three-�avor
critical point where the phase transition is of second order at µq = 0, the
derivative dµE/dm was determined. A linear extrapolation to larger quark
masses using only this �rst derivative gave µE ≈ 420 MeV for the location of
the critical point for physical quark masses [194].

Another application of the Taylor expansion method was done in [137]
using two �avors of staggered fermions. The convergence radius of the series
was estimated using the �rst few coe�cients. The authors claim to obtain
TE ≈ 0.95Tc and µE ≈ 1.1TE which is signi�cantly smaller than the multi-
parameter reweighting result.

For small enough quark masses the critical point can be located at a purely
imaginary µ. Approaching the point where the critical point reaches µ = 0 one
can determine the derivative dµ2

E/dm for negative values of µ2
E . This analysis

was carried out in [2, 195]. For negative values of µ2 the critical quark mass
mc was located and the derivative dmc/dµ

2 was determined (which is just
the inverse of the above quoted derivative).

In [195] dmc/dµ
2 was found rather small which by a rough, linear extrapo-

lation would suggest a much larger value of µE for physical quark masses than
found e.g. by multi-parameter reweighting. More surprisingly, when a similar
analysis was done using an exact simulation algorithm instead of the previ-
ously applied approximate R algorithm, dmc/dµ

2 was found to be negative
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(but consistent with zero on the two-σ level). In other words, no critical point
would exist in such a case or at least only one at very large µ. Conventionally,
a positive value is expected for the derivative which was also observed with
multi-parameter reweighting (larger quark masses lead to a larger value of
µE). E�ective model calculations also support the positive sign (for a recent
study, see e.g. [196]). Future lattice studies on �ner lattices, and eventually
a continuum extrapolation will give the �nal answer.

3.2.6 Generalized susceptibilities and �uctuations

Derivatives of the grand canonical potential with respect to temperature
and/or chemical potential de�ne susceptibilities which experimentally be-
come accessible through event-by-event analysis of �uctuations in observables
like baryon number, electric charge, strangeness and others. We will discuss
here some observables that are generally related to density �uctuations, i.e.
to derivatives of the pressure with respect to quark chemical potentials.

The expansion coe�cients of the pressure with respect to quark chemical
potentials are directly related to �uctuations of the quark number in a given
�avor channel at vanishing chemical potential as well as correlations among
these observables. One may consider the generalized susceptibilities,

χ(i,j,k) =
1

V T 3

∂i

∂(µu/T )i
∂j

∂(µd/T )j
∂k

∂(µs/T )k
lnZ(T, V, zf )

∣∣∣∣
zf=1

. (3.35)

In order to make contact to experimentally accessible observables it some-
times is more convenient to introduce chemical potentials for quark number
(µq), SU(2) isospin (µI) and strangeness (µS) and rewrite the various chem-
ical potentials for di�erent quark �avors as,

µu = µq + µI , (3.36)

µd = µq − µI , (3.37)

µs = µq − µS . (3.38)

We will ignore in the following complications that arise with exact strangeness
conservation and will approximate the zero strangeness case by setting µs = 0
after appropriate derivatives have been taken.

3.2.6.1 Fluctuations at µf ≡ 0

At non-zero quark number chemical potential �uctuations of e.g., quark num-
ber or electric charge are considered to be important signatures for the ex-
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istence of a 2nd order phase transition point in the QCD phase diagram.
These �uctuations are expected to diverge at the critical point while others,
like the �uctuations of isospin are expected to stay �nite. At vanishing chem-
ical potential this behavior is anticipated already in the behavior of quartic
�uctuations, i.e. the second derivative of susceptibilities such as the quark
number susceptibility χq or the charge susceptibility χQ [197]. In Fig. 3.21 we
show some results on quadratic and quartic �uctuations of the quark number,
or more precisely,

dq2 ≡
1

V T 3

∂2 lnZ
∂(µq/T )2

=
1

V T 3
〈(δNq)2〉 ,

dq4 ≡
1

V T 3

∂4 lnZ
∂(µq/T )4

=
1

V T 3

(
〈(δNq)4〉 − 3〈(δNq)2〉2

)
, (3.39)

with δNq ≡ Nq − 〈Nq〉. Similarly one can de�ne quadratic and quartic �uc-
tuations of the electric charge. They are shown in Fig. 3.21 for the case of
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Fig. 3.21 Temperature dependence of quadratic (d2) and quartic (d4) �uctuations of the
quark number (label �q�) and electric charge (label �Q�) calculated from the expansion
coe�cients for p/T 4 in 2-�avor QCD and for quark masses corresponding at T0 to a
pseudo-scalar (pion) mass of about 770 MeV [197].
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a calculation in 2-�avor QCD still performed with rather heavy quarks. The
sharp cusp developed by dq4 at the transition temperature is quite remarkable.
In fact in the chiral limit its singular behavior is expected to be identical to
that of the speci�c heat. i.e. it is controlled by the critical exponent α,

(dq4)singular part ∼ |T − T0|−α . (3.40)

As this exponent is negative in 3-d, O(N) symmetric spin models, dq4 is ex-
pected to stay �nite at T0 in the chiral limit if the QCD transition belongs
to this universality class.

Of particular interest are correlations between di�erent conserved charges.
They give insight into the structure of the thermal medium and allow to
judge the nature of the dominant degrees of freedom in the low and high
temperature phases, respectively. One important observable is the correlation
between strangeness and e.g. baryon number or electric charges [137],

CBS = −3
χBS
χSS

= 1 +
χus + χds

χs
= 1 + 2

χus
χs

, (3.41)

CQS = 1− 2χus − χds
χs

= 1− χus
χs

. (3.42)

These normalized correlations are shown in Fig. 3.22 from a calculation in
2-�avor QCD with a quenched strange quark sector (open symbols) and a
preliminary result from a simulation with dynamical light and strange quark
sectors (�lled symbols).

Fig. 3.22 may be taken as evidence for strong correlations between baryon
number and strangeness, i.e both quantities �uctuate together. The simplest
interpretation for this clearly is that both quantum numbers are carried by a
single 'particle' - quarks. As is obvious from Eq. (3.42) the proximity to unity
also means that di�erent �avor sectors are coupled only weakly and �uctuate
independently.

3.2.6.2 Fluctuations at µq > 0

The sharp peaks observed in quartic susceptibilities will contribute to quad-
ratic susceptibilities at non-zero chemical potential. They are just the lead-
ing expansion coe�cients in a Taylor expansion of quadratic susceptibilities.
From such an expansion one indeed �nds evidence that �uctuations in the
quark number increase at non-zero quark chemical potential while, for in-
stance, �uctuations of isospin seem to be insensitive to an increase in the
chemical potential and show no sign for critical �uctuations. This is shown
in Fig. 3.23 taken from [138].
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ious µq/T ranging from µq/T = 0 (lowest curve) to µq/T = 1. Results are obtained by
a combination of reweighting (solid lines and data points) and from a 6th-order Taylor
expansion (dashed lines) [138].

3.2.7 Further discussion

A lattice result can be considered as a full result if two conditions are ful�lled.
The �rst condition is related to the quark masses. We need results for physical
quark masses, or in other words mπ ≈ 135MeV and mK ≈ 500MeV. Con-
trolled extrapolation in the quark masses around the transition temperature
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are not easy. Note, however, that today computers are quite often capable
to deal with physical or almost physical quark masses. The second condition
is the continuum extrapolation. It can be reached only by measuring quan-
tities at non-vanishing lattice spacings and then extrapolating to vanishing
lattice spacings. Luckily enough the choice of the action tells us what sort
of functional form of the lattice spacings we expect for the deviation from
the continuum limit result. If this asymptotic behavior is already present,
we are in the so-called scaling region. E.g. for small enough lattice spacings
results obtained by the standard Wilson action deviate from the continuum
result by a linear term in the lattice spacing; for the staggered formalism this
dependence is quadratic in the lattice spacings. Clearly, one should have an
evidence that the results are already in this scaling region, which is described
by the asymptotic lattice spacing dependence. For this check results at several
lattice spacings are needed. Note, that thermodynamic studies are carried out
on lattices, which have smaller temporal than spatial extensions. Typically
one uses Nτ = 4, 6, 8 and 10, which � as a rule of thumb � correspond
to lattice spacings ≈ 0.3, 0.2, 0.15 and 0.12 fm, respectively. (Particularly
at small Nτ values, the lattice spacing in physical unit is quite ambiguous,
di�erent physical quantities give di�erent results. This ambiguity disappears
when we approach the continuum limit.)

Let us summarize what is known about our speci�c question, about the
phase diagram of QCD. In some cases the result can be considered as a full
one (at least using one speci�c formalism e.g. staggered one). In other cases
one can estimate that the full result can be obtained in a year or two. There
are however questions, which need much more time to clarify, particularly
the controlled continuum limit is a di�cult task.

a.) At vanishing chemical potential the nature of the T 6= 0 QCD tran-
sition is an analytic crossover [44]. The result was obtained with physical
quark masses in the staggered formalism. This result can be considered as
the full one. (As for any result of such type and huge complexity at least one
independent analysis of the same depth is required to exclude any mistakes.)
There are two, though unlikely possible uncertainties of this �nding. One of
them is a question, what happens if 2+1 �avor staggered QCD happens to
be not in the QCD universality class. Though we do not have any theoretical
proof for this universality class question, there is no sign for such a prob-
lematic scenario. Staggered lattice results for the whole spectrum and decay
rates are in complete agreement with the experiments. Nevertheless it would
be important to repeat the calculation with other fermion formulations (e.g.
with Wilson fermions). This can be done with computer resources which are
about an order of magnitude larger than the presently available ones. Since
the rapid crossover is a remnant of the chiral transition of the massless the-
ory, it would be very interesting to study the question what happens in the
chiral limit. This question needs the same symmetry on the lattice as in the
continuum theory. The best choice is the overlap fermion. Calculations with
overlap fermions are usually two orders of magnitude more CPU-demanding
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than calculations with Wilson fermions. The other di�culty is related to the
continuum extrapolation. It is possible � though quite unlikely � that after
observing a consistent and �nite continuum limit for the chiral susceptibility
a completely di�erent (phase transition-like, therefore divergent) continuum
limit appears at even smaller lattice spacings. Note, that the transition turned
out to be weaker and weaker as one decreased the lattice spacings. Thus, the
above scenario � real phase transition in the continuum limit � would mean
a completely opposite lattice spacing dependence as it was observed. This is
the main reason, why one considers this possibility quite unlikely. In order to
go to even smaller lattice spacings (e.g. Nτ = 12 or 14) approximately 1�2
orders of magnitude more CPU capacity is needed.

b.) We know the starting point of the phase diagram, namely the transition
temperature of the crossover at vanishing chemical potential. Since the tran-
sition is an analytic one, there is no unique transition temperature. Di�erent
observables lead to di�erent transition temperatures. According to Ref. [187]
the width of the transition is as large as ≈ 40MeV. Indeed, transition tem-
peratures, depending on the de�nition, can be typically between ≈ 150 and
190MeV. The actual values are still debated, since in addition to the mere
de�nition issue it also turned out that di�erent groups obtained di�erent re-
sults for the same quantity. E.g. for the peak in the χ/T 2 distribution (χ is
the unrenormalized chiral susceptibility) Ref. [186] used two di�erent lattice
spacings, namely Nτ = 4 and 6, and obtained 192 MeV. For the peak in the
χr/T

4 distribution (χr is the renormalized chiral susceptibility) Ref. [187]
used also �ner lattices with four di�erent lattice spacings, namely Nτ = 4, 6,
8 and 10, and obtained 151 MeV (note, that for χr/T 2 the obtained value is
about 10 MeV higher). Since the available CPU-capacity is enough to carry
out independent lattice simulations on Nτ = 8 and perhaps even on Nτ = 10
lattices, this controversy will be resolved in a year or two. The two (unlikely)
uncertainties, mentioned in the previous paragraph, are relevant also for the
transition temperature: 1. Di�erent fermion formulations (staggered, Wilson,
overlap) might yield di�erent temperatures; 2. The observed continuum limit
might be void and the real continuum limit might only appear for much
�ner lattices. Therefore, one should determine the µ = 0 transition tempera-
ture using other formulations of lattice QCD (e.g. Wilson fermions or chiral
fermions), and double check the results with even smaller lattice spacings.

c.) The curvature of the phase diagram at vanishing chemical potential
is known at a ≈ 0.3 fm lattice spacing. Results were obtained by standard
and p4 improved lattice actions for 2, 2+1 and 4 �avors [156, 158, 159, 190].
Though di�erent choices of the QCD action should not necessarily give the
same result at this rather large lattice spacing, results are in good agreement.
If one takes the same action, di�erent techniques (multi-parameter reweight-
ing with full determinant, Taylor expansion, analytic continuation) give the
same result up to several digits. This nice agreement shows that the avail-
able methods are consistent. Clearly, the major drawback of these �ndings
is the lack of the continuum extrapolation. Similarly to the determination
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of the crossover temperature the continuum extrapolation might change the
a ≈ 0.3 fm results quite signi�cantly. The available computer resources al-
low the determination of the curvature in the continuum limit in a year or
two. It is important to emphasize again, that the staggered formalism has an
unclari�ed uncertainty, therefore the whole calculation should be repeated
in the Wilson formalism, too. Such a Wilson analysis is about an order of
magnitude more CPU-demanding than the staggered one.

d.) There are several results for the existence and/or location of the critical
point on the temperature versus chemical potential plane. All these results
were obtained at quite large lattice spacings a ≈ 0.3 fm. We discussed in detail
the di�culties and the problematic features of the available methods. Let us
point out a more general di�culty, which is related to the continuum extrap-
olation. As one determines the nature of the transition at vanishing chemical
potentials, it turns out that the transition gets weaker and weaker for smaller
and smaller lattice spacings. This feature suggests, that the critical point, if
it exists, might be at larger chemical potential in the continuum limit than
on Nτ = 4 lattices. Unfortunately, for large chemical potentials the available
methods are less reliable, which is particularly true for the staggered formal-
ism (see Ref. [174] for a discussion on the staggered eigenvalue quartets, which
suggests to use quite small lattice spacings). Searching for features at rela-
tively large chemical potentials and at small lattice spacings is a very di�cult
and particularly CPU-demanding task. It is unlikely that the available meth-
ods with the present computer resources can give a continuum extrapolated
staggered result in a few years. The available methods are all applicable for
Wilson fermions, too. On the one hand, Wilson fermions do not have prob-
lems related to the rooting of the determinant (c.f. [174]). On the other hand,
the full diagonalization of the Wilson matrix is about two orders of magni-
tude more CPU-consuming. Furthermore, we do not have much experience
how Wilson thermodynamics approaches the continuum limit, therefore it is
hard to say what temporal extensions are needed to approach the continuum
limit. The overlap formalism has all the symmetries of the theory even at
non-vanishing lattice spacings, which is an advantage when we look for crit-
ical behavior. Though the available methods are applicable also for overlap
fermions, the CPU-costs would be very large. To summarize: the presently
available resources do not allow to extrapolate into the continuum limit. Re-
sults on the critical point at one or two non-vanishing lattice spacings cannot
be considered as full results (as has been emphasized e.g. in [190]).

e.) There is one exploratory lattice result on the triple point of QCD [160].
The lattice spacing is quite large, the volumes are small and four �avor is
applied to avoid the rooting problem. This density of states method reached
approximately three times larger chemical potentials than other methods in
the literature. The CPU-costs (for this factor of three) were about two orders
of magnitude larger than for the other methods. The method works, but it
is clear that due to limited resources the continuum limit statement on the
triple point cannot be given in the near future.
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f.) Concerning the determination of the equation of state and of the sus-
ceptibilities the same remarks apply as for the nature of the phase transition,
the critical temperature and the curvature of the phase diagram (cf. a.-c.):
Clearly it would be desirable to have in the end all calculations for di�erent
fermion actions (staggered, Wilson, overlap) and for realistic quark masses
and extrapolations to the continuum limit. Concerning the quark masses the
calculations shown in Fig. 3.12 have been performed with almost physical
masses (pion mass ≈ 210 MeV). The results shown there for Nτ = 6 for
di�erent improved actions (they di�er in their discretization errors) suggest
that one is already close to the continuum limit. Physical quark masses and
Nτ = 4, 6 have been used in [110]. Clearly further studies have to be per-
formed for di�erent numbers of Nτ to check the appropriate scaling behavior.
Concerning the extension to �nite chemical potential (using the Taylor ex-
pansion method) calculations so far deal with rather coarse lattices and only
moderately light quark masses. However, as shown in Fig. 3.14 (right hand
side) e.g. the ratio of pressure and energy density seems to be fairly indepen-
dent of these approximations (cf. the discussion before Eq. (3.33)).

In the previous and the present section we have presented results obtained
from �rst principle calculations, namely perturbative QCD and lattice QCD,
respectively. In the following we proceed to lower temperatures and larger
chemical potentials (corresponding to densities around nuclear matter satu-
ration density and few times larger). In this region the �rst principle methods
so far cease to work. Hence we have to rely on models which will be outlined
in the next section.

3.3 The nuclear equation of state from many-body
theory

In the present section theoretical studies of the nuclear equation of state in
hadronic models (�hadronic many-body theory�) are reviewed.

3.3.1 Models for the nuclear equation of state

Our understanding of nuclear forces, of the structure of nuclei as well as of
neutron stars and supernova explosions depends on knowledge of the nuclear
equation of state (EOS) at normal and supra-normal densities as well as
at extreme isospin. Nucleus-nucleus reactions provide the only possibility to
explore nuclear matter densities beyond saturation density, ρ0 ' 0.16 fm−3,
in the laboratory. Consequently, the determination of the EOS has been one
of the primary goals of experiments with relativistic heavy-ion beams ever
since the pioneering work at the Bevalac [199]. Transport calculations indicate
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that in the low and intermediate energy range Elab ∼ 0.1÷ 1 AGeV nuclear
densities between 2 ÷ 3ρ0 are accessible, while the highest baryon densities
(∼ 8ρ0) will probably be reached in the energy range of the future GSI facility
FAIR, between 20 ÷ 30 AGeV. At higher incident energies matter becomes
less baryon rich due to the dominance of meson production and, eventually,
due to the onset of transparency.

Complementary information on the isospin dependence of nuclear forces
and of the nuclear equation of state, which presently is not well known,
is expected from the forthcoming rare isotope beam facilities at FAIR/GSI
[200], SPIRAL2/GANIL and FRIB [201]. In the following we brie�y discuss
the present understanding of the nuclear EOS at moderate densities (ρ<∼ 3ρ0)
from a theoretical point of view.

Calculations of the nuclear EOS can roughly be divided into three classes:

1. Phenomenological approaches: These are models based on e�ective
density dependent interactions such as Gogny [202, 203] and Skyrme
forces [204, 205] or on relativistic mean �eld (RMF) models [206, 207].
The number of parameters which are �ne-tuned to obtain an overall �t
of nuclear masses is usually in the range between 6 and 15. This type
of models allows the most precise description of the properties of �nite
nuclei.

2. E�ective �eld theory approaches: The concepts of e�ective �eld the-
ory (EFT) have recently been applied to calculations of the nuclear EOS.
These approaches involve a systematic expansion, where the small scales
are the mass of the pion and the Fermi momentum. They can be based,
e.g., on density functional theory [208, 209] or on chiral perturbation
theory [210�215]. A major advantage of EFT approaches is the relatively
small number of free parameters and a correspondingly higher predic-
tive power. However, high precision �ts to the properties of �nite nuclei
require the introduction and �ne-tuning of additional parameters. The
resulting EFT functionals then have approximately the same number of
parameters as the phenomenological models.

3. Ab initio approaches: Based on high-precision free-space nucleon-
nucleon interactions and three-nucleon forces, �tted to nucleon-nucleon
scattering and the properties of three- and four-nucleon systems, the nu-
clear many-body problem is treated microscopically. Predictions for the
nuclear EOS are essentially parameter free. Examples of such approaches
are the variational calculations [216, 217], Brueckner-Hartree-Fock (BHF)
[218�221] and relativisticDirac-Brueckner-Hartree-Fock (DBHF) [222�
229] calculations as well as Greens function Monte-Carlo techniques [230�
232]. Recently, a novel ab initio approach to the nuclear many-body prob-
lem, based on e�ective low-momentum nuclear interactions [233] has been
developed. The ultimate goal of this scheme is to perform systematic
calculations of nuclear structure and of nuclear and neutron matter at
moderate densities based on realistic two- and three-nucleon interactions
[234].
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Phenomenological models and e�ective �eld theories contain parameters
which have to be �xed by nuclear properties around or below the saturation
density. Clearly this makes a reliable extrapolation to supra-normal densities
di�cult. Within the EFT scheme, a controlled extrapolation to moderate
densities is possible.

Microscopic many-body calculations involving a summation of relevant
classes of diagrams are, at least presently, too complex for a systematic ap-
plication to �nite nuclei. Here the use of e�ective low-momentum interactions
o�ers a promising alternative. However, systematic calculations of the prop-
erties of nuclear matter at densities beyond say three times the saturation
density are not possible using presently available nuclear interactions.

3.3.1.1 Phenomenological models

To examine the structure of relativistic mean �eld models it is instructive
to consider the simplest version of a relativistic model, i.e. the σ-ω model
of Quantum Hadron Dynamics (QHD-I) [235�237]. In QHD-I the nucleon-
nucleon interaction is mediated by the exchange of two e�ective boson �elds
which are attributed to a scalar (σ) and a vector (ω) meson. In the mean
�eld approximation, the energy density in uniform, cold and isospin saturated
nuclear matter reads

ε =
3
4
EF %+

1
4
m∗
D %S +

1
2
{
ΓV %

2 + ΓS %
2
S

}
, (3.43)

where the Fermi energy is given by EF =
√
k2
F +m∗2

D and the Dirac mass by
m∗
D = M−ΓS%S . In the limit m∗

D −→M the �rst two terms in (3.43) reduce
to the energy of a non-interacting relativistic Fermi gas (kinetic energy plus
rest mass).

In relativistic treatments one has to distinguish between the vector den-
sity % = 2k3

F /3π
2 and the scalar density %S . The vector density is the time

component of a 4-vector current jµ, whose spatial components vanish in the
nuclear matter rest frame, while %S is a Lorentz scalar. With increasing vec-
tor density, the scalar density grows and eventually saturates; an essential
feature of the relativistic saturation mechanism. In QHD-I the scalar and
vector �eld strengths are given by the coupling constants for the correspond-
ing mesons divided by the meson masses, ΓS = g2

σ/m
2
σ and ΓV = g2

ω/m
2
ω.

The two parameters ΓS,V are �tted to the saturation point of nuclear mat-
ter E/A ' −16 MeV, %0 ' 0.16 fm−3. The saturation mechanism requires
that both coupling constants are large. This implies a strong cancellation be-
tween the attractive scalar �eld ΣS = −ΓS%S and the repulsive vector �eld
ΣV = ΓV %. This feature of relativistic dynamics is illustrated by the single-
particle potential U = ΣS(m∗

D/E
∗)−ΣV , where E∗ =

√
k2 +m∗2

D , which is
only on the order of −50 MeV, while ΣS and ΣV are both on the order of
several hundred MeV in magnitude.



3.3 The nuclear equation of state from many-body theory 149

However, with only two parameters QHD-I provides a relatively poor de-
scription of the saturation point with a too large saturation density. In order
to improve upon this, higher order corrections in density have to be taken into
account. This can be done in several ways. In the spirit of the Walecka model
non-linear meson self-interaction terms have been introduced in the QHD La-
grangian [206, 207, 238]. Several alternative extensions of QHD-I have been
discussed in the literature [208, 209, 239�244]. These models provide high
quality �ts to the known areas of the nuclear chart: binding energies and
rms-radii are reproduced with an average relative error of about ∼ 1− 5 %.
However, extrapolations to the unknown regions of extreme isospin or to
densities beyond ρ0, lead to substantial di�erences between the models. This
demonstrates the limited predictive power of these functionals.

3.3.1.2 E�ective �eld theory

The application of e�ective �eld theory concepts to nuclear physics prob-
lems relies on a separation of scales. EFT is based on a perturbative ex-
pansion of the nucleon-nucleon (NN) interaction and the nuclear mean �eld
within a power counting scheme. The strong short-range repulsion of some
NN interactions requires a non-perturbative treatment, e.g., by means of the
Brueckner ladder summation. The philosophy behind EFT is to separate the
short-range correlations from the long and intermediate range parts of the
NN -interaction. This assumption is motivated by the fact that the scale of
the short-range correlations, i.e. the hard core, is set by the ρ and ω vector
meson masses, which lie well above both the Fermi momentum and the pion
mass, which in turn set the scale of the long range forces.

The density functional theory (DFT) formulation of the relativistic nu-
clear many-body problem [208, 209] is analogous to the Kohn�Sham DFT of
condensed matter systems. An energy functional of scalar and vector densi-
ties is constructed which by minimization yields variational equations that
determine the ground-state densities. The aim is to approximate the exact
functional using an expansion in classical meson �elds and their derivatives,
based on the observation that these quantities are small compared to the nu-
cleon mass, at least up to moderate densities. The DFT interpretation implies
that the model parameters �tted to nuclei implicitly contain the e�ects of ex-
change correlations and all other many-body and relativistic e�ects, which in
principle are included in the exact functional.

Recently also concepts of chiral perturbation theory (ChPT) have been ap-
plied to the nuclear many-body problem [210�215]. In this scheme, the long
and intermediate-range interactions are treated explicitly within chiral pion-
nucleon dynamics. This allows an expansion of the energy-density functional
in powers of mπ/M and kF /M , while the dependence on the ratio mπ/kF
should not be expanded. Like in DFT, short-range correlation are not explic-
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itly resolved but handled by counter terms (dimensional regularization) [210]
or through a cuto� regularization [214].

3.3.1.3 Ab initio calculations

The goal of ab initio approaches to the nuclear many-body problem is a
systematic scheme for computing the properties of many-nucleon systems
based on high-precision nuclear interactions. Such interactions provide a high-
quality representation of nucleon-nucleon scattering and few-nucleon systems.
A vast amount of work has been invested in the so called Brueckner-Hartree-
Fock (BHF) approach to the nuclear many-body problem [246], which in-
volves partial summations of ladder diagrams. The summation of ladder dia-
grams was introduced in order to deal with the strong short-range repulsion
present in most high-precision nucleon-nucleon interactions. In the late 1980s,
an approximate relativistic formulation of Brueckner's approach, the Dirac-
Brueckner-Hartree-Fock approach (DBHF), was proposed.

Studies for a large number of NN interactions indicate the need for a
three-nucleon interaction. The saturation points obtained with di�erent high-
precision interactions are located on the so-called Coester line in the E/A-kF
plane, as shown in Fig. 3.24. Modern one-boson-exchange (OBE) potentials
[247] lead to strong over-binding and a too large saturation density in non-
relativistic calculations whereas relativistic calculations do a somewhat bet-
ter job [223, 225]. However, in particular for the relativistic formulation, it
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Fig. 3.24 Nuclear matter saturation points from relativistic (full symbols) and non-
relativistic (open symbols) Brueckner-Hartree-Fock calculations based on di�erent nucleon-
nucleon forces. The diamonds show results from variational calculations. Shaded symbols
denote calculations which include 3-body forces (3-BF). The shaded area is the empirical
region of saturation [245].
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remains unclear how to systematically improve the lowest-order two-body
cluster approximation.

The saturation mechanism is quite di�erent in relativistic and non-relativis-
tic approaches. The magnitude of the scalar and vector DBHF self-energies is
similar to that in mean-�eld theory, where the single-particle potential is the
result of a cancellation between the large scalar and vector �elds, each several
hundred MeV in magnitude. In the BHF approach, on the other hand, the sat-
uration mechanism is exclusively due to contributions of the same magnitude
as the binding energy, i.e. a few tens of MeV. The tensor force, in particu-
lar the second-order one-pion-exchange contribution is large and attractive
and its interplay with Pauli-blocking leads to saturation. Relativistically the
tensor force is quenched and less important for the saturation mechanism
[248, 249].

The role of three-body forces has been extensively studied within non-
relativistic BHF [220] and variational calculations [217]. These investigations
clearly underline the importance of three-body forces for a quantitative un-
derstanding of nuclear saturation. However, the lack of a systematic frame-
work for treating both the two- and three-nucleon forces has stymied progress
on this problem. The next generation of nuclear forces, based on chiral per-
turbation theory [250�252], o�er a perspective for a systematic treatment of
two- and three-body forces.

An alternative systematic approach to nuclei and nuclear matter is based
on renormalization group (RG) methods [253]. In the so-called Vlow k ap-
proach, a low-momentum e�ective interaction is derived from a given realis-
tic NN potential by integrating out the model-dependent high-momentum
modes using RG methods. At a cuto� Λ ∼ 2 fm−1 various high-precision
NN -potential models collapse to an essentially model-independent e�ective
interaction Vlow k. When applied to the nuclear many-body problem the con-
vergence properties of the many-body perturbation theory is dramatically im-
proved; the e�ective low-momentum interactions do not require a full Brueck-
ner resummation of ladder diagrams, but may be treated perturbatively, as
indicated by the exploratory calculation of Ref. [234]. The resulting equation
of state is only weakly dependent on the unphysical cuto� parameter. Fur-
thermore, by including an appropriate three-body force, �tted to reproduce
the properties of three- and four-nucleon systems for a given cuto� Λ, the
saturation properties of isospin symmetric nuclear matter are described on a
qualitative level. The results, including three-body forces [234], are shown in
Fig. 3.24.
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3.3.2 Equation of state in symmetric and asymmetric
nuclear matter

In Fig. 3.25 the results for nuclear and neutron matter obtained in micro-
scopic many-body calculations � DBHF [228, 229] and variational calculation
with three-body forces and boost corrections [217] � are shown together with
the equation of state obtained in phenomenological approaches [243, 254] and
in EFT [215]. As expected the phenomenological functionals yield more or
less identical results at and below saturation density, where they are con-
strained by �nite nuclei, but di�er substantially at densities above ρ0. In
neutron matter the situation is even worse, since the isospin dependence of
the phenomenological functionals is less constrained. Ab initio calculations
predict a soft EOS in the density range relevant for heavy-ion reactions at
intermediate and low energies, i.e. up to about three times ρ0. Moreover,
the microscopic calculations (BHF/DBHF, variational) agree well with each
other and are consistent with Quantum-Monte-Carlo calculations [232].

In isospin asymmetric matter the binding energy is a functional of the
proton and neutron densities, characterized by the asymmetry parameter
β = Yn − Yp which is the di�erence of the neutron and proton fraction
Yi = ρi/ρ , i = n, p. The isospin dependence of the energy functional can
be expanded in terms of β which leads to a quadratic dependence on the
asymmetry parameter

E(ρ, β) = E(ρ) + Esym(ρ)β2 +O(β4) + · · · ,

Esym(ρ) =
1
2
∂2E(ρ, β)
∂β2

|β=0 = a4 + · · · , (3.44)
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where the ellipsis stands for terms parametrising the density dependence of
the symmetry energy. In Fig. 3.26 the symmetry energy computed in DBHF
[228, 229] and variational calculations are compared with those of the empir-
ical density functionals shown in Fig. 3.25. Furthermore, the relativistic DD-
ρδ RMF functional [255] is included. Two Skyrme functionals, SkM∗ and the
more recent Skyrme-Lyon force, SkLya, represent the non-relativistic models.
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panel shows the low-density region while the right panel displays the high-density range.
Data are from [256�258].

The low-density part of the symmetry energy is relatively well constrained
by data. Recent NSCL-MSU heavy-ion data in combination with transport
calculations are consistent with a value of Esym ≈ 31 MeV at ρ0 and rule out
extremely "sti�" and extremely "soft" density dependences of the symmetry
energy [259]. The same value of the symmetry energy has been extracted [256,
257] from low-energy elastic and (p,n) charge exchange reactions on isobaric
analog states, i.e. p(6He,6 Li∗)n measured at the HMI. The data points at
sub-normal densities were recently extracted from the isoscaling behavior of
fragment formation in low-energy heavy-ion reactions, experimentally studied
at Texas A&M and NSCL-MSU [258].

The theoretical extrapolations to supra-normal densities diverge dramat-
ically, however. Since the structure and the stability of neutron stars are
strongly in�uenced by the high-density behavior of Esym, it is crucial to
constrain the symmetry energy at supra-normal densities with data from
heavy-ion reactions.
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3.3.2.1 Optical potentials

An important quantity related to the momentum dependence of the mean
�eld is the optical nucleon-nucleus potential. At sub-normal densities the
optical potential Uopt is constrained by proton-nucleus scattering data [260,
261] and at supra-normal densities by data from heavy-ion reactions [262�
264]. In a relativistic framework the real part of the Schroedinger-equivalent
optical nucleon potential is de�ned as

Uopt = −ΣS +
E

M
ΣV +

Σ2
S −Σ2

V

2M
. (3.45)

In a relativistic framework, momentum independent �elds ΣS,V (as, e.g., in
RMF theory) yield a linear energy dependence of Uopt. As seen from Fig.
3.27, DBHF calculations reproduce the empirical optical potential [260, 261]
extracted from proton-nucleus scattering for nuclear matter at ρ0 reason-
ably well up to a laboratory energy of about 0.6-0.8 GeV. However, they fail
to describe the saturation at large momenta because of missing inelastici-
ties, i.e. the excitation of isobar resonances above the pion threshold. When
such continuum excitations are included, the optical model calculations are
indeed able to describe nucleon-nucleus scattering data also at higher en-
ergies [265]. In the description of heavy-ion reactions at incident energies
above 1 AGeV, the saturation at high momenta is required in order to repro-
duce transverse-�ow observables [264]. In practical calculations, one has so
far employed phenomenological approaches, where the strength of the vector
potential is suppressed, e.g., by the introduction of form factors [264] or by
energy dependent terms in the QHD Lagrangian [266] (D3C model in Fig.
3.27).

The isospin dependence, expressed by the isovector optical potential
Uiso = (Uopt,n − Uopt,p)/(2β) is much less constrained by data. The knowl-
edge of this quantity, however, is of crucial importance for the forthcoming
rare-isotope beam experiments. In the right panel of Fig. 3.27, the results of
DBHF [228, 229] and BHF [267] calculations are compared with those ob-
tained with phenomenological Gogny and Skyrme (SkM∗ and SkLya) forces
and with the T -ρ approximation [269] based on relativistic empirical NN
scattering amplitudes [270]. At large momenta DBHF agrees with the tree-
level results of [269]. The energy and density dependences obtained in the
various models di�er substantially, in particular between the microscopic and
the phenomenological approaches. The energy dependence of Uiso is not well
constrained by data. The old optical potential analysis of scattering on charge
asymmetric targets by Lane [271] is consistent with a decreasing potential as
predicted by DBHF/BHF, while more recent analyses based on Dirac phe-
nomenology [272, 273] come to the opposite conclusions. RMF models show a
linearly increasing energy dependence of Uiso (i.e. quadratic in k) like SkLya,
however generally with a smaller slope (see discussion in [255]). To clarify
this question certainly more experimental investigations are necessary.
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At higher energies the knowledge on the real part of the optical potential,
or equivalently the nuclear mean �eld, is scarce. The e�ective �eld theory
schemes are limited to energies below the pion threshold (Elab ∼ 300 MeV)
which also is the range where high-precision NN potentials are �tted to
scattering data. Reliable many-body calculations which include e�ects of in-
elastic channels, have so far not been performed. Thus, one has to deduce
the high-momentum behavior of the mean �eld by empirical methods. This
information can be obtained, e.g., by analyzing transverse-�ow observables
in heavy-ion collisions (see Sect. 6.4 in Part III and Chap. 6 in Part IV).

3.3.3 Connection to QCD

A connection of the empirical scalar-vector mean �elds to QCD can be es-
tablished by using QCD sum rules [274�276]. To leading order, the operator
product expansion of the quark correlation function can be expressed in terms
of scalar 〈q̄q〉 and vector 〈q†q〉 condensates. The sub-leading terms, which are
often neglected due to their highly non-trivial structure, involve four-quark
operators and combinations of quark and gluon �elds. The density depen-
dence of higher-order contributions in the operator product expansion has
been explored, e.g., in Refs. [277, 278].

The chiral condensates are modi�ed in matter, which, to leading order
in the density, gives rise to a scalar self-energy ΣS and a vector �eld ΣV .
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Thus, QCD sum rules predict mean �elds in matter which agree both in
sign and magnitude with those obtained in hadronic many-body calculations
as well as in RMF �ts to nuclear masses. Moreover, in [279, 280] it has
been found that the structure of the nucleon-nucleon interaction enforces the
existence of large scalar and vector �elds as a model independent fact. This
holds not only for manifestly covariant interactions, such as relativistic one-
boson-exchange models (Bonn, CD-Bonn, Nijmegen), but is also obtained for
non-relativistic interactions (Argonne v18, Reid93, Idaho N3LO, Vlow k) once
the symmetries of the Lorentz group are restored. From the analysis of the
chiral EFT nucleon-nucleon force [251, 252, 281] it has been found that these
�elds are generated mainly by contact terms which occur at next-to-leading
order in the chiral expansion and which are intimately connected with the
short-range spin-orbit interaction [279, 280].

The connection of hadronic many-body e�ects to basic QCD quantities
such as the chiral condensate is provided by the Hellmann-Feynman theorem,
which relates 〈q̄q〉 with the derivative of the QCD Hamiltonian with respect to
the current quark masses. In nuclear matter the condensate is thus obtained
from the total energy density E as

〈ρ|q̄q|ρ〉 = 〈q̄q〉+ 1
2
dE
dmq

. (3.46)

This relation implies a direct connection between many-body correlations,
expressed in terms of hadronic degrees of freedom, and the in-medium quark
condensate. The energy density E can be computed within hadron e�ective
�eld theories [274, 275, 282, 283], such as QHD and, more microscopically,
within nuclear many-body theory. However, the unknown quark mass de-
pendence of the corresponding model parameters, i.e. mesonic couplings and
masses, introduces a large uncertainty in the resulting in-medium condensate
[282, 283]. A more systematic and direct connection to QCD is provided by
chiral e�ective �eld theory (EFT), where the explicit and implicit pion mass
dependence - and thus the quark mass dependence - of the NN interaction
has been evaluated up to next-to-leading order (NLO) [284, 285]. Hence, the
Chiral EFT approach is free from ambiguities concerning the analytic and
chiral structure of the potential and allows a reliable extraction of the scalar
condensate at moderate densities [286, 287].

3.3.4 Summary of the present status

The status of theoretical models of the nuclear EOS can be summarized as
follows: phenomenological density functionals such as Skyrme, Gogny and
relativistic mean-�eld models provide high precision �ts to nuclear masses
throughout the nuclear chart. Yet extrapolations to supra-normal densities
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or the limits of stability are ambiguous. A more controlled approach is pro-
vided by recent developments in e�ective �eld theory. Chiral e�ective �eld
theory allows a systematic generation of two- and many-body nuclear forces.
However, these approaches correspond to a low-momentum expansion, and
when applied to the nuclear many-body problem, to a low-density expansion.
Ab initio calculations for the nuclear many-body problem such as variational
or Brueckner calculations can serve as guidelines for the extrapolation to
larger density and/or isospin asymmetry, while modern EFT approaches of-
fer a perspective to achieve a consistent treatment of two- and three-nucleon
forces.

Constraints on these models can be obtained from nuclear reactions, pro-
vided the reaction dynamics is accounted for by means of semi-classical trans-
port models of the Boltzmann or molecular dynamics type (see Part III Colli-
sion Dynamics). Suitable observables, which are sensitive to the nuclear EOS,
are directed and elliptic collective �ow patterns and, at higher energies, par-
ticle multiplicities, in particular of kaons. Heavy-ion data suggest that the
EOS of symmetric nuclear matter is relatively soft in the intermediate den-
sity regime, between one and about three times the nuclear saturation density
(see, e.g., [245]), in qualitative agreement with the results of many-body cal-
culations. Quantitative conclusions on the EOS based on heavy-ion data are,
however, impeded by the interplay between the density and the momentum
dependence of the nuclear mean �eld.

Data which constrain the isospin dependence of the mean �eld are still
scarce. Promising observables are isospin di�usion, iso-scaling of intermedi-
ate mass fragments and particle ratios (π+/π− and possibly K+/K0). Here
the situation will certainly improve, when the forthcoming rare-isotope beam
facilities are in operation. This will also allow measurements of the isospin
dependence of the optical potential in p+A and A+A reactions and the ex-
traction of the symmetry energy and the proton/neutron e�ective masses in
asymmetric matter.

On the theoretical side it will be important to invest a signi�cant e�ort in
the development of quantum transport models with a consistent treatment
of states with a �nite lifetime and three-body collisions (see also Part III
Collision Dynamics).

Constraints on the equation of state can also be derived from studies of
compact stars. This is reviewed in the following section.
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3.4 Compact star constraints on the high-density
equation of state

Compact stars are macroscopic objects with properties determined by the
strong interaction. Typically their masses amount to about 1.5 solar masses,
M�, while typical radii, R, are ≈ 12 km and less. The central density can
reach more than �ve times nuclear saturation density, thus the properties of
such stars are essentially determined by the equation of state (EoS) of highly
compressed baryonic matter. Typical temperatures, T , are in the order of
a few keV, i.e. small on nuclear scales, and super�uid and/or superconduc-
tive states of matter are expected to appear inside these stars. In addition,
strong magnetic �elds exceeding 1013 Gauss and rotation periods as small
as milliseconds can be observed. The extreme gravitational �elds require the
application of general relativity in the theoretical description. Demanding
the matter to be in a locally charge neutral and β-equilibrated state leads
to highly isospin asymmetric conditions. Altogether, compact stars allow to
study the high-density EoS under conditions that cannot be produced and
investigated in laboratories.

The connection between properties of high-density matter and compact
star phenomenology is extremely complex and multifaceted. Hence, its full
discussion would by far exceed the scope of this section and we refer to
excellent reviews on this topic [288�298]. After summarizing the particular
conditions of dense matter in compact stars, we concentrate on constraints
on the high-density EoS from the determination of compact star properties,
see, e.g., the extensive discussion in [293, 299]. Those observables, objects and
measurements will be discussed which can help to tighten the limits in which
the high-density EoS is allowed to vary and eventually allow to eliminate
EoS which cannot satisfy the derived constraints. Measurements of �extreme�
values of compact star properties, like masses above 2 M� [300, 301]7, radii
exceeding 13 km [304, 305], and rotation periods below around 1 ms [306] o�er
an excellent opportunity to gain profound insight into the properties of matter
under the most extreme conditions. The modern astrophysical observations to
be discussed in this section will constrain the zero-temperature EoS behavior
at supersaturation densities, where data from laboratory experiments are
di�cult to obtain.

The structure of a compact star can be divided into three major regions
- envelope, crust and core - that are depicted with their substructure in
Fig. 3.28. The surface that encloses the star is covered by the atmosphere.
It is important for the energy transport and shape of the observed electro-
magnetic spectrum. The crust contains ionized nuclei that are arranged in a
lattice and embedded in a sea of electrons. At the surface of the star the most
strongly bound nuclei (56Fe and neighbors) are found but the mass number

7 Note that the high mass of M = 2.1± 0.2 M� for PSR J0751+1807 [302] has recently
been corrected to M = 1.26± 0.14 M� by D. J. Nice et al.[303]
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Fig. 3.28 Theoretical conceptions of the structure of a compact star.

increases substantially towards the core-crust interface at about 1/3 of nu-
clear saturation density, n0. Simultaneously, the nuclei become more neutron
rich due to the condition of β-equilibrium. Around a density of 1.5 10−3n0

neutrons drip out of the nuclei and the boundary between outer and inner
crust is crossed. Approaching the interface to the core, individual nuclei are no
longer stable and a continuous change of the density distribution of nucleons
is expected which is described by the so-called nuclear �pasta� phases. Finally,
the core of a compact star is reached with a uniform distribution of nucleons,
electrons and muons. The crust with a thickness of 1 − 2 km contributes
only a few percent to the total mass of the star. Hence, bulk properties of
a compact star depend essentially on the behavior of compressed matter at
densities beyond nuclear saturation.

The transition from the outer to the inner core is speci�ed by the appear-
ance of additional particle species such as hyperons, pion or kaon condensates
or even decon�ned quark matter. The predominance of neutrons (>∼ 90%)
in the conventional picture of a compact star with a hadronic core lead to
the term �neutron star�. However, supposing more exotic scenarios with a
transition to quark matter inside the core or even a star almost completely
composed of strange quark matter, the terms �hybrid star� and �strange star�,
respectively, were introduced for these types of stars. In general, the interior
structure of compact stars is not well known. While constraints on the hy-
drodynamical behavior of the high-density EoS from observables related to
the star's compactness (Sect. 3.4.1) can hardly distinguish between a purely
hadronic and a hybrid EoS (this �nding has been called the �masquerade�
e�ect [307]), a statistical analysis of the cooling behavior (Sect. 3.4.2) may
provide a tool to �unmask� the interior of compact stars [308, 309]. The possi-
ble existence of strange stars is discussed controversely, for a recent summary
see [310]. They would provide most likely a �third family� of compact stars be-
sides white dwarfs and (hybrid) neutron stars. Due to their compactness, key
observables to distinguish them from more conventional neutron stars would
be, e.g., a radius below 10 km, a submillisecond rotation period, or a small
moment of inertia. Discussing compact star constraints on the dense matter
equation of state at the onset of decon�nement we will focus on nonstrange
hybrid stars.
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The existence of neutron stars as gigantic atomic nuclei was already an-
ticipated by Landau [311] before the discovery of the neutron. Baade and
Zwicky [312] regarded them as a possible result of a supernova explosions. In
the present picture, proto-neutron stars with radii exceeding 20 km are the re-
mains of massive progenitors stars (> 8M�) in type II supernovae explosions
[313]. The collapse of the core in such violent explosions is halted by the sud-
den sti�ening of matter beyond saturation density and an outward traveling
shock wave is generated. In this process, temperatures of about 50 MeV can
be reached. The proto-neutron star cools �rst by emitting a copious amount
of neutrinos and later photons. During this process it shrinks to its �nal size.
For too massive cores, the pressure of high-density matter is not su�cient
to prevent the collapse to a black hole. Although many details in the mod-
elling of core-collapse supernovae are under discussion, this dynamical process
presents an additional opportunity to constrain the dense-matter EoS, e.g. if
observable signatures of a phase transition can be identi�ed [314]. Essentially,
there are only two equations of state used so far in dynamical calculations
of core collapse supernovae that cover the required wide ranges in density,
temperature and asymmetry [315, 316]. The cooling of the proto-neutron star
is also strongly dependent on the properties of compressed matter as will be
discussed in Sect. 3.4.2. A comparison of model calculations with available
astronomical observations helps to study these aspects of the EoS.

Gravitational-wave (GW) astronomy opens a new window for the obser-
vation of compact stars and the discussion of constraints on properties of
strongly interacting matter. Remarkable progress has been made by compu-
tational general relativity to predict GW signals from supernova collapse,
binary mergers and fastly spinning pulsars with ever more realistic inputs.
Despite promising studies on the relationship between GW signals and the
the high-density EoS, the resulting constraints for, e.g., possible quark matter
phases in the Crab pulsar from LIGO and GEO600 observations are not yet
conclusive [317]. We therefore refrain here from discussing possible constraints
on the EoS from GW physics and refer to [293, 294] for further information
instead.

3.4.1 Constraints from bulk properties

The mass, M , radius, R, and structure of a compact star are determined by
the condition of hydrostatic equilibrium including e�ects of general relativ-
ity. Properties of spherical, nonrotating stars, are calculated by solving the
Tolman-Oppenheimer-Volko� (TOV) equations [318, 319]
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dP (r)
dr

= − G[ε(r) + P (r)][m(r)c2 + 4πr3P (r)]

c4r2
[
1− 2Gm(r)

c2r

] , (3.47)

m(r) =
4π
c2

r∫
0

dr′ r′2ε(r′) , (3.48)

wherem(r) is the gravitational mass inside a sphere of radius r which includes
the e�ects of the gravitational binding energy. G is the gravitational constant
and c the speed of light. The baryon number enclosed by that sphere is given
by

N(r) = 4π

r∫
0

dr′ r′2n(r′)√
1− 2Gm(r′)

c2r′

, (3.49)

with n(r) being the baryon density pro�le of the star. Equation (3.47) de-
scribes the gradient of the pressure pro�le P (r) and implicitly the radial
distribution of the energy density ε(r) inside the star. In order to solve this
set of di�erential equations, one has to specify the equation of state, i.e., the
relation between P and ε. The stellar radius R is de�ned by zero pressure
at the stellar surface, P (R) = 0. The star's cumulative gravitational mass is
given then by M = m(R) and its total baryon number is N = N(R). There
are some general boundary conditions for the relation between the mass and
the radius of a compact star. General relativity leads to the Schwarzschild
condition R ≥ 2GM/c2 and causality requires R ≥ 3GM/c2. Such a maxi-
mum mass constraint is also supported by the valueM = 1.67±0.01M� from
a recent precise mass measurement [320] of the eccentric binary millisecond
pulsar PSR J1903+0327 [321].

Solving the TOV equations for a given EoS, a unique relation between the
mass, M , and the central density, n(r = 0), is obtained. This has been done
with good success for a number of arti�cial, causality constrained equations
of state to determine maximum attributes of neutron stars [293]. Since ob-
servational techniques constantly progress and the amount of available data
increases it seems obvious to constrain the EoS itself by directly or indirectly
measured neutron star quantities. Equations of state for the interior of a
star often have to be supplemented by a model for the crust, e.g. the BPS
EoS [322]. Due to uncertainties with di�erent crust models one may obtain
slightly di�erent results.

In Fig. 3.29 the mass-central density relation is shown for a number of
relativistic equations of state without exotic phases for the neutron star in-
terior. Since this review focuses on astrophysical constraints, we refrain from
detailed discussions of the various EoS applied in the following but refer to
[299, 323] and references therein. Beyond a certain central density the star is
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Fig. 3.29 Mass vs. central density for compact star con�gurations obtained by solving
the TOV equations (3.47) and (3.48) for di�erent EoS (for details see [299] and references
within). Crosses denote the maximum mass con�gurations, �lled dots mark the critical
mass and central density values for which the DU cooling process becomes possible.

unstable against the collapse to a black hole. This leads to a maximum mass
of a neutron star for each EoS. The maximum mass is essentially controlled
by the sti�ness of the EoS at several times the saturation density of nuclear
matter. If non-nucleonic degrees of freedom are relevant at high densities a
softening of the EoS and a considerable reduction of the maximum mass are
expected.

3.4.1.1 Masses of compact stars

The mass of a compact star can be determined from astronomical observa-
tions if it is a companion of a binary stellar system. The most accurate values
are obtained from measurements of Doppler shifts or relativistic e�ects in ra-
dio binary pulsars. But there are also less precise data from systems with a
pulsar orbiting an accreting neutron star emitting X-rays, a white dwarf or
a main-sequence star. Fig. 3.30 presents a synopsis of measured neutron star
masses. Most of them fall into a narrow range around 1.3M�. In some cases,
exceptionally low or high values were found. However, the errors are rather
large and de�nite conclusions cannot be drawn.

Recent results of timing measurements for PSR B1516+02B, located in the
globular cluster M5, imply a pulsar mass of 1.96+0.09

−0.12 M� (at 68% probability)
with a 95% probability that the mass of this object is above 1.68 M� [301].
This is remarkably heavy in comparison to common values for binary radio
pulsars (MBRP = 1.35±0.04M� [325]). This special result constrains neutron
star masses to at least 1.68 M� (2σ con�dence level) or even 1.84 M� within
the 1σ con�dence level.
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Fig. 3.30 Measured neutron star masses from [324].
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As can be seen in Fig. 3.29 none of the maximum masses falls below the
2σ mass limit of 1.68 M� for PSR B1516+02B, and even at the 1σ mass limit
of 1.84 M� the softest EoS (NLρ and NLρδ) cannot be excluded. We point
out that if a pulsar with a mass exceeding 1.8 − 1.9 M� at the 2σ or even
3σ level could be observed in the future, this will imply serious restrictions
on the viable EoS, see Fig. 3.29. Within the set of EoS tested here, only the
sti�est EoS (D3C, DD-F4, BBG and DBHF) would survive.

3.4.1.2 Gravitational mass - baryon mass relation

The total baryon mass number N(R), eq. (3.49), can be converted to the
baryon mass MN of the compact star by a multiplication with the nucleon
mass. The di�erence of the gravitational mass MG = M and MN measures
the binding energy of the system.

Recently, it has been suggested in [326] that pulsar B in the double pulsar
system J0737�3039 may serve to test the gravitational mass - baryon mass
relation. One of the interesting characteristics of this system is that the mass
of pulsar B is merely 1.249 ± 0.001 M� [327]. Such a low mass could be an
indication that pulsar B did not form in a type-II supernova, triggered by
a collapsing iron core, but in a type-I supernova of an ONeMg white dwarf
[326] driven hydrostatically unstable by electron captures onto Mg and Ne.
The well-established critical density at which the collapse of such stars sets
in is 4.5× 109 g/cm3. Assuming that the loss of matter during the formation
of the neutron star is negligible, a predicted baryon mass for the neutron star
of MN = 1.366 − 1.375 M� was derived in [326]. This theoretically inferred
baryon number range together with the star's observed gravitational mass
of M = 1.249 ± 0.001 M� may represent a most valuable constraint on the
EoS [326], provided the above key assumption for the formation mechanism
of the pulsar B is correct. Then any viable EoS proposed for neutron stars
must predict a baryon number in the range 1.366 <∼ MN

<∼ 1.375 M� for a
neutron star whose gravitational mass is in the rangeM = 1.249±0.001 M�.

We may contrast this result with that of an independent calculation [328],
where for pulsar B a baryon mass of MN = 1.360 ± 0.002 M� has been
obtained. The authors of [326] discussed caveats such as baryon loss and
variations of the critical mass due to carbon �ashes during the collapse. The
e�ect of 1% and 2% mass loss on the usefulness of this constraint to exclude
model EoS is shown in Fig. 3.31. Since the simulation of e-capture supernovae
and the evolution of their progenitors is still a work in progress, more inter-
esting results are expected in the near future. The �nal value and accuracy
of the baryon number of J0737-3039 are therefore highly important. The re-
sult of such calculations is shown in Fig. 3.31. Finally we point out that this
constraint is critically based on the assumption of the formation scenario for
pulsar B. If this turns out to be incorrect the constraint has to be abandoned.
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3.4.1.3 Mass - radius relation

Similar as the mass - central density relation for a speci�c EoS, there is a
unique mass - radius relation found by solving the TOV equations. In contrast
to the maximum mass of a compact star, the radius is determined mainly by
the properties of neutron-rich nuclear matter near the saturation density,
more precisely the density dependence of the nuclear symmetry energy [293].
In Fig. 3.32 the correlation between M and R for a collection of relativistic
equations of state is shown. For neutron stars with typical masses a variation
of the radius between 12 and 14 km is found.

Radii of compact stars are measured considerably less precisely than
masses. In most cases they are obtained rather indirectly or only radius-mass
correlations can be given. In the following three examples are discussed: radius
determination from quasi-periodic brightness oscillations (QPOs) of low-mass
X-ray binaries, the observation of a thermal emission spectrum of an isolated
neutron star and the surface redshift constraint.

Radii from quasi-periodic brightness oscillations

The kilohertz QPOs seen from more than 25 neutron star X-ray binaries
constrain candidate high-density equations of state because there are fun-
damental limits on the highest frequency of such oscillations. A pair of such
QPOs is often seen from these systems (see [329] for a general review of prop-
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erties). In all currently viable models for these QPOs, the higher frequency
of the QPOs is close to the orbital frequency at some special radius. For
such a QPO to last the required many cycles (up to ∼100 in some sources),
the orbit must obviously be outside the star. According to the predictions of
general relativity the orbit must also be outside the innermost stable circular
orbit (ISCO) with radius RISCO = 6GM/c2. Gas or particles inside the ISCO
would spiral rapidly into the star, preventing the production of sharp QPOs.
This implies [330, 331] that observation of a source whose maximum QPO
frequency is νmax limits the stellar mass and radius to

M < 2.2 M�(1000 Hz/νmax)(1 + 0.75j)
R < 19.5 km(1000 Hz/νmax)(1 + 0.2j) . (3.50)

Here j = cJ/GM2 (where J is the stellar angular momentum) is the dimen-
sionless spin parameter, which is typically 0.1-0.2 for these systems. There is
also a limit on the radius for any given mass.

These limits imply that for any given source, the observed νmax means
that the mass and radius must fall inside an allowed �wedge�, see Fig. 3.32.
The wedge becomes smaller for higher νmax, therefore the highest frequency
ever observed (1330 Hz, for 4U 0614+091; see [332]) places the strongest
of such constraints on the EoS. Note, though, that another neutron star
could in principle have a greater mass and thus be outside this wedge, but
an EoS ruled out by one star is ruled out for all, since all neutron stars
have the same EoS. As can be seen from Fig. 3.32, the current constraints
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from this argument do not rule out any of the EoS considered in that �gure.
However, because higher frequencies imply smaller wedges, future observation
of a QPO with a frequency ∼ 1500 − 1600 Hz would rule out the sti�est
equations of state. This would therefore be a complementary restriction to
those posed by RX J1856.5-3754 (discussed below) and the implied high
masses for some speci�c neutron stars, which both argue against the softest
EoS. Additional information about the EoS might arise from the large radius
which is supposed to be primarily determined by the density dependence of
the symmetry energy [293].

If one has evidence for a particular source that a given frequency is actually
close to the orbital frequency at the ISCO, then the mass is known to a good
accuracy, with uncertainties arising from the spin parameter. This was �rst
claimed for 4U 1820�30 [333], but complexities in the source phenomenology
have made this controversial. More recently, a careful analysis of Rossi X-ray
Timing Explorer data for 4U 1636�536 and other sources [300] has suggested
that sharp and reproducible changes in QPO properties are related to the
ISCO. If so, this implies that several neutron stars in low-mass X-ray binaries
have gravitational masses between 1.9M� and possibly 2.1M� [300]. In Fig.
3.32 we display the estimated mass 2.0± 0.1M� for 4U 1636�536.

Radii from thermal emission spectra

The nearby isolated neutron star RX J1856.5-3754 (hereafter short: RX
J1856) belongs to a group of seven objects which show a purely thermal spec-
trum in X-rays and in optical-UV. This allows the determination of R∞/d,
the ratio of the photospheric (or radiation) radius

R∞ =
R√

1− 2GM/(Rc2)
(3.51)

to the distance d of the object, if the radiative properties of its photosphere
are known. RX J1856 is the only object of this group which has a measured
distance obtained by Hubble Space Telescope (HST) astrometry. After the
distance of 117 pc [334] became known several groups pointed out that the
blackbody radius of this star is as large as 15 - 17 km. Although both the
X-ray and the optical-UV spectra are extremely well represented by black-
body functions they require di�erent emission areas, a smaller hot spot and a
larger cooler region. The overall spectrum could also be �tted by blackbody
emission from a surface showing a continuous temperature distribution be-
tween a hot pole and a cool equator as expected for a magnetized neutron
star. The resulting blackbody radii are 17 km (two blackbodies) and 16.8 km
(continuous temperature distribution) [304]. Recently, the inclusion of more
HST sightings indicated even larger distances up to 178 pc, and 140 pc is
considered to be a conservative lower limit [335]. For a distance of 140 pc
the corresponding radius is 17 km [336, 337]. Although some questions, in
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particular that of the distance, are not yet �nally settled, the recent data
point to a large radius.
Mass - radius correlation from surface redshifts

An additional test to the mass-radius relationship is provided by a mea-
surement of the gravitational redshift of line emissions from the compact star
surface which is given by

z = 1/
√

1− 2GM/(Rc2)− 1 . (3.52)

In the right panel of Fig. 3.33 we show the redshift z as a function of the
star mass for a representative pure neutron star (with DBHF EoS) and the
hybrid star models [323, 338] shown in Fig. 3.32, right panel. The disputed
measurement of z = 0.35 for EXO 0748-676 [339, 340] would be in accor-
dance with both hadronic and despite other claims [340] also quark core star
interpretations [341]. A measurement of z ≥ 0.5 could not be accommodated
with the hybrid star models suggested here, while the hadronic model would
not be invalidated by redshift measurements up to z = 0.6.

Note that once in the core of a hybrid star with su�ciently large mass the
threshold for the occurrence of strange quark matter is reached, the color-
�avor-locking (CFL) phase [32, 37] shall be realized which softens the quark
matter and leads to a gravitational instability [323, 342, 343], unless stabil-
ity is enforced by a modi�cation of the quark matter EoS [344]. We exclude
the CFL phase from the present discussion of compact star phenomenology
and focus on the discussion of two-�avor quark matter phases, such as the
color superconducting 2SC phase. A su�cient sti�ness of the hybrid EoS is
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achieved when a repulsive vector meson mean �eld is taken into account, see
[323, 338] for details. The corresponding isospin-symmetric EoS has a weakly
�rst order phase transition at 3 − 3.5 times the nuclear saturation density.
The �masquerade� e�ect may indicate an artifact of the usual two-phase ap-
proach to the decon�nement phase transition and underline the necessity to
develop a uni�ed treatment of quark-hadron matter on the quark level, where
the hadrons appear as bound states of quarks to be dissolved into their con-
stituents under high pressure in analogy to the Mott transition in solid state
physics [345].

3.4.1.4 Moments of inertia

Due to the discovery of the relativistic double pulsar PSR J0737+3039 a
measurement of the moment of inertia (MoI) became a possibility and has
been recently discussed as another constraint on the EoS of compact stars,
assuming that future measurements will exhibit an error of only about 10%
[346, 347].

Following the de�nition of the MoI given in Ref. [288] we show the results
for a hadronic and several hybrid EoS in Fig. 3.33, left panel. Due to the
fact that the mass 1.338 M� of PSR J0737+3039 A is in the vicinity of
the suggested critical mass region, the quark matter core is small and the
expected MoI of the hybrid star will be practically indistinguishable from
that of a pure hadronic one. The situation would improve if the MoI could be
measured for more massive objects because the di�erence in the MoI of both
alternative models for masses as high as 2 M� could reach the 10% accuracy
level.

3.4.1.5 Rotational frequencies

An absolute upper limit for the spin frequency of a pulsar is given by the mass
shedding limit, at which the velocity of the stellar surface equals that of an
orbiting particle suspended just above the surface. For a rigid Newtonian
sphere this frequency is given by the Keplerian rate [296]

νK = (2π)−1
√
GM/R3 = 1833 (M/M�)1/2(R/10 km)−3/2 Hz . (3.53)

This formula was found to describe the mass shedding points for a sample
of neutron star EoS extremely well [348]. However, since both deformation
and general relativity e�ects are important, in comparing with M(R) the
relationship (3.53) for nonrotating compact stars has to be modi�ed. It has
been found [296] that with a coe�cient of 1045 Hz in equation (3.53) the
maximum rotation rate for a star of mass M and non-rotating radius R



170 3 Equation of state and phase boundaries of strongly interacting matter

is approximately described independently of the EoS. The observation of
fastly rotating pulsars can therefore constrain the compactness and might
eventually lead to the elimination of too sti� EoS which would result in too
large objects. If the recent discovery of burst oscillations with a frequency
of 1122 Hz in the X-ray binary XTE J1739-285 [306] and their identi�cation
with the compact star spin frequency proves to be correct, this would serve
as another observation with far-reaching implications for the high-density
nuclear EoS. The boundary for the mass-radius relationship reads in this
case [349]

R < 9.52 (M/M�)1/3 km . (3.54)

As can be seen from the left panel of Fig. 3.32, this constraint would rule out
all low-mass con�gurations, M < 1.75 M�.

In passing we mention that rotational instabilities in rotating stars, known
as gravitational radiation driven instabilities, set a more stringent limit on
rapid stellar rotation than mass shedding from the equator [288]. These in-
stabilities originate from counter-rotating surface vibrational modes which at
su�ciently high rotational star frequencies are dragged forward. In this case
gravitational radiation, which inevitably accompanies the aspherical trans-
port of matter, does not damp the instability modes but rather drives them.
Viscosity plays the important role of damping these instabilities at a su�-
ciently reduced rotational frequency such that the viscous damping rate and
power in gravity waves are comparable. The most critical instability modes
that are driven unstable by gravitational radiation are the f -modes and the
recently discovered r-modes [350]. The latter may severely constrain the com-
position of compact stars that would rotate at sub-millisecond periods [351].

3.4.1.6 Mass clustering

Compact stars in binary systems in general undergo during their evolution a
stage with disc accretion leading to both, spin-up and mass increase. Initial
indications for a spin frequency clustering in low-mass X-ray binary systems,
reported by measurements with the Rossi-XTE, have led to the suggestion
to interprete such a correlation as a waiting-point phenomenon where star
con�gurations cross the border between pure neutron stars and hybrid stars
in the spin frequency-mass plane [352]. A systematic analysis of the critical
line for a decon�nement phase transition in the �phase diagram� for accreting
compact stars [353] has revealed that the suggested population clustering due
to the phase transition shall rather lead to a mass clustering e�ect. For strange
stars, however, such an e�ect shall be absent [354]. For generic polytropic
forms of the EoS of quark and hadronic matter, the relationship between
softness or hardness of the EoS and the structure of this phase diagram has
been demonstrated in Ref. [355].
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For the speci�c example of the DBHF hadronic EoS and the color su-
perconducting sti� quark matter EoS discussed above, we show the phase
diagram of rotating compact stars in Fig. 3.34. Stable stars are found in
the region bordered by the maximum rotation frequency Ωmax(M) for which
mass-shedding from the star equator occurs and the maximummassMmax(Ω)
for which the gravitational instability against collapse to a black hole sets in.
The double-dash-dotted (dash-double-dotted) line marks the onset of a quark
matter core in the stars interior for a diquark coupling parameter ηD = 1.017
(ηD = 1.02), for details see [353, 356]. We also show the masses and spin
frequencis for compact stars in binary radio pulsars and neutron star- white
dwarf binaries and observe an interesting correlation of the distribution of
these objects with the critical decon�nement phase transition lines. There
might be other reasons for the mass clustering of spinning pulsars [357], but
the suggestion to relate it to a phase transition in the interior can not be
excluded. If true, it would be a strong constraint for the hybrid EoS and
suggest a critical density for decon�nement in compact stars at about 0.4
fm−3 ≈ 2.5 n0, where n0 denotes the saturation density of nuclear matter.
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3.4.2 Constraints from compact star cooling

The cooling behavior of compact stars belongs to the most complex phenom-
ena in astrophysics [358]. Shortly after the formation of a proto-neutron star
in a core-collapse supernova the mean free path of neutrinos becomes large
enough such that they are no longer trapped inside the core and leave the
star transporting a huge amount of energy. The core of a young neutron star
is cooled very e�ciently by neutrino emission and a cooling front forms at the
crust-core boundary. After the heat transport time scale of about 100 years
the neutron star reaches an isothermal state. Its cooling is dominated by the
emission of neutrinos from the interior for times t <∼ 105 yr and after that
thermal photon radiation from the surface becomes dominant. The surface
temperature is typically of the order of T ∼ 1 keV while the temperature
of the dense interior is two orders of magnitude higher. This value is below
the critical temperatures for superconductivity in nuclear (Tc ∼ 1 MeV) or
quark matter (Tc ∼ 1− 100 MeV). Therefore, the theory of the compact star
cooling evolution requires the formulation of neutrino emissivities as well as
thermal and transport properties for matter in a superconducting/super�uid
state.

The main neutrino cooling processes in hadronic matter are the direct
Urca (DU), the medium modi�ed Urca (MMU) and the pair breaking and
formation (PBF) processes, whereas in quark matter the main processes
are the quark direct Urca (QDU), quark modi�ed Urca (QMU), quark
bremsstrahlung (QB) and quark pair formation and breaking (QPFB) [359].
Also electron bremsstrahlung (EB) and the massive gluon-photon decay (see
[360]) have to be considered.

Codes for the numerical simulation of compact star cooling were developed
by several groups. They contain inputs (cooling regulators) of rather di�erent
kind, see, e.g., [361�365]. Attempts to develop a Minimal Cooling Paradigm
[362] by omitting important medium e�ects on cooling regulators [364, 366]
unfortunately result in inconsistencies and su�er therefore from the danger
of being not reliable. To develop a paradigmatic cooling code as an open
standard, however, it is rather necessary to cross-check the present knowledge
of the groups before more sophisticated mechanisms like anisotropies due to
the magnetic �eld [361] or special processes in the neutron star crust or at
the surface are taken into account. Therefore, it is still premature to attempt
a reliable identi�cation of the neutron star interior from the cooling behavior.

In the following, three tests are considered that show a dependence of
the compact star cooling process on the assumptions for the core composi-
tion. Two purely hadronic models are compared to a class of hybrid models
with superconducting quark matter phases. In order to circumvent the de-
pendence on the cooling model we employ a given cooling code developed
in Refs. [363, 367] and vary the matter properties such as EoS, supercon-
ductivity and star crust model such as to ful�ll all constraints known up
to now (mass, mass-radius, temperature-age, brightness, etc.). Moreover, we
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try to use consistent inputs. For systematic �eld theoretic approaches to the
neutrino cooling problem in neutron stars see, e.g., [295, 364, 368].

The 1S0 neutron and proton gaps in the hadronic shell are taken accord-
ing to the calculations by [369] corresponding to the thick lines in Fig. 5
of Ref. [363]. However, the 3P2 gap is suppressed by a factor 10 compared
to the BCS model calculation of [369], consistent with arguments from a
renormalization group treatment of nuclear pairing [370]. Without such a
suppression of the 3P2 gap the hadronic cooling scenario would not ful�ll the
temperature-age constraint, see [366].

The possibilities of pion condensation and of other so called exotic pro-
cesses are included in the calculations for purely hadronic stars but do not
occur in the hybrid ones since the critical density for pion condensation ex-
ceeds that for decon�nement in this case [363]. While the hadronic DU pro-
cess occurs in the DBHF model EoS for all neutron stars with masses above
1.27 M�, it is not present at all in the DD-F4 model, see Fig. 3.35. This
di�erence is caused by the much softer density dependence of the nuclear
symmetry energy in the DD-F4 model [299]. We account for the speci�c heat
and the heat conductivity of all existing particle species contributing with
fractions determined by the β-equilibrium conditions. Additionally, in quark
matter the massless and massive gluon-photon modes also contribute. For de-
tails of the hybrid models, the appearing color superconducting phases and
the sizes of the pairing gaps, see Refs. [371�373]. The phase transition occurs
at the critical density nc = 2.75 n0 = 0.44 fm−3.
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Fig. 3.35 Mass-central density relation for two hadronic EoS models (DBHF and DD-F4).
The dot indicates the onset of the DU process.

3.4.2.1 Temperature - age test

The temperature and age of a number of compact stars is known experimen-
tally. Each data point should be explained with a cooling curve belonging to
an admissible con�guration. In Fig. 3.36 we present temperature-age (TA)
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Fig. 3.36 Hadronic star cooling curves for the DBHF (left, with DU process) and the
DDF-4 (right, without DU process) model EoS. Di�erent lines correspond to compact star
mass values indicated in the legend (in units ofM�), data points with error bars are taken
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[374].

diagrams for two di�erent hadronic models and in Fig. 3.37 for two hybrid
star cooling models presented in Ref. [372]. The TA data points are taken
from [362]. The hatched trapezoidal region represents the brightness con-
straint (BC) [374]. For each model several cooling curves are shown for con-
�gurations with mass values corresponding to the binning of the population
synthesis calculations explained in [372]. It can be seen that the cooling sce-
nario critically depends on the compact star mass and EoS but it is di�cult
to exclude any model de�nitely.
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Fig. 3.37 Cooling curves for hybrid star con�gurations with 2SC+X pairing pattern and
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3.4.2.2 logN � log S test

The logN � logS distribution is a widely used tool in many branches of
astronomy. Here one determines from a radio-astronomical survey the cu-
mulative distribution of the number of sources N brighter than a given �ux
density S. For isolated neutron stars such an approach has been already used
by [376] and [377] to probe the origin of isolated neutron stars in the solar
proximity. One immediate advantage of the logN � logS test is that, at vari-
ance with the temperature-age test, no degree of arbitrariness is introduced
when observational data are analyzed: both the �uxes S and the number of
sources N are well measured.

For the logN � logS test the only necessary observational piece of infor-
mation is the ROSAT count rate. The method can be applied to objects with
unknown ages. This makes it possible to include, for example, all the ROSAT
X-ray dim neutron stars, and 3EG J1835+5918 (the Geminga twin) in the
testing sample. The logN � logS test is mostly sensitive to neutron stars
older than ∼ 105 yrs. Older sources dominate in number, and in the solar
proximity there are about a dozen of them in comparison to very few with
t <∼ 105 years.

Nevertheless there are signi�cant limitations too. One source of uncertainty
is the incomplete knowledge of some important ingredients of the population
synthesis model. They concern the spatial distribution of the neutron star
progenitors, the neutron star mass and velocity spectrum, and their emission
properties. A more severe problem arises in connection with the low statistics
of the sample, since there are only about 20 thermally emitting neutron stars
known to date. This implies that the bright end of the logN � logS relation
comprises very few objects so that it is di�cult to account for statistical
�uctuations. A more detailed discussion of the method can be found in [375].

The logN � logS test has been applied to the neutron star cooling problem
for hadronic EoS in Ref. [375] and for the hybrid EoS and pairing gaps de�ned
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Fig. 3.38 logN � logS curves for hybrid star con�gurations with 2SC+X pairing pattern
and X-gap model I (left) versus model IV (right). For details see [375].
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above in Ref. [372]. In Fig. 3.38 we show the sensitivity of this test to the
choice of the smallest gap (the X-gap) determining the cooling behavior of
the superconducting quark matter core. While the larger gap with the slower
drop at increasing density (left panel, model I) predicts too many sources,
the results for the smaller X-gap with a fast drop (right panel, model IV) are
in accordance with the logN � logS data.

3.4.2.3 Mass distribution from population synthesis

In order to reach the goal of unmasking the neutron star interior a new
method for the quantitative analysis of the cooling behavior has been sug-
gested in [308]. It consists in the extraction of a neutron star mass distribu-
tion from the (yet sparse) temperature-age data and its comparison with the
(most likely) mass distribution from population synthesis models of neutron
star evolution in the galaxy [375].

This method has been applied to the cooling models for hadronic and
hybrid stars described previously. The results for the extracted mass distri-
butions are normalized to 100 objects and shown in Fig. 3.39. The results
are very sensitive to the chosen cooling model. In the hadronic scenario the
onset of the DU cooling mechanism drastically narrows the mass distribution
around the critical mass for the DU onset, see Fig. 3.36. On the other hand
a slow cooling model without hadronic DU process predicts more massive
objects than could be justi�ed from the independent population analysis. In
this way, the quantitative characterization of the cooling behavior by the
extracted distribution allows to sharpen the DU cooling problem which was
previously discussed in the literature [299, 363, 378]. Moreover, when com-
paring the density dependence of the pairing gaps with the extracted mass
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both hadronic EoS models (left panel) and for hybrid stars with X-gap models I-IV (right
panel). For comparison, the mass disctribution of young, nearby neutron stars from the
population synthesis of Popov et al. [372] is shown at the bottom of the panels.
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distributions for the corresponding hybrid models in the right panel of Fig.
3.39, the direct relationship between the superconductivity and the mass dis-
tribution becomes obvious.

On the other hand, the EoS model should obey the mass constraints too.
Therefore, using the models discussed in this section it is suggestivethat the
most preferable structure of the compact object is likely to be a hybrid star
with properly de�ned color superconductivity of the quark matter state in
the core.

3.4.3 Relation to nuclear collisions

In Subsect. 3.4.1.1 the tight correlation between the sti�ness of the equation
of state and the maximum mass of a compact star was discussed. This was
demonstrated for a collection of relativistic models in Fig. 3.29. As shown
in [299], it is essentially the sti�ness of the symmetric matter EoS that de-
termines the maximum mass although the matter in a neutron star is very
isospin asymmetric and a substantial extrapolation from the conditions of
symmetric nuclear matter is needed. The observation of a compact star with
masses beyond 2 M� would require a rather sti� EoS and the question arises
if this constraint on the high-density behavior is compatible with constraints
from nuclear collions that can be obtained from the analysis of �ow data.

An analysis of elliptic �ow data, which depends essentially only on the
isospin independent part of the EoS, was carried out for a speci�c model in
Ref. [379]. In particular it was determined for which range of parameters of
the EoS the model is still compatible with the �ow data. The region thus
determined is shown in Fig. 3.40 as the shaded region. Ref. [379] asserts that
this region limits the range of accessible pressure values at a given density.
Thus the area of allowed values does not represent experimental values itself,
but results from transport calculations for the motion of nucleons in a collision
[379]. Of course, it seems preferable to repeat these calculations for each
speci�c EoS, but this would not be a manageable testing tool. Therefore
we adopt the results of ref. [379] as a reasonable estimate of the preferable
pressure-density domain in SNM. Its upper boundary is expected to be stable
against temperature variations [380]. The important fact is that the �ow
constraint probes essentially only the symmetric part of the binding energy
function E0(n).

Following Ref. [379] the constraint arises for a density window between 2
and 4.5 times saturation density n0. One has, however, to keep in mind that
at high densities this constraint is based on �ow data from the AGS energy
regime (Elab ∼ 4− 11 AGeV). At these energies a large amount of the initial
bombarding energy is converted into new degrees of freedom, i.e., excitations
of higher lying baryon resonances and mesons, which makes conclusions on the
nuclear EoS more ambiguous than at low energies. Nevertheless, the analysis
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of [379] provides a guideline for the high density regime which we believe to
be reasonable.

As can be seen from the left panel in Fig. 3.40, the �ow constraint is well
ful�lled by the KVOR, NLρ and NLρδ models. For the latter two models
this is rather obvious since they have already been tested to reproduce �ow
data. The constraint is satis�ed by DD-F4, BBG and DBHF only for densities
below 3 n0.
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Fig. 3.40 Pressure vs. density of the isospin symmetric EoS for the set of hadronic EoS
discussed in this review (left panel) and for hybrid EoS where the hadronic part is given by
the DBHF EoS and the quark matter by a NJL model with 2SC color superconductivity
and a vector mean �eld (right panel). The hatched region has been deduced from analyses
of the elliptic �ow in HICs [379].

Next we discuss the hadron-to-quark matter phase transition in the context
of the �ow constraint. The baryon density exhibits a jump at the phase
transition, as shown for isospin-symmetric matter in the right panel of Fig.
3.40. As can be seen in that �gure, a slight variation of the quark matter
model parameters ηD and ηV results in considerable changes of the critical
density for the phase transition and the behaviour of the pressure (sti�ness) at
high densities. The problem of a proper choice of these parameters we suggest
to solve by applying the �ow constraint. At �rst we �x the vector coupling
by demanding that the high density behavior of the hybrid EoS should be as
sti� as possible but still in accordance with the �ow constraint. We obtain
ηV = 0.50, rather una�ected by changes of the scalar diquark coupling. The
latter we choose such that the problem of the violation of the �ow constraint
for the DBHF EoS in symmetric nuclear matter at high densities is resolved
by the phase transition to quark matter. The optimal choice for ηD is thus
between 1.02 and 1.03. We point out that by this choice the hybrid EoS ful�lls
a wider range of astrophysical constraints than the purely hadronic DBHF
EoS [323].

In a next step we extend the description to �nite temperatures focusing
on the behaviour at the transition line. For this purpose we apply a relativis-
tic mean-�eld model with density-dependent masses and couplings ([266])
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stars are obtained.

adapted such as to mimick the DBHF-EoS and generalize to �nite temper-
atures (DD-F4). Fig. 3.41 shows two resulting phase diagrams including the
transition from nuclear to quark matter when in the neutron star matter case
a maximum mass of 2.1 M� (left panel: ηD = 1.030, ηV = 0.50) or 1.7 M�
(left panel: ηD = 0.92, ηV = 0.0) is required. A very small coexistence region
and a tiny density jump is obtained which only moderately varies with the
sti�ness of the quark matter EoS and thus the attainable maximum neutron
star mass. At temperatures beyond T ∼ 45 MeV the present NM descrip-
tion is not reliable any more since contributions from mesons, hyperons and
nuclear resonances are missing. This will be amended in future studies.

3.4.4 Summary

To summarize the present Sec. 3.4, we note that we have discussed the con-
straints on the EoS of hadronic matter at high densities. There are mostly
bulk properties of a compact star, such as the mass, radius, rotational fre-
quency, momentum of inertia and their mutual relations, that can be used
to select the most suitable equation of state. Accordingly, powerful testing
schemes were introduced in [299] and [309]. But also the in�uence of the EoS
on dynamical processes like compact star cooling or supernovae explosions
presents a very important way to test theoretical models. It is clear from the
discussion that there is no EoS available so far that can ful�ll all constraints
from astrophysical observations and heavy-ion collisions simultaneously.

New observations of compact star properties with unprecedented accuracy
will tighten the constraints even further. In particular the high masses for
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PSR B1516+02B and 4U 1636-536, the large radius for RX J1856 and the
submillisecond spin period for XTE J1739-285 reduce the window for extrap-
olations from well studied nuclear matter at subsaturation and saturation
density to the densities beyond ∼ 3 n0, where the CBM experiment at FAIR
will operate.

If quark matter occurs in compact stars it needs to be sti� enough to
support the high mass constraint. Color superconductivity, lowering the de-
con�nement threshold, and a repulsive vector mean �eld are required for
the description of stable hybrid stars. Quark stars �masquerade� as hadronic
stars since their mass-radius relationship and other observables related to the
compactness are similar. To unmask the compact star interior, new detailed
analyses of the cooling behavior have been suggested which favor a color
superconducting quark matter interior.

The resulting EoS for isospin symmetric matter has a very weak �rst
order decon�nement phase transition to superconducting quark matter at
∼ 3 − 3.5 n0. This statement, however, is based on the two-phase approach
to the phase transition. Much more work needs to be done to derive the
characteristics of the high density phase transition within a uni�ed approach
to dense matter on the basis of a properly de�ned chiral quark model.

The next section is devoted to the already mentioned color superconduct-
ing phases of QCD which appear at very large densities and small tempera-
tures.

3.5 Color superconducting phases of QCD matter

At su�ciently large baryon number densities and su�ciently small temper-
atures, quark matter is a color superconductor [26�28]. In this chapter, we
shall try to quantify what �su�ciently dense� and �su�ciently cold� means
in terms of physical units. This is important in order to answer the question
whether color-superconducting phases of quark matter can be created (and
� possibly � observed) in heavy-ion collisions at FAIR energies and whether
they have an in�uence on the properties of compact stellar objects.

Superconductivity can be microscopically understood as the condensation
of fermion pairs, so-called Cooper pairs, which form at the Fermi surface on
account of an attractive interaction [381]. Depending on the color-�avor-spin
structure of the order parameter for quark Cooper-pair condensation, Φ, there
are many di�erent color-superconducting phases of quark matter, similarly
to the many phases of super�uid He-3 [382].

At asymptotically large densities, the QCD coupling constant, g, becomes
small due to asymptotic freedom [383, 384]. This implies that color super-
conductivity can be analyzed rigorously in the framework of QCD, using
resummation techniques based on perturbative methods and power counting
[385�388]. The main result of this analysis is the color-superconducting gap
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parameter at zero temperature, φ0, evaluated to subleading order in the QCD
coupling constant, and the transition temperature to the normal-conducting
phase, Tc [389�392]. We shall summarize the current knowledge about these
quantities, including the e�ect of gluon �uctuations on the transition tem-
perature [393�395]. We shall also present an argument how to decide which
color-superconducting phase forms the ground state for a given quark chem-
ical potential at zero temperature.

At intermediate densities of relevance for heavy-ion collisions and com-
pact stellar objects, the QCD coupling constant is of order one. In the ab-
sence of a small parameter, perturbative methods and power counting become
inapplicable. In this situation, one has to resort to non-perturbative meth-
ods such as Schwinger-Dyson equations [396] or to phenomenological models
for quark matter such as the Nambu�Jona-Lasinio (NJL) model [397�402].
Both approaches are less well controlled, and thus allow only for qualitative
estimates of the gap parameter and the transition temperature. We shall
summarize our current knowledge for conditions of relevance for compact
stellar objects, namely β�equilibrium, as well as color and electric neutrality.
New phases emerge which feature gapless quasiparticle excitations [403, 404].
Gapless color-superconducting phases may be chromomagnetically unstable
[405]. The question which phase replaces them and is the true ground state of
the system for given quark chemical potential and temperature is not settled
up to this date.

In weak coupling, the size of the quark Cooper pair is parametrically larger
than the interparticle distance, just like for electron Cooper pairs in the
framework of BCS theory of ordinary superconductors [381]. As the density
decreases, however, the coupling constant becomes larger and the Cooper-pair
size shrinks [406]. At some point, the pair size is of the order or smaller than
the interparticle distance. Cooper pairs look like diquark molecules which, un-
der certain circumstances, may undergo Bose-Einstein condensation (BEC).
This implies an exciting analogy between quark matter and the physics of
trapped ultracold fermionic atoms [407], where the BCS-BEC crossover can
be studied varying the e�ective coupling strength (the scattering length) via
tuning an external magnetic �eld through a Feshbach resonance. We shall
report results of a recent study in the quark matter context.

3.5.1 Color superconductivity at asymptotically large
densities

The argument that quark matter is color-superconducting goes as follows.
Consider quark matter at zero temperature, T = 0, and asymptotically large
density or, since density is proportional to (the third power of) Fermi momen-
tum, nq ∼ k3

F , at a Fermi momentum kF � ΛQCD ∼ 200 MeV. In this case,
due to asymptotic freedom of QCD [383, 384], quarks become weakly inter-
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acting for momentum exchanges of the order of kF , i.e., the strong coupling
constant at this momentum scale becomes small, g(kF /ΛQCD) � 1. Thus,
the dominant interaction between quarks is single-gluon exchange. The scat-
tering amplitude corresponding to single-gluon exchange in an SU(Nc) gauge
theory is proportional to

(Ta)ki (Ta)lj = −Nc + 1
4Nc

(δjk δil − δik δjl) +
Nc − 1
4Nc

(δjk δil + δik δjl) ,

(3.55)

where i, j are the fundamental colors of the two quarks in the incoming chan-
nel, and k, l their respective colors in the outgoing channel. Under the ex-
change of the color indices of either the incoming or the outgoing quarks the
�rst term is antisymmetric, while the second term is symmetric. In group-
theoretical language, for SU(3)c Eq. (3.55) represents the coupling of two
fundamental color triplets to an (antisymmetric) color antitriplet and a (sym-
metric) color sextet, [3]c × [3]c = [3̄]ac + [6]sc . The minus sign in front of the
antitriplet contribution in Eq. (3.55) signi�es the fact that this channel is
attractive, while the sextet channel is repulsive.

According to Cooper's theorem [381], even an arbitrarily weak attractive
interaction will lead to condensation of Cooper pairs at the Fermi surface
and thus destabilize the latter. The new ground state of the system is a
condensate of Cooper pairs. In QCD, the attractive channel is the color-
antitriplet channel, and thus the quark Cooper pair condensate carries color-
antitriplet quantum numbers,〈

ψifΓψ
j
g

〉
∼ Φijfg ≡ ε

ij
kΦk,fg . (3.56)

Here, k = r̄, ḡ, b̄ denotes anticolor indices, and f, g are �avor indices. Γ is a
matrix in Dirac space. It depends on the spin representation of the Cooper
pair condensate. The totally antisymmetric rank-3 tensor εijk on the right-
hand side of Eq. (3.56) signi�es the fact that condensation occurs in the
color-antitriplet channel.

Color superconductivity of quarks is a much more natural phenomenon
than ordinary superconductivity of electrons in condensed matter. While
the primary interaction between electrons, photon exchange, is repulsive,
electronic superconductivity arises from a secondary attractive interaction,
phonon exchange. In quark matter, the primary interaction between quarks,
gluon exchange, is already attractive.

On the other hand, color superconductivity is also much more complex
than ordinary superconductivity. From a very qualitative point of view, in
comparison to the electrons, quarks carry additional quantum numbers such
as color and �avor. The Pauli principle requires that the wave function of a
Cooper pair has to be antisymmetric under the exchange of the two fermions
forming the pair. Consequently, the possible Dirac, color, and �avor rep-
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resentations of the two-fermion state have to be chosen in a way which
respects this antisymmetry. This requirement helps to classify all possible
color-superconducting condensates [408].

Let us discuss a few examples. Suppose the quark Cooper pairs have total
spin J = 0. A spin singlet [1]aJ is a totally antisymmetric representation of
the spin group SU(2)J . Consequently, the Cooper pair has to be in a totally
symmetric representation with respect to color and �avor space in order to
ful�ll the requirement of overall antisymmetry. If we assume the color repre-
sentation to be the (attractive and antisymmetric) color-antitriplet, we can
only choose an antisymmetric representation of the �avor symmetry group.

For Nf = 1 �avor, this is not possible, because there simply is no �avor
symmetry for a single quark �avor. Condensation in the spin-zero, color-
antitriplet channel thus does not occur and we either have to choose a rep-
resentation for higher spin, for instance the symmetric spin-one triplet [3]sJ ,
or the (symmetric, but repulsive) color-sextet representation [6]sc. At asymp-
totically large density, due to the above arguments only the former should
be considered a realistic possibility. In this case, the Dirac matrix Γ in Eq.
(3.56) carries a (spatial) Lorentz index α = x, y, z and the condensate is
Φij,α = εijkΦ

α
k . The order parameter for condensation, Φαk , can be viewed as

a 3×3 matrix in the combined space of color and orbital angular momentum.
This is similar to super�uid He-3, where the order parameter is a matrix in the
combined space of spin and orbital angular momentum [382]. Consequently,
like in super�uid He-3, depending on the detailed structure of the order pa-
rameter, many di�erent phases may arise. The one with the lowest free en-
ergy or, equivalently, the highest pressure is the so-called �color-spin-locking�
(CSL) phase, where Φαk ≡ δαkΦ. The original SU(3)c×SU(2)J×U(1)B symme-
try is broken to the diagonal subgroup SU(2)c+J . According to the Goldstone
theorem, the pattern of symmetry breaking leads to the appearance of nine
Goldstone bosons, eight of which are eaten by the gluons which become mas-
sive by the Anderson-Higgs mechanism [409, 410].

For Nf = 2 �avors, we can only choose the antisymmetric �avor singlet
[1]af of the SU(2)f �avor group, Φijfg = εijkΦk,fg = εijk εfgΦk. The order
parameter for condensation, Φk, has an anticolor index which, by a global
color rotation, can be oriented into the k = b̄ ≡ 3 direction. This means
that only quarks of colors i, j = r, g ≡ 1, 2 participate in forming Cooper
pairs, blue quarks remain unpaired. The associated color-superconducting
phase is termed �two-�avor superconducting� (2SC). Condensation breaks the
original SU(3)c × SU(2)f × U(1)B symmetry to SU(2)c × SU(2)f × Ũ(1)B .
The remaining SU(2)c symmetry resides in the color space of red and green
quarks participating in Cooper pairing. SU(2)f is not broken, as the order
parameter is a �avor singlet. A rotated baryon number symmetry formed
from generators of the original U(1)B and T8 from the color SU(3)c survives.
The pattern of symmetry breaking leads to three massless gluons (the gauge
bosons of the remaining SU(2)c symmetry) and �ve massive gluons.
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For Nf = 3 �avors, we have to choose the antisymmetric �avor-antitriplet
[3̄]af of SU(3)f and Φijfg = εijkΦk,fg = εijk εfg

hΦhk . The order parameter for
condensation, Φhk , can be viewed as a 3× 3 matrix in the combined space of
color and �avor. This is similar to super�uid He-3 and the CSL phase dis-
cussed above. Among the many possible phases the one with the highest pres-
sure is the so-called �color-�avor-locking�(CFL) phase [32], where Φhk ≡ δhkΦ.
The original SU(3)c × SU(3)f × U(1)B symmetry is broken to the diagonal
subgroup SU(3)c+f . Similarly to the CSL phase, but in contrast to the 2SC
phase, there is no residual (rotated) baryon number symmetry. Again, all
eight gluons will become massive due to the Anderson-Higgs mechanism. An
extended discussion of the order parameters and symmetry breaking patterns
in other color-superconducting phases can be found in Ref. [411].

As mentioned above, at asymptotically large densities, i.e., in weak cou-
pling, one can use resummation techniques based on perturbation theory and
power counting to compute the color-superconducting gap parameter and the
transition temperature to the normal-conducting phase in a controlled man-
ner. In the computation of these quantities, power counting is only slightly
modi�ed as compared to ordinary perturbation theory: terms are ordered ac-
cording to powers of gn lnm(µ/k0), where k0 is a typical energy scale relative

to the Fermi energy µ =
√
k2
F +m2

f (mf is the mass of quark �avor f , which

we can safely set to zero for asymptotically large densities). For energy scales
k0 ∼ µ, we have ln(µ/k0) ∼ 1, and terms are ordered according to powers
of g. However, for energy scales close to the Fermi surface, say, of order φ0,
we have on account of the weak-coupling result φ0 ∼ µ e−1/g, see Eq. (3.57)
below, that ln(µ/k0) ∼ 1/g � 1, so that large logarithms may compensate
powers of g and gn lnm(µ/k0) ∼ gn−m � gn. A more careful analysis [412]
shows that for φ0 < k0 < gµ terms can be sorted in powers of (k0/gµ)1/3,
possibly multiplied by powers of ln(µ/k0).

To subleading order in g, the result for the gap parameter at zero temper-
ature reads

φ0 = 512π4

(
2

Nfg2

)5/2

µ exp
(
− 3π2

√
2 g
− π2 + 4

8
− d− ζ

)
[1 +O(g)] .

(3.57)

Here, the leading term is the �rst term ∼ 1/g in the exponential. It arises from
almost static magnetic gluon exchange and was �rst computed by Son [385].
Subleading terms arise from static electric and nonstatic magnetic gluon ex-
change and determine the prefactor of the exponential [386�388]. Another
subleading term, the second term in the exponential, reduces the magnitude
by a factor exp[−(π2 + 4)/8] ∼ 1/6. It arises from the quark self-energy
[389�391]. The spin of the Cooper pair gives rise to a subleading correction
parametrized by a number d ∼ O(1). For condensation in the spin-zero chan-
nel, d = 0, while for the spin-one CSL phase we have d = 5, suppressing the
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Fig. 3.42 Left: The zero-temperature gap for the 2SC (solid black), the CFL (dashed
red), and the CSL phase (dash-dotted green) as a function of the quark chemical potential.
Right: The transition temperature as a function of the quark chemical potential. Solid
black curve: mean-�eld transition temperature Tc of the 2SC and CFL phases, dashed red
curve: �rst-order transition temperature T∗c for the CFL phase, dash-dotted green curve:
mean-�eld transition temperature for the CSL phase.

gap by a factor ∼ 1/150. Finally, ζ ∼ O(1) is determined by the eigenvalues
of the order parameter in Dirac-color-�avor space. For the 2SC phase, eζ = 1,
while for the CFL phase, eζ = 21/3. For more details and other phases, see
Refs. [411, 413].

In the left panel of Fig. 3.42, we show an extrapolation of the weak-coupling
result (3.57) to realistically large values of quark chemical potential µ. We
used the three-loop running formula for αS ≡ g2/(4π) [10] in order to �x the
value of g = g(µ/ΛQCD) at a given quark chemical potential. We included
Nf = 3 �avors in the running of αS , since at T = 0, only the three lightest
quark �avors are present for µ ≤ mc ∼ 1500 MeV. In order to obtain the
correct value of αS at the scale of the Z mass, we choose ΛQCD = 364 MeV.
The gap parameter is fairly constant in the range µ & 1 GeV and drops
rapidly when µ . 500 MeV. The reason for this suppression is the increase
of the coupling constant g at smaller densities and the associated decrease of
the prefactor g−5 of the exponential in Eq. (3.57). Note that the maximum
value for spin-zero gaps is of order 10 MeV; spin-one gaps (like the one for
the CSL phase) are smaller by about two orders of magnitude.

In weak coupling, one can also compute the transition temperature Tc
to the normal-conducting phase by means of resummation techniques and
power counting. In mean-�eld approximation, one obtains to subleading order
[391, 392]

Tc =
eγ

π
φ0 e

ζ ' 0.57φ0 e
ζ , (3.58)

where γ ' 0.577 is the Euler-Mascheroni constant. The factor eζ cancels
the factor e−ζ in the expression for the zero-temperature gap (3.57), so that
the transition temperature in physical units does not depend on the detailed
eigenvalue spectrum of the order parameter. Therefore, Tc assumes the same
value for the 2SC and the CFL phase, cf. right panel of Fig. 3.42.
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One can also go beyond the mean-�eld approximation by including gluon
�uctuations. These �uctuations drive the transition to �rst order [393�395].
Since all eight gluons become massive in the CFL phase, they �uctuate less
than in the normal-conducting phase. Therefore, the di�erence of the �uc-
tuation contributions in the CFL and normal-conducting phases is negative,
or in other words, the free energy of the CFL phase is lowered as compared
to that of the normal-conducting phase. This increases the temperature T ∗c
for the �rst-order transition between the CFL and normal phases. In weak
coupling one �nds [394]

T ∗c = Tc

[
1 +

π2

12
√

2
g +O(g2)

]
> Tc . (3.59)

In the right panel of Fig. 3.42 we show T ∗c for the CFL phase in comparison
to the mean-�eld transition temperature Tc given by Eq. (3.58). Also shown
is the (mean-�eld) transition temperature for the CSL phase. Note that the
increase in the critical temperature can be quite substantial, stabilizing color-
superconducting quark matter in a range of temperatures up to values ∼ φ0,
which is well above the canonical value 0.57φ0 for the mean-�eld transition
temperature of BCS theory. Due to the smallness of φ0, the absolute values
for T ∗c are only of order 10 MeV. However, if φ0 were of the order of 100 MeV,
like in Dyson-Schwinger calculations or phenomenological models for quark
matter (see next section), a value for T ∗c ∼ φ0 could have potential implica-
tions for the detection of color-superconducting quark matter in heavy-ion
collision experiments at FAIR energies.

At asymptotically large densities, i.e., in weak coupling, one can also an-
alytically compute the contribution of Cooper pairing to the pressure. To
leading order one obtains [414]

∆p =
µ2

4π2
φ2

0

∑
r

nrλr +O(φ4
0) , (3.60)

where the sum over r runs over all (di�erent) eigenvalues of the order param-
eter, λr is the rth eigenvalue and nr its degeneracy. This formula nicely shows
that the energetically most favored phase is, in principle, the one where as
many quark colors and �avors as possible participate in Cooper pairing and
where the gap parameter is as large as possible. (Modi�cations of this rule
may enter through the detailed eigenvalue spectrum of the order parameter.)
Thus, although the gap parameter in the 2SC phase is larger than the one
in the CFL phase by a factor eζ = 21/3, cf. Eq. (3.57), since only four quark
colors and �avors participate in pairing in the 2SC phase as compared to nine
in the CFL phase, the CFL phase is energetically favored. (Moreover, while
eight of the nine eigenvalues in the CFL phase have λ1 = 1, one has λ2 = 4,
leading to an additional large contribution to the pressure of the CFL phase.)
It can be shown that the CFL phase wins also over all other so-called inert
phases in three-�avor, spin-zero color-superconducting quark matter [415].
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3.5.2 Color superconductivity at intermediate densities

While the results obtained via weak-coupling methods at asymptotically large
densities are in principle exact order by order in powers of gn lnm(µ/k0), the
extrapolation of these results to realistic densities, where the QCD coupling
constant is large, is no longer well-controlled. At present, there are several
di�erent approaches to investigate the regime of intermediate densities. One
is the �brute-force� numerical solution of the Schwinger-Dyson equation for
the QCD gap function [396]. Including hard-dense-loop (HDL) resummed
gluon propagators and quark self-energies, this approach reproduces by con-
struction the subleading-order weak-coupling result (3.57) at asymptotically
large densities. However, also some (but not all) contributions beyond sub-
leading order are taken into account, which may be of sizable magnitude at
intermediate densities. Results for the gap parameter are shown in Fig. 3.43.

Note that the gaps from a numerical solution of the QCD gap equation are
about a factor of three larger than the weak-coupling result (3.57). The reason
is the following: at asymptotically large densities, the gap function is strongly
peaked at the Fermi surface (cf. discussion in Refs. [396, 406]). At this point,
the quark self-energy has a logarithmic singularity [416], suppressing the den-
sity of states and inducing non-Fermi-liquid behavior in normal-conducting
quark matter. In a color superconductor, on the other hand, the e�ect is a
suppression of the gap parameter by a factor exp[−(π2 + 4)/8] ∼ 1/6, see
Eq. (3.57). However, at intermediate densities the gap function is strongly
smeared around the Fermi surface [396, 406]. Then, the suppression of the
density of states around the Fermi surface induced by the quark self-energy
is less important, partially compensating the factor exp[−(π2 + 4)/8].
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Fig. 3.43 The zero-temperature gap as a function of the quark chemical potential, for the
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The numerical solution of the QCD gap equation leads to values for φ0

which are of order ∼ 70 MeV. As discussed in the previous section, gluonic
�uctuations may lead to transition temperatures T ∗c ∼ φ0. Then, the region
of color-superconducting quark matter extends to temperatures that could
potentially be explored in heavy-ion collisions at FAIR energies (see also
[417, 418] for even higher values of the gap).

Finally, note that the weak-coupling results in Fig. 3.43 di�er by some
factor of order O(1) from those shown in Fig. 3.42. The reason is a di�erent
choice for the running of αS with µ.

Another approach to obtain results for color-superconducting quark matter
at intermediate densities is the use of phenomenological NJL-type models.
In the following, we report on studies performed in the framework of such
models, for quark matter under the conditions of electric and color neutrality
as well as β�equilibrium. This case is of relevance for compact stellar objects
where quark matter is expected to occur if the core density is su�ciently
large. It is, however, not of immediate relevance for heavy-ion collisions where
there is no time to establish β�equilibrium and where the colliding ions are
not electrically neutral. Our presentation will therefore be somewhat cursory;
for more details see, e.g., the review [419].

At asymptotically large densities, we may neglect the quark masses com-
pared to the quark chemical potential. Then, all quark �avors and colors occur
in equal numbers and the system is automatically electrically and color neu-
tral, and in β�equilibrium. As the CFL phase involves pairing of all quark
colors and �avors, these conditions are maintained even in the paired state.
However, as one moves towards smaller densities, the strange quark mass can
no longer be neglected compared to the quark chemical potential. This, as
well as the conditions of color and electric neutrality, forces the Fermi surfaces
of quarks of di�erent �avor and color apart and thus creates a di�erence in
the numbers of the respective quarks. This exerts stress on the pairing mech-
anism. The system has a variety of choices to cope with this stress. In the
following, we brie�y list four alternatives extensively discussed in the liter-
ature. The possibility �nally realized in nature will be the one with lowest
free energy (highest pressure). An exhaustive comparison of the free energies
(pressures) of all choices listed below has not yet been done.

1. Crystalline color superconductivity [420�424]. The underlying mechanism
is analogous to the one suggested by Fulde and Ferrell [425] and, inde-
pendently, Larkin and Ovchinnikov [426] in the condensed-matter context
for a superconductor with magnetic impurities. Therefore, the associated
color-superconducting phase is often called FFLO (or LOFF) phase. The
idea is the following: the overlap between the Fermi surfaces which are
forced apart by the conditions of electric and color charge neutrality and
β�equilibrium can be re-established by shifting them relative to each
other by a �xed momentum q. The precise value of q is determined from
minimizing the condensation energy. Quarks which form Cooper pairs no
longer have equal and opposite momenta: Cooper pairs attain a non-zero
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momentum. This leads to a spatial modulation of the gap parameter in
the form of a plane wave, Φ(r;q) = Φ exp(2iq · r). Superimposing several
such plane waves one can build crystalline structures [421]. The one with
the lowest free energy is a candidate for the ground state in quark matter
at intermediate densities.

2. Deformed Fermi surface (DFS) super�uidity [427]. Instead of shifting the
Fermi surfaces like in the FFLO phase, one deforms them such that their
overlap is increased. A simple possibility is an elliptic deformation. For a
two-�avor system of up and down quarks, µd,u = µ̄

[
1± ε cos2 θ

]
, where

ε ≥ 0 is a parameter that provides a prolate (oblate) deformation for the
down (up) quark Fermi surface. For more details, see Ref. [427].

3. Mixed phase. In this case, quarks of that color and �avor with the smaller
Fermi surface pair up completely with those of the other quark species,
and the excess of the latter simply remains unpaired, i.e., forms a normal-
conducting phase. The phases separate, creating a phase mixture [428].
This situation might be realized if the surface tension between normal-
and superconducting phase is su�ciently small [429].

4. Gapless (breached pairing) superconductivity [403, 404, 430]. No extra
mechanism like a shift or deformation of the Fermi surfaces or a formation
of a mixed phase is invoked. We shall consider this case in somewhat more
detail in the following.

Consider the 2SC phase where red up-quarks pair with green down-quarks.
Electric neutrality forces the number of down-quarks (with an electric charge
-1/3) to increase relative to that of up-quarks in order to balance the larger
positive electric charge +2/3 of the latter. The resulting di�erence in par-
ticle numbers results in a mismatch of Fermi surfaces or, equivalently, in a
mismatch of chemical potentials, µdg,ur = µ̄ ± δµ, where µ̄ is the average
of the quark chemical potentials and δµ ≥ 0 half of their di�erence. The
quasiparticle dispersion relations in the superconducting phase are given by

ε±k =
√

(k − µ̄)2 + φ2 ± δµ . (3.61)

These are shown in Fig. 3.44. For δµ < φ, both excitation branches exhibit
a gap at the �common� Fermi surface µ̄ (left panel). However, once the mis-
match δµ increases beyond φ (right panel), the excitation branch ε−k �dips�
below zero, creating two �nodes� where the excitation of quasiparticles does
not cost any energy; therefore the name �gapless superconductivity�. The re-
gion between the nodes contains unpaired particles of the species with the
larger Fermi surface (in this case, green down-quarks). This inspired the no-
tion of �breached pairing superconductivity� [430]. The existence of gapless
superconductivity is known for quite a while [431]. However, without the ad-
ditional neutrality constraints, this state does not correspond to a minimum
of the free energy but to a maximum, and is thus unstable.

In the following, we show results obtained within NJL-type models to
study the phase structure of strongly interacting matter at intermediate den-
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Fig. 3.44 Quasiparticle dispersion relations given by Eq. (3.61) for δµ < φ (left panel)
and δµ > φ (right panel). Figure adapted from Ref. [404].

sities. In NJL-type models, the interaction strength between quark currents
is assumed to be constant; the strength between two quark-antiquark cur-
rents with scalar quantum numbers is denoted as GS , while that between
a diquark and an anti-diquark current with antitriplet quantum numbers in
both �avor and color space is denoted as GD. The latter interaction gives rise
to Cooper pairing and, thus, color superconductivity. Both types of interac-
tion are related by a Fierz transformation which yields GD = 3

4 GS [432].
However, since the model is of phenomenological nature, it is also possible
to study the in�uence of varying the value of GD. Several groups have an-
alyzed the thermodynamic properties of NJL-type models in the mean-�eld
approximation [397�402]. For the sake of brevity we only report results from
Ref. [401].

In Fig. 3.45 we show results for the phase diagram for the standard value
GD = 3

4 GS (left panel) and for the larger value GD = GS (right panel).
Let us �rst focus on the left panel and the region of small temperatures. At
large values of µ, quark matter is in the CFL phase. With decreasing µ, the
stress exerted on Cooper pairing by a non-zero strange quark mass and by
the conditions of electric and color neutrality increases. The CFL phase gives
way to the so-called gapless CFL (gCFL) phase. Here, as discussed above,
some quasiparticle excitation branches feature nodes. For even smaller values
of µ, the stress is too large to maintain Cooper pairs; we obtain a phase of
normal, i.e., unpaired, quark matter. This phase borders the phase where
chiral symmetry is spontaneously broken.

At non-zero temperature, a variety of other phases appears: next to the
gCFL phase we �nd the so-called uSC phase, i.e., a phase where up-quarks
pair with down- and with strange-quarks, but where down- and strange-
quarks do not pair with each other. There is also a gapless version of this
phase (guSC phase). At smaller values of µ, up-strange pairing is suppressed
and we obtain the 2SC phase where only up- and down-quarks pair with each
other. This phase is bordered by its gapless version (g2SC phase). At inter-
mediate values of µ and when increasing the temperature from zero, normal
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Fig. 3.45 The phase diagram of color and electrically neutral quark matter for GD =
0.75GS (left panel) andGD = GS (right panel), from Ref. [401]. µ denotes quark chemical
potential.

quark matter �rst gives way to the g2SC phase and is re-established at larger
temperatures. The curious fact of a color-superconducting region at inter-
mediate, but not at zero, temperature can be explained by the observation
that temperature smears out the Fermi surface and thus facilitates pairing
of fermions with di�erent Fermi surfaces. Eventually, though, increasing the
temperature will destroy the Cooper pairs, and the system again enters a
phase of normal quark matter.

When increasing the diquark coupling strength, the phase diagram looks
qualitatively similar in the sense that the same kind of phases appear, but
it di�ers quantitatively in the location of these phases. For GD = GS , we
observe in the right panel of Fig. 3.45 that the 2SC phase occupies a larger
region; it replaces the normal quark matter phase at intermediate values of µ
and small temperatures. Also, the regions of the gapless phases shrink in size.
The latter is naturally explained by the fact that a stronger diquark coupling
increases the value of the gap, such that it remains larger than the di�erence
in chemical potential required to neutralize the system. From Fig. 3.44 we
see that this e�ectively prevents the formation of nodes in the dispersion
relations.

It should be mentioned that the gapless phases are prone to so-called chro-
momagnetic instabilities [405, 433]. This means that, for decreasing values of
φ/δµ, the gluonic Meissner masses become imaginary. The (squared) Meissner
mass for gluons of adjoint color a is de�ned as m2

M,a = limω=0,p→0Π
ii
aa(ω,p),

where Πii
aa is the component of the gluon polarization tensor diagonal in color

a = 1, . . . , 8 and spatial indices i = x, y, z.
For the 2SC phase, the behaviour of the (squared) Meissner masses is

shown in the left panel of Fig. 3.46. For gluons of color a = 1, 2, 3, the Meiss-
ner masses must remain zero, since these are the gauge bosons of the residual
SU(2)c symmetry in the 2SC and also the g2SC phase. However, the gluons
corresponding to the broken generators of SU(3)c attain a mass. For small
values of the mismatch δµ, these are real, but become imaginary as δµ in-
creases relative to the gap. Gapless quark excitations appear when φ = δµ.
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Fig. 3.46 Left: The gluonic Meissner masses (squared) in units of the gluon mass pa-
rameter m2

g = g2µ̄2/(3π2) as a function of φ/δµ for the 2SC phase [405]. Full red line:
gluons of adjoint color a = 1, 2, 3, long-dashed green line: a = 4, 5, 6, 7, short-dashed blue
line: a = 8. Right: The phase diagram of dense quark matter. Regions where quark matter
is chromomagnetically unstable are labelled by the respective gluon �elds the Meissner
masses of which become imaginary [434].

At this point, the Meissner mass of the 8th gluon becomes imaginary. How-
ever, for gluons of colors 4 − 7, this happens even earlier, i.e., already in
the 2SC phase when φ =

√
2 δµ. This means that the presence of gapless

excitations is not a necessary condition for the appearance of the chromo-
magnetic instability. Vice versa, it is also not a su�cient condition: there can
be gapless excitations without inducing a chromomagnetic instability [435].
This leads to the question where in the phase diagram chromomagnetic in-
stabilities actually occur. This has been investigated in Refs. [436�439]. One
may summarize the results by stating that only the low-temperature regime
of gapless phases (or of phases close to gapless phases) are subject to the
chromomagnetic instability, cf. right panel of Fig. 3.46.

Nevertheless, the chromomagnetic instability poses a principle problem in
the sense that negative squared Meissner masses indicate that the system is
not in an absolute minimum of the free energy, i.e., not in the true ground
state. Candidates for the true ground state could be either one of the possi-
bilites 1.�3. discussed above, or some other phase, such as the at presently
intensely debated gluonic phase which resolves the chromomagnetic instabil-
ity of the 2SC phase [440]. In the gluonic phase, the spatial components of
gluon �elds corresponding to broken generators of SU(3)c condense, break-
ing the rotational symmetry and the residual SU(2)c gauge symmetry of the
system. The analogue of the gluonic phase for the three-�avor case has not
yet been studied, but it certainly bears a relationship to a phase with spon-
taneous creation of meson supercurrents suggested in Refs. [441, 442], which
was shown to resolve the chromomagnetic instability of the gCFL phase.
The true ground state of the system must be identi�ed by comparing the
free energies of all possible states. This is an ambitious project which has
up to date not been concluded. We mention in passing that a (not entirely
approximation-free) comparison of the free energies of the g2SC, FFLO, and
gluonic phase has been made in Ref. [443].
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3.5.3 Color superconductivity at low densities:
Bose-Einstein condensation of diquark molecules

As mentioned in the introductory section, in the low-density region where the
strong coupling constant becomes large, quark Cooper pairs shrink in size.
Once the size becomes of the order of the interparticle distance, one may
regard them as diquark molecules. Under certain conditions, these molecules
may undergo Bose-Einstein condensation (BEC). Note that the situation is
closely related to condensation of ultracold fermionic atoms intensely studied
in atomic physics [407]. There, the coupling strength can be varied experi-
mentally by tuning an external magnetic �eld through a Feshbach resonance.
Note that the density still has to be above the critical value for decon�ne-
ment; below that, any quark molecule must be colorless, which a diquark is
not.

Diquark molecules can be investigated in the framework of NJL-type mod-
els, but that requires to go beyond the mean-�eld approximation by including
correlations of the diquark �elds, see Refs. [444�447] for technical details. In
this way, one can study where diquark molecule exist in the (Tµ)�diagram,
where they dissociate, and under which conditions they possibly form a Bose-
Einstein condensate. In the following we report results from an independent
study [448] which comes to the same conclusion as Ref. [445].

In the left panel of Fig. 3.47 we show the phase diagram of quark matter for
the case GD = 3

4 GS . To get a feeling for the densities related to the relevant
quark chemical potentials we display in Fig. 3.48 for vanishing temperature
the relation between quark chemical potential and baryon density. Full lines
in the left panel of Fig. 3.47 show the phase boundaries of the 2SC and CFL
phases, respectively. The dashed lines labelled T 3

diss and T 1,2
diss show the

dissociation temperatures for diquark molecules made exclusively from light
quarks and from a light and a strange quark, respectively. The thin dotted
lines marked µ = M3 and µ = M1,2 show where the diquark mass equals
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the diquark chemical potential; to the left of these lines, BEC is possible,
provided one is in the superconducting phase. This condition is not ful�lled
for GD = 3

4 GS .
When increasing the diquark coupling strength, the picture changes, cf.

the right panel of Fig. 3.47 As expected, the region where quark matter is
a color superconductor becomes larger. Moreover, the curve where µ = M3

now extends into the 2SC phase. In the shaded region the conditions for the
formation of a Bose-Einstein condensate of light diquark molecules are ful-
�lled. Although the line µ = M1,2 also extends into the 2SC phase, there is no
condensate of qs diquarks, as one is not in the CFL phase. We conclude that
BEC of diquark molecules is possible only if the diquark coupling strength
becomes substantially larger than the standard value GD = 3

4 GS . Finally,
let us note that BEC of diquark molecules has also been studied in Refs.
[449, 450] in a simpler, e�ective �eld-theoretical description for the diquark
�elds. Further studies are certainly needed to clarify under which conditions
diquark molecules may undergo BEC and whether these conditions are met
in situations that can be explored in heavy-ion collisions or are of relevance
for the physics of compact stellar objects.

With this review of color superconducting phases we have �nished our
scan through the QCD phase diagram. In the next chapter we shall focus on
the transition region from hadronic matter to the quark-gluon plasma and
present several models designed to describe various aspects of this particular
part of the phase diagram of QCD.



Chapter 4

Model descriptions of strongly
interacting matter near decon�nement

In the present chapter various models are presented which were designed
to describe the region around the transition from hadronic to quark-gluon
matter.

4.1 Statistical model and particle production in
heavy-ion collisions

The Statistical Thermal Model is an alternative approach to dynamical trans-
port calculations to describe particle production yields in heavy-ion collisions
[451, 452]. (For a recent analysis see also [453, 454] and the Part �Observ-
ables and Predictions� of the present book.) The main assumption of thermal
models is that the �reball created in heavy-ion collisions is of thermal ori-
gin. At chemical freezeout one expects that particles are produced from a
thermal source that is characterized by its volume and temperature. In ad-
dition this �reball is constrained by the conservation laws of all relevant
quantum numbers that are carried by hadrons. In nucleus-nucleus collisions
one needs to implement the conservation of baryon number, electric charge
and strangeness. One also assumes that with respect to conservation laws the
collision �reball appears at, or very near, chemical equilibrium.

In statistical physics the conservation laws can be implemented in the
grand canonical or canonical ensemble [451]. From the model comparison
with experimental data obtained in heavy-ion collisions it will be clear that
the electric charge and baryon number conservation can be included on the
grand canonical level where they are controlled in the statistical operator
through the corresponding chemical potentials [451, 452]. Strangeness con-
servation must be, however, introduced exactly within the canonical ensemble
[451]. This is particularly the case if one considers strangeness production in
heavy-ion collisions at SIS up to AGS energies [455, 456]. There, strange par-
ticles and antiparticles are very rarely produced and are strongly correlated

195
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to preserve strangeness conservation. Consequently, the thermal phase space
available for strangeness production is suppressed [451, 455�464]. This sup-
pression is e�ectively described by the exact strangeness conservation through
the canonical formulation of the partition function [451].

In the following we will summarize the basic concepts in the formulation
of the Statistical Thermal Model with strangeness conservation implemented
in the grand canonical and canonical ensemble. Then, we will discuss a model
comparison with experimental data for particle production yields in heavy-
ion collisions in a broad energy range from SIS up to RHIC. We will show the
systematics in the energy dependence of the model parameters and discuss
the properties of di�erent particle excitation functions. It will turn out that
the Statistical Thermal Model provides an excellent description of particle
production in heavy-ion collisions.

4.1.1 Statistical approach � grand canonical formalism

In the Statistical Thermal Model the basic quantity that describes thermo-
dynamic properties of a medium is the partition function Z(T, V ). In the
Grand Canonical (GC) ensemble

ZGC(T, V, µQ) = Tr[e−β(H−
P
i µQiQi)] , (4.1)

where H is the Hamiltonian of the system, Qi are the conserved charges and
µQi are the chemical potentials that are introduced to guarantee conservation
of all charges in a system. Finally β = 1/T is the inverse temperature.

In the application of the Statistical Thermal Model to particle production
in heavy-ion collisions the Hamiltonian is taken such as to describe a non-
interacting hadron resonance gas. In this case H is just the sum of kinetic
energies of relativistic Fermi and Bose particles of mass mi. The main moti-
vation of using such a Hamiltonian is that it contains all relevant degrees of
freedom of the con�ned phase of strongly interacting matter and implicitly
includes interactions that result in resonance formation [457]. In high den-
sity medium a possible repulsion between hadrons is modelled as the Van
der Waals�type interaction. Details of such implementation can be found in
[465, 466].

In a strongly interacting medium, one includes the conservation of electric
charge, baryon number and strangeness. The GC partition function (4.1) of
a hadron resonance gas can then be written as the sum of partition functions
lnZi of all known hadrons and resonances

lnZ(T, V,µ) =
∑
i

lnZi(T, V,µ) , (4.2)
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where εi =
√
p2 +m2

i and µ = (µb, µS , µQ) with the chemical potentials µi
related to baryon number, strangeness and electric charge, respectively.

For particle i of strangeness Si, baryon number Bi, electric charge Qi and
spin�isospin degeneracy factor gi, one gets for a single-particle contribution

lnZi(T, V,µ) =
V gi
2π2

∫ ∞

0

±p2dp ln[1± λi exp(−βεi)] , (4.3)

with (+) for fermions, (−) for bosons and fugacity

λi(T,µ) = exp(
Biµb + SiµS +QiµQ

T
) . (4.4)

Expanding the logarithm and performing the momentum integration in Eq.
(4.3) we obtain

lnZi(T, V,µ) =
V Tgi
2π2

∞∑
k=1

(±1)k+1

k2
λkim

2
iK2(

kmi

T
) , (4.5)

where K2 is the modi�ed Bessel function and the upper sign is for bosons and
lower for fermions. The �rst term in Eq. (4.5) corresponds to the Boltzmann
approximation. The density of particle i is given by

ni(T,µ) =
〈Ni〉
V

=
Tgi
2π2

∞∑
k=1

(±1)k+1

k
λkim

2
iK2(

kmi

T
) . (4.6)

The partition function (4.2) together with (4.3) is the basic quantity that
describes thermodynamic properties of a �reball composed of hadrons and
resonances being in thermal and chemical equilibrium. In view of further
application of this statistical operator to particle productions in heavy-ion
collisions it is of particular importance to account for resonance contributions
through the decays into lighter particles. The average number 〈Ni〉 of particles
i in volume V and temperature T , that carries strangeness Si, baryon number
Bi, and electric charge Qi, is obtained from Eq. (4.2) as

〈Ni〉(T,µ) = 〈Ni〉th(T,µ) +
∑

j
Γj→i〈Nj〉th,R(T,µ) (4.7)

where the �rst term is the thermal average number of particle i and the second
term describes overall resonance contributions to the particle multiplicity of
species i. This term is taken as a sum of all resonances that decay into particle
i. The Γj→i is the corresponding decay branching ratio of j → i. The thermal
yields of particles 〈Ni〉th and resonances 〈Ni〉th,R in Eq. (4.7) are obtained
from Eq. (4.6).

In the high-density regime, that is for large T and/or µb, the repulsive
interactions of hadrons should be included in the partition function (4.2).
To incorporate the repulsion at short distances one usually uses a hard-core
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description by implementing excluded-volume corrections. In a thermody-
namically consistent approach [465, 466] these corrections lead to a shift of
the baryo-chemical potential. The repulsive interactions are particularly im-
portant when discussing observables of density type. Particle density ratios,
however, are only weakly a�ected by these repulsive corrections.

At lower energies, in practice for T < 100 MeV, also the widths of the
resonances have to be included [451] in Eq. (4.7). Assuming the Boltzmann
statistics and the Breit-Wigner resonance distribution one replaces the par-
tition function in equation (4.5) by

lnZR = N
V dR
2π2

T exp[(BRµb +QRµQ + SRµS)/T ]∫ smax

smin

ds sK2(
√
s/T )

1
π

mRΓR
(s−m2

R)2 +m2
RΓ

2
R

, (4.8)

where smin is chosen to be the threshold value for the resonance decay and√
smax ∼ mR+2ΓR. The normalization constant N is adjusted such that the

integral over the Breit-Wigner factor gives 1.
The partition function (4.2) depends in general on �ve parameters. How-

ever, only three are independent, since the isospin asymmetry in the initial
state �xes the charge chemical potential and the strangeness neutrality con-
dition eliminates the strange chemical potential. Thus, in the GC formulation
of charge conservation and on the level of particle multiplicity ratios we are
only left with temperature T and baryo-chemical potential µb as independent
parameters.

4.1.2 Canonical formulation of strangeness conservation

If in the collision �reball the number of strange�antistrange particle pairs is
small, then the implementation of strangeness conservation in the statistical
operator has to be done exactly, implying the use of the canonical ensemble.

The canonical partition function of a hadron resonance gas in a thermal
system with total strangeness S is obtained by the projection method [451]
from the generating function

ZS =
1
2π

∫ 2π

0

dφe−iSφZ̃(T, V, φ) . (4.9)

The generating function Z̃ is connected with the grand canonical partition
function (GC) through the Wick rotation of the strange chemical potential
[451]

Z̃(T, V, µb, µQ, φ) := ZGC(T, V, µb, µQ, eµS/T → eiφ) (4.10)
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For the sake of simplicity, we use the classical statistics, i.e. we assume a tem-
perature and density regime where all particles can be treated using Boltz-
mann statistics. In this case

1
V

lnZGC =
∑
k

Z1
k exp(SkµS) (4.11)

with the one-particle partition function

Z1
k =

gk
2π2

m2
k T K2(mk/T ) exp(Bkµb +QkµQ) (4.12)

where the sum in Eq. (4.11) is taken over all particles and resonances of mass
mk, spin-isospin degeneracy factor gk, baryon number Bk, electric charge Qk
and strangeness Sk.

The partition function (4.10) together with (4.11) describes the thermody-
namic properties of the hadron resonance gas with strangeness conservation
implemented exactly in the canonical ensemble. To calculate the density nk
of particle species k from this partition function is quite straightforward. It
amounts to the replacement

Z1
k 7→ λk Z

1
k (4.13)

of the corresponding one-particle partition function in the equation (4.11)
and taking the derivative with respect to the particle fugacity λk as

nCk := λk
∂

∂λk
lnZS(λk)

∣∣∣∣
λk=1

. (4.14)

The integral representation of the partition function (4.9) is not convenient
for the numerical analysis as the integrand is a strongly oscillating function.
It was shown, however, that the integration in Eq. (4.9) can be done exactly
leading to the following result for the partition function [467]

ZCS=0 = eS0

∞∑
n=−∞

∞∑
p=−∞

ap3a
n
2a

−2n−3p
1 In(x2)Ip(x3)I−2n−3p(x1) , (4.15)

where

ai =
√
Si/S−i , xi = 2V

√
SiS−i , (4.16)

and Si is the sum of all Z1
k partition functions (4.12) for particle species

k carrying strangeness Sk = i. The In(x) in (4.15) are the modi�ed Bessel
functions. The resulting particle densities ni are obtained from Eqs. (4.14)
and (4.15). For a particle k having the strangeness s
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nsk =
Z1
k

ZCS=0

∞∑
n=−∞

∞∑
p=−∞

ap3a
n
2a

−2n−3p−s
1 In(x2)Ip(x3)I−2n−3p−s(x1) . (4.17)

In the canonical formulation of strangeness conservation the density of
strange particles is explicitly volume dependent through the arguments xi
of the Bessel functions in Eq. (4.17). In the application of Eq. (4.17) to the
description of particle production in heavy-ion collisions this volume param-
eter was interpreted as the strangeness correlation volume which depends on
the number of participants [461�464]. For large V and for high enough tem-
perature such that all xi � 1 the canonical result (4.17) is converging to its
GC value where strangeness conservation is controlled by the corresponding
chemical potential [451]. Obviously, in the GC limit particle densities are not
any more dependent on the volume parameter. In heavy-ion collisions the GC
approximation was found to be adequate for energies beyond AGS [451]. For
lower collision energies, in particular for SIS, the suppression due to canon-
ical e�ects can even exceed an order of magnitude for the yields of S = ±1
strange particles.

The Statistical Thermal Model, outlined above, was applied to describe
particle yields in heavy ion collisions. The model was compared with all
available experimental data obtained in the energy range from SIS up to
LHC energy. Hadron multiplicities ranging from pions to omega baryons and
their ratios were used to verify that there is a set of thermal parameters
(T, µb) which simultaneously reproduces all measured yields. In the following
section we present the most recent analysis of particle production in central
nucleus�nucleus collisions at SIS, AGS, SPS and RHIC energies.

4.1.3 Model description of experimental data

The Statistical Thermal Model is a unique tool in the attempt to quantify
from the experimental point of view the features of the phase diagram of
hadronic matter [468, 469]. An analysis of the energy dependence of the
thermal parameters extracted from �ts of the experimental data [470�473],
temperature (T ) and baryo-chemical potential (µb), established the "line of
chemical freeze-out" [474]. These data were subsequently interpreted in terms
of an universal condition for chemical freeze-out [475, 476].

The values of T and µb obtained from the most comprehensive thermal �ts
of the experimental data [452, 453] are shown in a phase diagram of hadronic
and quark-gluon matter in Fig. 4.1. Full points are from �ts of yields at midra-
pidity, open points are from �ts of 4π yields. An important observation about
the phase diagram is that, for beam energies larger than 30-40 AGeV, the
thermal parameters are in the vicinity of the phase boundary as calculated
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using lattice QCD (LQCD) [190]. However, it is important to notice that the
critical temperature at µb=0 from LQCD calculations is presently subject to
serious disagreements between various approaches [186, 187]. The disagree-
ment in the quoted values of 151 and 192 MeV [186, 187] is well beyond the
overall errors of the calculations (see also the discussion in Sec. 3.2).
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Fig. 4.1 The phase diagram of hadronic and quark-gluon matter in the T -µb plane. The
experimental values for the chemical freeze-out are shown together with results of lattice
QCD calculations [190]. The predicted [190] critical point is marked by the open triangle.
Also included are calculations of freeze-out curves for a hadron gas at constant energy
density (ε=500 MeV/fm3) and at constant total baryon density (nb=0.12 fm−3). The full
triangle indicates the location of ground state nuclear matter (atomic nuclei).

Based on the LQCD results of Fodor and Katz [190] shown in Fig. 4.1,
the experimental freeze-out points are located in the vicinity of the critical
point [468]. It was pointed out recently [469] that the existence of a critical
point for µb < 500 MeV requires a �ne tuning of the (light) quarks masses
within 5%. However, it is important to recognize that serious open problems
of LQCD [469] need to be solved before one could address quantitatively
such a delicate possibility. Nevertheless, it is interesting to speculate whether
the deviations from the thermal model (including rather poor-quality �ts)
which we have encountered for the SPS energies are a hint for the critical
point. It is expected that, in the (broad) vicinity of the critical (end)point the
thermal model would not work [477, 478]. Thermal �ts including �uctuations
have been already performed [479]. Unfortunately, the present experimental
situation, namely the level of disagreement between data, does not allow any
�rm conclusion on the interesting issue of the critical point.
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Also included in Fig. 4.1 are calculations of freeze-out curves for a hadron
gas at constant energy density (ε = 500 MeV/fm3) and at constant total
baryon density (nb = 0.12 fm−3) [480, 481]. The freeze-out points which are
departing from the LQCD phase boundary are approximately described by
the curve of a hadron gas at constant baryon density. An earlier proposed
freeze-out criterion corresponds to an average energy per average number of
hadrons of approximately 1 GeV [475, 476]. A comparison of various freeze-
out criteria was recently done in [482], which showed that all are identical
except for large and small µb values. All are smooth curves and consequently
not consistent with the new results presented here, which exhibit a rather
steep trend at intermediate µb values. However, the errors need to be im-
proved before one can con�dently rule out any (smooth) universal freeze-out
criterion. An exciting possibility is that the rather abrupt turn-over in the
freeze-out points near µb=400 MeV is caused by the approach to the QCD
phase boundary.

The underlying assumption of the thermal model used to extract the (T ,µb)
values is equilibrium at chemical freeze-out. A natural question then is how
the equilibrium is achieved? The answer obviously cannot come from within
the framework of the thermal model. It has been argued that the QGP
itself and the "deus ex machina" of phase space �lling during hadroniza-
tion are playing the crucial roles in achieving thermalization in high-energy
nucleus-nucleus collisions [483]. More recently it was demonstrated that pass-
ing through the phase transition leads to multiparticle scattering of Goldstone
bosons which drives even (multi)strange baryons rapidly into equilibration
[484], providing a natural explanation for the observation that the chemical
freeze-out line reaches the phase boundary for small values of µb. The situa-
tion is less well understood for µb > 400 MeV and needs further investigation.

In Fig. 4.2 we show the energy dependence of T and µb values from the
thermal �ts of various groups [452, 455, 456, 479, 485�487]. The temperature
T exhibits a sharp rise up to

√
sNN ' 7-8 GeV, while µb sharply decreases all

the way up to RHIC energies. In general, all results agree, with one notable
exception, the results of Letessier and Rafelski [487]. The observed di�erence
may arise from the usage in their work of seven free parameters, including,
besides strangeness fugacity and suppression factor (γS), a light-quark oc-
cupancy factor (γq) and an isospin fugacity. The non-monotonic change in
γq and γS as a function of energy determines the temperature extracted in
[487]. To alleviate the poor quality of the �ts at SPS energies, the model of
Dumitru et al. [479], introducing an inhomogeneous freeze-out scenario, goes
beyond other thermal models.

We have parametrized the results from the �ts of mid-rapidity data [453]
as a function of

√
sNN (in GeV) with the following expressions:

T [MeV] = Tlim
1

1 + exp(2.60− ln(
√
sNN (GeV))/0.45)

, (4.18)
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Fig. 4.2 The energy dependence of temperature and baryo-chemical potential. The lines
are parametrizations for T and µb (see text).

µb[MeV] =
a

1 + b
√
sNN (GeV)

, (4.19)

where Tlim = 164 ± 4 MeV and the parameters a = 1307±120 MeV and
b = 0.288±0.049 GeV−1 are the results of a �t (χ2/Ndf=0.48/8). The µb
parametrization is the one proposed in [467], but with di�erent parameters
to better �t the newly obtained µb values [452].

We now brie�y turn to another interesting parameter which is (either im-
plicitly or explicitly) determined in the course of thermal-model analyses.
The volume at chemical freeze-out (corresponding to a slice of one unit of
rapidity, dV/dy) is shown in Fig. 4.3 as a function of energy. The values ex-
tracted directly from the �ts of particle yields are compared to the values
obtained by dividing measured charged particle yields with calculated den-
sities (based on the above parametrization of T and µb; note that for the
AGS energies of 2-8 AGeV the values of T corresponding to the upper limit
of the systematic error were used instead). As expected, the two methods
give identical results, with the exception of a small discrepancy for the lowest
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energies. The chemical freeze-out volume is compared to the kinetic freeze-
out volume extracted from Hanbury Brown and Twiss (HBT) measurements,
VHBT [488, 489]. While the bias towards unphysically large volumes seen at
the energies of 2-8 AGeV is not completely understood, it is clear that the
volume at kinetic freeze-out should not be exceeded. It appears that the
volume at chemical freeze-out does exhibit a similar non-monotonic behavior
[490] as the volume at kinetic freeze-out, a remarkable result considering that
the latter is determined by a completely di�erent procedure. A minimum is
observed around

√
sNN ' 6 GeV, followed by a logarithmic increase as a

function of
√
sNN .

Using the parametrizations of the chemical freeze-out parameters derived
from the �ts of experimental data at mid-rapidity, Eq. (4.18), (4.19), we
calculate the energy dependence of various hadron ratios. No contribution
from weak decay feed-down is included in the model calculations as well as in
the data. Within the smoothing hypothesis implied by the parametrizations,
the model has interpolative and extrapolative predictive power.

The comparison of the measured and calculated excitation functions for
hadron abundances with respect to pions is shown in Fig. 4.4. The ratios
shown in Fig. 4.4 re�ect the evolution of the �reball composition at freeze-
out as a function of energy. The steep decrease of the p/π+ ratio directly
re�ects the decrease as a function of energy of stopping of the incoming pro-
tons, implying a decrease of µb. The increase of pion production also plays
a role in this ratio. Beyond

√
sNN '100 GeV, the �attening is a conse-

quence of the dominance of newly created baryons. The steep variation of
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the K+/π+ and K−/π− ratios at the lowest energies re�ects the threshold
for strangeness production, determined in the model by the steep increase of
the temperature. The canonical suppression plays an important role as well.
While the ratio K−/π− shows a monotonic increase with energy, followed by
a saturation, essentially determined by the temperature (as both particles are
newly created), the ratio K+/π+ shows a characteristic broad peak around√
sNN '8 GeV, which is much discussed as a signature for the onset of QGP

[491�493]. Recently, as a consequence of a more complete mass spectrum em-
ployed in the model calculations, the agreement between the data and model
was substantially improved [453], as seen in Fig. 4.4. As the K+ contains
a u valence quark, which may come from the initial nucleons, its yield is
the convolution of two competing contributions as a function of energy: i)
the decreasing net light quark content and ii) the increasing production of
quark-antiquark pairs. The peak in the K+/π+ ratio occurs naturally in the
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thermal model [467, 494], but is broader and has to be seen in the context
of other strange-hadron yields [494] (right panel of Fig. 4.4). It appears that,
at the SPS energies of 80 and 158 AGeV, the yields of kaons and protons
relative to pions are systematically below the thermal model predictions.

The energy dependence of the relative hyperon yields, Λ/π−, Ξ−/π− and
Ω−/π−, shown in the right panel of Fig. 4.4, reveals the presence of charac-
teristic peak structures, already noted in [467]. Their strength and location
follows a mass hierarchy, recently discussed by Cleymans et al. [494]. The
peaks are less pronounced and located at larger energies (

√
sNN ' 5, 10 and

20 GeV) the more massive the hyperon species. This results from an interplay
between the baryo-chemical potential (presence of the light quarks from the
initial nucleons) and temperature. The agreement between the model and the
data is good at AGS and RHIC energies, while at SPS the situation is more
complex.
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Fig. 4.5 Energy dependence of strangeness to entropy ratio (see text).

A more global way to represent the ratio of strange to non-strange hadrons
is the strangeness (σ) to entropy (S) ratio. Its excitation function is presented
in Fig. 4.5. We adopt an experiment-oriented construction of the two quan-
tities [452], which we consistently employ for the model as well, calculated
from the yields at mid-rapidity as:

σ = 2× (K+ +K−)+1.54× (Λ+ Λ̄), S = 1.5× (π+ +π−)+2× p̄ . (4.20)

The strangeness has in principle to be complemented with the yields of
φ, Ξ and Ω (and Ξ̄ and Ω̄), but, since the measurements for these yields
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are scarce (as seen in Fig. 4.4), we have chosen to leave them out for the
strangeness count. The ratio strangeness/entropy is well reproduced by the
model, with the exception of the data at SPS, where the NA49 data exhibit a
sharper peak than predicted by the model. This feature is not supported by
the NA57 and NA44 combined data, which are in agreement with the model.

The parametrizations of T and µb as a function of energy allow to assess
and understand trends visible in the experimental data. In particular, we
have discussed for the yields of strange and multi-strange hadrons relative
to pions the resulting non-monotonic energy dependence, where the thermal
model describes the main features observed in the data, but not the details.
It has been pointed out within a thermal-model analysis that scanning the
energy one encounters a transition from baryon- to meson-dominated freeze-
out [494], with its associated �ngerprint on the characteristics of hadron
yields, also evidenced earlier [467]. This transition, as manifested in the peaks
observed in Figs. 4.4 and 4.5, appears to take place in the energy range of
the CBM experiment.

4.2 Hadronic resonances � important degrees of
freedom below decon�nement

In Sec. 3.2 the lattice gauge theory (LGT) approach was shown to be a pow-
erful method to describe thermodynamics of QCD at �nite temperature and
density. It is today the only approach that can give quantitative information
on the phase structure and the critical properties of the QCD medium in a
broad range of thermal parameters. The LGT results are also the basis for
modelling the QCD thermodynamics.

There are approaches to understand the thermodynamics of strongly in-
teracting matter in terms of low energy e�ective theories, i.e. chiral pertur-
bation theory and e�ective chiral models (see Secs. 2.1, 4.5). The strength
of these approaches is that they incorporate the correct symmetries of the
QCD Lagrangian and thus have a chance to predict the universal properties,
e.g. the order of the phase transition or the value of the critical exponents,
in the chiral limit of QCD. They, however, generally ignore the contributions
of heavier resonances to the QCD thermodynamics which might be crucial
to quantify the equation of state in con�ned phase of QCD.

Recently, progress has been made to develop and link an improved per-
turbation theory of QCD with lattice data on the equation of state in the
decon�ned phase (see Sec. 3.1). In addition di�erent phenomenological mod-
els have been proposed to describe thermodynamics of QGP on the basis of
actual LGT �ndings (see Sec. 4.3).

In this section we discuss in how far the equation of state obtained on
the lattice and restricted to con�ned phase can be understood within hadron
resonance gas thermodynamics. In this context we �rst formulate the hadron
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resonance gas model with particular emphases to �uctuations of conserved
charges. We will then compare the model predictions [107, 185, 197, 495] with
lattice results [130, 138, 156] on the equation of state and di�erent suscepti-
bilities obtained at �nite chemical potential. We show that the LGT results
are quite well consistent with the hadron resonance gas model expectations.

4.2.1 Charge density �uctuations in a hadronic medium

To describe thermodynamic properties and thermal �uctuations related with
conserved charges in hadronic medium at �nite chemical potential we apply
the partition function of hadron resonance gas (HRG).

At �nite quark chemical potential the HRG-pressure P is expressed as the
sum of all known mesons and baryons

P (T, µu, µd) = PM (T, µu, µd) + PB(T, µu, µd) (4.21)

where µu and µd are the up and down quark chemical potentials.
Introducing the quark number µq and isovector µI chemical potentials

µq =
µu + µd

2
, µI =

µu − µd
2

(4.22)

the contribution of mesons, baryons and their resonances in Eq. (4.21) is ob-
tained in the compact form. For the Boltzmann thermal particle momentum
distribution

PM (T, µI)
T 4

=
∑
i

F (T,mi) cosh
2I(3)
i µI
T

(4.23)

where the sum is taken over all non-strange mesons1 with I
(3)
i being the

third component of the isospin of the species i. Neglecting the mass di�er-
ence among isospin partners the meson contribution is due to isosinglet G(1)

(I(3)
i = 0) and isotriplet G(3) (I(3)

i = ±1) mesons. Thus,

PM (T, µI)
T 4

= G(1)(T ) +
1
3
G(3)(2 cosh(

2µI
T

) + 1). (4.24)

For non-strange baryons and their resonances

1 We have neglected the contribution of strange particles to hadronic pressure. This should
be considered as an approximation of the two �avor QCD thermodynamics in a con�ned
phase.
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PB(T, µq, µI)
T 4

=
∑
i

F (T,mi) cosh
3µq + 2I(3)

i µI
T

. (4.25)

The above pressure gets the contributions from isodublet F (2) ( I(3)
i = ±1/2)

and isoquartet F (4) (I(3)
i = (±1/2,±3/2)) baryons. Therefore the total bary-

onic pressure

PB(T, µI)
T 4

= F (2) cosh(
3µq
T

) cosh(
µI
T

)

+
1
2
F (4) cosh(

3µq
T

)[cosh(
µI
T

) + cosh(
3µI
T

)]. (4.26)

The function F (T,mi) in Eqs. (4.23�4.26) describes the thermal occupancy
of particles of mass mi and spin degeneracy factor di

F (T,mi) =
di
π2

(
mi

T
)2K2(

mi

T
) . (4.27)

The �uctuations of the globally conserved charges can be expressed
through derivative of pressure with respect to the associated chemical po-
tentials. In particular, the quark number χq, the isovector χI , and the elec-
tric charge χC susceptibilities, related with the baryon number, isospin and
charge conservation are obtained from

χq ≡
∂2P

∂µ2
q

, χI ≡
∂2P

∂µ2
I

, χC =
1
36
χq +

1
4
χI +

1
6

∂2P

∂µq∂µI
. (4.28)

In the con�ned phase of QCD and with a particular form of the HRG
pressure (4.21) one �nds

χq
T 2

=
∑

i∈baryons

9F (T,mi) cosh
3µq
T

= 9(F (2) + F (4)) cosh
3µq
T
, (4.29)

and

χI
T 2

=
∑

i∈mesons
(2I(3)

i )2F (T,mi) +
∑

i∈baryons

(2I(3)
i )2F (T,mi) cosh(3µq/T )

=
8
3
G(3) + (F (2) + 5F (4)) cosh

3µq
T

(4.30)

The Eqs. (4.29) and (4.30) are valid for the isospin symmetric system.
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4.2.2 Charge density �uctuations in lattice gauge theory

The QCD thermodynamics and charge �uctuations have been recently cal-
culated on the lattice in 2-�avor QCD at �nite temperature and chemical
potential. The essential progress in the recent lattice simulations [138] was
due to �rst result on the sixth order coe�cient in the Taylor expansion in
terms of the quark chemical potential of thermodynamic pressure and di�er-
ent susceptibilities.

The lattice Monte-Carlo simulations of two-�avor QCD provided results
for the net baryonic pressure ∆P (T, µq) ≡ P (T, µq) − P (T, µq = 0) up to
order O((µq/T )6)) (cf. (3.28)):

∆p(T, µq)
T 4

'
n=3∑
n=1

c2n(T )
(µq
T

)2n

. (4.31)

The basic observables characterizing baryonic contribution to QCD thermo-
dynamics are the net quark density nq and susceptibility χq. These are ob-
tained as the �rst and the second order derivatives of a pressure with respect
to the quark chemical potential µq. For the isospin symmetric system

nq
T 3

=
∂ ∆P (T, µq)/T 4

∂ µq/T
' 2 c2(T )

(µq
T

)
+ 4 c4(T )

(µq
T

)3

+ 6 c6(T )
(µq
T

)5

,

(4.32)
χq
T 2

=
∂2 ∆p(T, µq)/T 4

∂ (µq/T )2
' 2 c2(T ) + 12 c4(T )

(µq
T

)2

+ 30 c6(T )
(µq
T

)4

.

The coe�cients ci(T ) in the Taylor expansion (4.31,4.32), calculated
through the Monte�Carlo simulations of 2��avor QCD [130, 138, 156], deter-
mine entirely the (T, µq)�dependence of baryonic observables in a medium.

4.2.3 Lattice gauge theory results and hadron resonance
gas predictions

The lattice results (4.31-4.32) restricted to con�ned phase of QCD can be
directly compared with the predictions of the hadron resonance gas model.
However, such comparisons require particular care since the LGT calcula-
tions are usually performed with have quarks that leads to modi�cation of
hadronic mass spectrum. In addition the LGT results are not free from �nite
size e�ects. In order to avoid any ambiguity on models dependence describing
the above required modi�cations of the hadronic spectrum we restrict our dis-
cussion to test only particular features of the resonance gas thermodynamics
with the recent LGT results.
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First, as seen from Eqs. (4.21) and (4.25) there is a factorization of T and
(µq/T ) dependence in the thermodynamic pressure and associated baryonic
observables nq and χq. Thus, in the resonance gas model any ratios of these
observables, calculated at �xed quark chemical potential (µq/T ), should be
independent of temperature [185, 495]. This property of the HRG-model is
shown in Fig. 4.6 for two ratios; the net quark density to net quark �uctua-
tions (nq/µqχq) and for the e�ective baryonic pressure per quark �uctuations
(∆P/T 2χq). The results for these ratios are illustrated in Fig. 4.6 for two val-
ues of µq/T = 0.4 and 0.8 respectively.

Second, the (µq/T )-dependence in the HRG-model is described by the
(cosh)-function. Thus, performing the Taylor expansion of the pressure (4.25)
in (µq/T ) at µI = 0,
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∆P (T, µq, µI = 0)
T 4

'
∑
i

F (T,mi)
(

9
2

(µq
T

)2

+
81
4!

(µq
T

)4

+
36

6!

(µq
T

)6
)
, (4.33)

one gets the predictions on the values of the coe�cients ci in (4.32) from the
HRG-model

c2(T ) =
9
2
FB(T ) , c4 =

81
4!
FB(T ) , c6 =

36

6!
FB(T ) (4.34)

where from Eqs. (4.26) and (4.33), FB(T ) = F (2) + F (4).
In Fig. 4.7, left we show the ratios c4/c2 and c6/c4 obtained on the lattice

in 2��avour QCD and the corresponding results of the HRG�model from
Eq. (4.34): c4/c2 = 3/4 and c6/c4 = 0.3. The temperature dependence of
the Taylor coe�cients in Eqs. (4.33) and (4.34 is controlled by a common
function. Thus, in HRG�model, the ratios of di�erent ci are independent of
T . The lattice results for T < Tc are, within statistical errors, consistent with
HRG model prediction. Clear deviations seen at T ' Tc are to be expected
as at the critical temperature decon�nement releases the color degrees of
freedom which are obviously not present in the statistical operator of hadron
resonance gas.

An interesting physical observable that characterizes thermal �uctuations
related with isospin conservation is the isovector susceptibility χI (4.28).
Recently, χI was calculated on the lattice in 2��avor QCD both for net�
baryon free system [130] as well as for �nite baryon number density [138]
using the Taylor expansion approach in µq. The Taylor series of χI were
calculated up to O(µ4

q) order

χI
T 2
|µI=0 ' 2 cI2(T ) + 12 cI4(T )

(µq
T

)2

+ 30 cI6(T )
(µq
T

)4

. (4.35)

The isovector, contrary to the baryon number susceptibility, is not di-
rectly obtained as derivative of pressure (4.31). Thus, in lattice Monte�Carlo
calculations the coe�cients in the Taylor expansion in Eq. (4.35) are not
necessarily related with those appearing in Eq. (4.31). There is also a con-
tribution of mesonic degrees of freedom to the isovector susceptibility which
explicitly is not there in the baryon susceptibility. In view of the above the cIi
coe�cients in (4.35) required extended Monte�Carlo simulations [138, 156].

Carrying out the Taylor expansion in Eq. (4.30) up to O(µ4
q) order the

HRG�model suggests that the coe�cients cIi in (4.35) are as follows:

cI2 =
FMI + FBI

2
, cI4 =

1
12
× 9

2
FBI , c

I
6 =

1
30
× 81

24
FBI , (4.36)
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where FMI = 8
3G

(3) and FBI = F (2) + 5F (4), with G and F de�ned as in
Eqs. (4.24) and (4.26).

From Eqs. (4.35) and (4.36) the contribution of di�erent isospin multi-
ples to the overall pressure can be also expressed by the appropriate Taylor
coe�cients calculated on the lattice

G(3) =
3
4
cI2 − cI4, F (2) =

5
18
c2 −

2
3
cI4, F (4) =

2
3
cI4 −

1
18
c2. (4.37)

The above results of HRG-model can be compared with the LGT �ndings.
In particular in the HRG the ratio of cI6/c

I
4 is temperature independent and

takes the value 0.3. Fig. 4.7, right compares recent LGT results [138] for
the cI6/c

I
4 ratio with the HRG-model. It is clear from Fig. 4.7, right that

for T < Tc the temperature dependence and the magnitude of the above
ratio calculated in LGT is, within statistical errors, well consistent with the
resonance gas model results. Also, temperature dependence of the cI4/c

I
2 ratio

found in LGT is qualitatively expected from Eq. (4.36).
We have illustrated on few examples that the LGT results on the QCD

thermodynamics, restricted to con�ned phase, are consistent with the hadron
resonance gas model expectations. These examples indicate that the hadronic
resonances are essential degrees of freedom in con�ned phase. In addition,
the hadron resonance gas partition function should be considered as a good
approximation of the QCD thermodynamics in the con�ned phase.

A more detailed quantitative comparisons of model predictions with LGT
�ndings would require a detailed lattice calculations with physical quark
masses as well as the extrapolation of LGT results to the continuum limit.
Recently, such LGT studies were undertaken for vanishing chemical potential
[181] and are in progress for the �nite baryon number density [496].

In the present section it has been shown how the region just below the
transition from hadronic to quark-gluon matter can be described within the
hadron resonance gas model. In the next section we turn to a model descrip-
tion for the region just above the transition, the quark-gluon quasi-particle
model.

4.3 The QCD equation of state near the transition line
within a quasi-particle model

It is the aim of the present section to compare in detail the Rossendorf quasi-
particle model [497�500] with recent lattice QCD data [130, 138] in the region
around Tc with focus on �nite baryon densities. After introducing the con-
cept of quasi-particles as a successful tool for describing strongly interacting
systems, various phenomenological approaches incorporating quasi-particle
excitations will be introduced. We then present our quasi-particle model de-
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scribing the pressure p(T, µq = 0) and the Taylor expansion coe�cients of the
excess pressure for the strongly coupled quark-gluon �uid by extending the
model to �nite µq. A family of equations of state in agreement with lattice
QCD results [107, 131, 185, 501] is constructed and its impact on hydrody-
namic observables in heavy-ion experiments such as the azimuthal anisotropy
coe�cient v2 is studied. Finally, we apply our quasi-particle model to larger
baryon densities and analyze the impact of a CEP inclusion on the EoS and,
in particular, on the isentropic trajectories of the hydrodynamically evolving
system.

4.3.1 Basic relations

The equation of state (EoS) of strongly interacting matter can be formulated
in the form p(T, {µf}). Here the pressure p as a function of temperature T
and a set of chemical potentials {µf} of di�erent quark �avors is a primary
thermodynamic potential following e.g. from the partition function Z through
(cf. Sec. 2.2, Eq. (2.39))

p(T, {µf}) =
T

V
lnZ(T, {µf}). (4.38)

We also recall the fundamental thermodynamic relations in the case of one
independent chemical potential:

s =
∂p

∂T
, nq =

∂p

∂µq
, e+ p− Ts = nqµq (4.39)

with entropy density s, net baryon number density nB = 1
3nq, energy density

e and quark chemical potential µq. In the case of Nf = 2 quark �avors, p can
be written as a function of a combination of up and down quark chemical
potentials µq = (µu + µd)/2. The second-order derivative of p with respect
to µq de�nes the quark number susceptibility χq = ∂2p/∂µ2

q being a measure
of baryon number �uctuations, χB = 1

9χq. The latter are, in principle, mea-
surable via event-by-event �uctuations in heavy-ion experiments. Apart from
the thermodynamic consistency conditions denoted in (4.39), thermodynamic
stability conditions must be ful�lled [477, 502].

4.3.2 Concept of quasi-particles

The notion of quasi-particles (QP) has proven to be a powerful and useful
concept for the understanding of the properties of strongly correlated systems
(cf. [503] for an overview).
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The existence of quasi-stationary collective modes allows for an e�cient
description of the system in terms of single-particle characteristics with ap-
proximately additive energies and momenta. Accumulating collective phe-
nomena in such a way leads to a simpli�cation in the description of the
many-particle system. The one-particle states in strongly correlated systems
are themselves quasi-stationary. The interaction among the modes limits the
life-time of these one-particle states. In summary, the elementary motions in
a system of strongly interacting particles being collectively carried by all par-
ticles display a single-particle character. This makes a description in terms of
single quantum particles suitable. These quasi-particles cannot be described
without referring to the system under consideration as a whole.

An important question concerns the weak coupling among the quasi-
particles. Naively, one would expect large transport coe�cients (e. g. shear
viscosity) due to the long free mean path. However, an extension of the quasi-
particle model including �nite widths of the excitations delivers a small shear
viscosity [504], in agreement with expectations extracted from experiments
at RHIC [505].

4.3.3 The Rossendorf quasi-particle model at vanishing
chemical potential

The Rossendorf quasi-particle model (QPM) was inspired by the work of
Biro, Müller and Levai [506] in which quark and gluon quasi-particles are
the basic ingredients. Medium-dependent self-energies are approximated in
the thermodynamically relevant momentum range as e�ective quasi-particle
masses which are generated dynamically and are thought to parameterize in
an appropriate way all the complexity of strong interactions. The employed
ansatz follows the Hard Thermal Loop/Hard Dense Loop (HTL/HDL) self-
energies by using the leading-order thermal masses of hard excitations and
thus makes contact with resummed perturbative QCD. However, the model
goes beyond perturbation theory by using an e�ective coupling, which in
turn approaches the perturbative coupling in the high-temperature region.
Even an expansion in powers of the e�ective coupling gives an in�nite series
of terms, thus highlighting the non-perturbative character of the model. A
strict perturbation expansion recovers the �rst two terms2 of the perturbative
potential of QCD [12, 509].

In the case of vanishing quark chemical potential, our ansatz for the pres-
sure of light quarks (q) and gluons (g) reads [497�500]

2 The third term ∼ g3 is only partially included. Its completion requires next-to-leading
order contributions to the HTL dispersion laws [82, 83, 85�88, 125, 127, 507], which has
recently been achieved in the solvable large-Nf limit of QCD [508], with results that provide
some legitimation for a quasi-particle approach that goes beyond strict perturbation theory.
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p =
∑
a=q,g

pa −B(T ), pa =
da
3π2

∫
dk
k4

ωa

1(
eωa/T + Sa

) (4.40)

where

B(T ) = −
∑
a=q,g

da
4π2

∫ T

Tc

dm2
a(T

′)
dT ′

(∫
dk
k2

ωa

1(
eωa/T ′ + Sa

)) dT ′ +B(Tc)

(4.41)

with integration constant B(Tc) ensures thermodynamic self-consistency
[497�500], in addition to the stationarity conditions δp/δm2

a = 0 [510]. The
k integrals here and below run from 0 to ∞, Sq = 1, Sg = −1 and da de-
note the degeneracies of the quasi-particles, i. e. dq = 12 and dg = 8 as for
free partons. The quasi-particle dispersion relations are approximated by the
asymptotic mass shell expressions near the light cone

ωa =
√
k2 +m2

a, m2
a(T ) = Πa(k;T ) + (xaT )2. (4.42)

The essential part is the self-energy Πa; the last term in (4.42) accounts for
the masses used in the lattice calculations [107, 130, 131, 138, 185, 501], i.e.,
xq = 0.4 and xg = 0.

A �rst determination of the dispersion relation within lattice QCD has
been reported in [511] and made the authors of [512, 513] argue that addi-
tional degrees of freedom are required to saturate the pressure observed in
the lattice results. It should be noticed, however, that relevant for the EoS are
the excitations at momenta k ∼ T , for which more accurate measurements
are needed. In fact, one could easily deduce smaller quasi-particle masses, in
particular for smaller temperatures, from the lattice results [511] when fo-
cusing on the relevant k region. Taking, in contrast, the large quasi-particle
mass values deduced in [511] one achieves, indeed, a smaller pressure.

As suitable parametrization of Πa, we employ the HTL self-energies with
given explicit T dependence as in [497�500]. Here, the rest mass contribution
stemming from the masses employed in the lattice performance is approxi-
mated following [514]. The essential point is to replace the running coupling
g2 enteringΠa by an e�ective coupling, G2(T ).3 In this way, non-perturbative
e�ects are thought to be accommodated in G2. Clearly, this assumption needs
detailed tests which are presented below.

A reasoning for the strong assumptions made in such an ansatz can be
described as follows. From (4.39), the entropy density is given through

3 As shown in [515], it is the introduced G2(T ) which allows to describe lattice QCD
data near Tc, while the use of the pure 1-loop or 2-loop perturbative coupling together
with a more complete description of the plasmon term and Landau damping restricts the
approach to T > 2Tc [82, 83, 85�88, 125, 127, 507].
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s =
∑
a=q,g

sa, sa =
da
π2T

∫
dkk2

(
4
3k

2 +m2
a

)
ωa

1(
eωa/T + Sa

) . (4.43)

In massless ϕ4 theory this structure of the entropy density emerges by resum-
ming the super-daisy diagrams in tadpole topology [516]. [517] argues that
such an ansatz is also valid for QCD. Although [82, 83, 85�88, 125, 127, 507]
point to more complex structures, we �nd (4.40, 4.41, 4.43) �exible enough
to accommodate the lattice data. Within the Φ functional approach start-
ing from the thermodynamic potential, the expression (4.43) for the entropy
density can be recovered by performing the following chain of approxima-
tions [518�520]. The Φ functional which is given by the series over all two
particle irreducible skeleton diagrams is approximated by its two-loop trun-
cation. The integral expression of s containing derivatives of the statistical
distribution functions for gluons and quarks with respect to T is manifestly
ultra-violet �nite. Lost gauge invariance caused by the truncation in Φ is
restored by arming the self-energies with HTL resummed expressions which
show the correct limiting behavior at the relevant momenta k ∼ T . Further-
more, longitudinal gluon modes and the plasmino branch, which are both
exponentially suppressed, can be neglected. Neglecting, in addition, imagi-
nary parts in the self-energies as well as Landau damping contributions and
approximating dispersion relations and self-energies suitably (cf. [497�500])
expression (4.43) is found. The pressure (4.40) follows by an integration.

As a convenient parametrization of the e�ective coupling we employ

G2(T ) =

{
G2

2−loop(T ), T ≥ Tc,

G2
2−loop(Tc) + b(1− T/Tc), T < Tc.

(4.44)

Here G2
2−loop is the relevant part of the 2-loop coupling

G2
2−loop(T ) =

16π2

β0 log ξ2

[
1− 2β1

β2
0

log(log ξ2)
log ξ2

]
(4.45)

with β0 = (11Nc − 2Nf )/3, β1 = (34N2
c − 13NfNc + 3Nf/Nc)/6 and ξ =

λ(T − Ts)/Tc. In (4.45) two parameters enter, being adjusted in order to
describe lattice QCD results: a scale parameter λ, and Ts which regulates
infrared divergencies at Tc. We choose Tc = 170 MeV in the following. The
model has been successfully applied in the pure gauge sector [497�500] and for
various numbers of quark �avors [497�500, 518�522]. Examples are exhibited
in Fig. 4.8. The parameters for Nf = 2 are λ = 7.4, Ts = 0.81Tc, b = 329.9
and B(Tc) = 0.24T 4

c and for Nf = 2 + 1 they read λ = 7.6, Ts = 0.8Tc,
b = 324.8 and B(Tc) = 0.5T 4

c with Nc = 3.
Note that we have also parameterized the region below Tc in (4.44). This

should be regarded as just a parameterization without any microscopic mean-
ing. Of course, hadrons are the relevant degrees of freedom below Tc and not
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Fig. 4.8 Comparison of our model with lattice QCD results (symbols) for µq = 0. Entropy
density s/T 3 (left panel) and pressure p/T 4 (right panel) as functions of T/Tc for Nf =
2 + 1 quark �avors. Lattice data from [107, 131, 185, 501].

quarks and gluons. Nonetheless, from a technical point of view and for later
use it is advantageous to have a complete parameterization of the thermody-
namic quantities for all values of the temperature.

4.3.4 Baryon density e�ects and susceptibilities

One way to decompose the pressure is (cf. (3.28))

p(T, µq) = p(T, µq = 0) +∆p(T, µq), ∆p(T, µq) = T 4
∞∑
n=1

c2n(T )
(µq
T

)2n

,

(4.46)

where the excess pressure ∆p(T, µq) became accessible only recently [130,
138]. In (4.46), ∆p is given as Taylor series expansion in powers of µq/T
with expansion coe�cients cn(T ) denoted as susceptibilities [130, 138]. Lat-
tice QCD calculations focus on these susceptibilities instead of delivering
p(T, µq) because they are easier calculable. In contrast, our model equally
covers p(T, µq = 0) and ∆p(T, µq) providing therefore the complete thermo-
dynamic potential (4.46).

Extending the quasi-particle model to �nite µq, the pressure renders to

p =
∑
a=q,g

pa −B(T, µq), pa =
da
6π2

∫
dk
k4

ωa

(
f+
a + f−a

)
, (4.47)

where B(T, µq) is evaluated by performing an appropriate line integral in the
T - µq plane [497�500, 518�520]. Here, the statistical distribution functions
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are f±a = (exp([ωa ∓ µa]/T ) + Sa)−1 with chemical potential µq for light
quarks and µg = 0 for gluons. From (4.39), the entropy density explicitly
reads s =

∑
a=q,g sa with

sa =
da

2π2T

∫
dkk2

((
4
3k

2 +m2
a

)
ωa

(f+
a + f−a )− µa(f+

a − f−a )

)
(4.48)

and the net quark number density is

nq =
dq
2π2

∫
dkk2(f+

q − f−q ). (4.49)

The quasi-particle self-energies Πa(T, µq) in the dispersion relations now ex-
plicitly depend on T and µq as in [497�500].

When evaluating the thermodynamic observables in (4.47 - 4.49), the ef-
fective coupling G2(T, µq) at non-vanishing µq has to be known. This can be
achieved by imposing Maxwell's relation onto p which results in a quasi-linear
partial di�erential equation for G2(T, µq) [497�500]

aµq
∂G2

∂µq
+ aT

∂G2

∂T
= b. (4.50)

The lengthy coe�cients aT,µq (T, µq) and b(T, µq) [519, 520] obey aT (T, µq =
0) = 0 and b(T, µq = 0) = 0 whereas aµq does not vanish at µq = 0. Peshier's
�ow equation (4.50) can be solved as a Cauchy problem by knowing G2 on an
arbitrary curve in the T - µq plane. One possibility is to adjustG2(T ) in (4.44)
to lattice QCD data at vanishing µq which then allows for a mapping into
the �nite quark chemical potential region via (4.50).

In order to compare directly the quasi-particle model with the lattice re-
sults in [130, 138], the cn(T ) have to be computed. The expansion coe�cients
in Eq. (4.46) follow from (4.47) as

cn(T ) =
1
n!
∂n(p/T 4)
∂(µq/T )n

∣∣∣∣
µq=0

. (4.51)

For the explicit expressions cf. [523]. Due to CP invariance of the QCD par-
tition function (4.38), cj with odd j vanish. We adjust G2(T ) to c2(T ) from
[130, 138] forNf = 2. Fig. 4.9 exhibits the comparison of∆p and nq calculated
via Eqs. (4.47, 4.49) (dashed curves) or by using the expansion coe�cients
c2,4 evaluated from (4.51) (solid curves) with the lattice QCD data [130, 138]
based on the coe�cients c2,4 (symbols). One observes an astonishingly good
description of the data, even slightly below Tc, where the resonance gas model
[107, 185] (cf. Sec. 4.2) is appropriate.4 Interesting is the deviation of the full

4 Some reasoning why the model may be applicable also slightly below Tc emerges from
duality [521], similar to the application of a hadronic model slightly above Tc [524]. We
do not claim the applicability of a model of quasi-gluons and quasi-quarks below Tc, but
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Fig. 4.9 Comparison of the quasi-particle model with lattice QCD results [130, 138] for
the excess pressure (left panel, for constant µq/T ) and net quark number density (right
panel, for constant µq/Tc ). As for the lattice QCD data (symbols) the quasi-particle
model results (solid curves) are based on the expansion coe�cients c2,4, i.e. ∆p/T 4 =
c2(T )(µq/T )2+c4(T )(µq/T )4 and nq/T 3 = 2c2(T )(µq/T )+4c4(T )(µq/T )3. For com-
parison, the full quasi-particle model results (dashed curves) derived from (4.47) and (4.49)
are exhibited. The parameters for Nc = 3 are λ = 12, Ts = 0.87Tc, and b = 426.1.

model from the results based on the truncated expansion in a small interval
around Tc.

Since for small values of µq the higher order coe�cients c4 and in particular
c6 are less important for ∆p and nq, a more stringent test of the model
is accomplished by a direct comparison of the individual Taylor expansion
coe�cients ci with the corresponding lattice QCD results. Straightforward
evaluation of c2,4,6 delivers the results exhibited in Fig. 4.10. Since G2(T ) was
already adjusted to c2(T ) the agreement is good. It should be emphasized
that all coe�cients ci(T ) are determined by G2(T ). That means the same
G2(T ) describes also the features of c4 and c6 without requiring any further
assumptions. Particularly interesting are the peak of c4 (left panel of Fig.
4.10) and the double-peak of c6 (right panel of Fig. 4.10) at Tc. Numerically,
these pronounced structures stem from the change of the curvature behavior
of G2(T ) at Tc which determines the derivative terms of G2 in c4,6 obtained
by employing Eq. (4.50). Neglecting these terms would completely alter the
shape of c4,6. In other words, via c4,6 the �ow equation (4.50) is probed,
which is the key for extrapolating to large values of µq. Similar to [130, 138],
we interpret the peak in c4 as an indicator of some critical behavior, while
the pressure itself is smoothly but rapidly varying at Tc.

Note that the results exhibited in Fig. 4.10 are robust with respect to
the chosen form of the e�ective coupling (4.44). Testing the 1-loop coupling

consider the extension to smaller values of T as a convenient parametrization, maybe by a
numeric accident, at least for describing the present lattice data with large lattice masses
for quarks being employed.
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Fig. 4.10 The expansion coe�cients c2,4 (left panel, horizontal lines depict the Stefan-
Boltzmann limits usually employed in bag model like equation of state approaches) and
c6 (right panel) as a function of the scaled temperature T/Tc. Symbols represent lattice
data from [130, 138].

of G2 above Tc or a quadratic function in T/Tc below Tc or both, e.g., the
higher order coe�cients and in particular their pronounced behavior about
Tc are quantitatively reproduced when adjusting G2(T ) to describe c2(T ).
Having the �rst Taylor expansion coe�cients c2,4,6 at our disposal, the baryon
number susceptibility

χB
T 2

=
2
9
c2 +

12
9
c4

(µB
3T

)2

+
10
3
c6

(µB
3T

)4

(4.52)

follows directly as truncated expansion in µB/ T , where µB = 3µq is the
baryo-chemical potential.

4.3.5 A family of equations of state

Having tested these details of the quasi-particle model, we can directly ap-
ply the found parametrization and calculate the total pressure at arbitrary
baryon densities, while lattice QCD calculations are yet constrained to small
baryon densities. This application is of interest for the CBM project at FAIR
and for studying hot proto-neutron stars and cold neutron stars with quark
cores. Another application to cosmic con�nement dynamics is reported in
[525]. These applications, however, need a controlled chiral extrapolation
which must base on improved lattice QCD data. Here, we consider �rst the
case of small baryon densities relevant for RHIC and LHC.

It is expected that lattice QCD data at high temperature are realistic, as
improved actions have been used. At low temperature, the employed quark
masses are too large to give realistic results. These, however, agree with the
resonance gas model once analogous assumptions are implemented [107, 185].
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Fig. 4.11 A family of equations of state by combining our quasi-particle model in the
high energy density region with the resonance gas model at low energy densities for baryon
densities relevant for top RHIC energies: pressure (left, QPM(em) with em =4., 2., 1.25,
1. GeV fm−3 serving as label from top to bottom) and squared sound velocity (right) as
a function of energy density. Bag model results are depicted by dashed curves. E�ects of
variations in nB of 0.33 fm−3 are not visible on the given scale.

It is therefore reasonable to use the resonance gas model at low T (see Sec.
4.2) and employ our quasi-particle model to extrapolate lattice QCD results
both to larger µB and smaller T as long as a systematic chiral extrapolation
cannot be done safely due to lacking lattice QCD input.

Ideal (non-viscous) hydrodynamics requires the knowledge of the EoS in
the form p(e, nB). Only at freeze-out T (e, nB) and µB(e, nB) are needed to
calculate particle spectra via the Cooper-Frye formalism. We use p in Eq.
(4.47), nB related to Eq. (4.49) and e from Eqs. (4.47 - 4.49) and (4.39) to
obtain this information from our thermodynamically consistent QPM. G2 is
adjusted to lattice data either by p(T, µq = 0) or by c2(T ).

We generate a family of equations of state by keeping the matching point
to the resonance gas EoS �xed and interpolate linearly p(e), T (e) and µB(e)
at �xed nB to a given matching point of the quasi-particle model given by
the energy density em which serves as label. Such a family is exhibited in Fig.
4.11. Surprising is the similarity of QPM(1.0) and the bag model EoS used
in [526]. Equipped with such a QCD based EoS one can compare results of
hydrodynamical calculations with data, e.g., for the azimuthal anisotropy v2.
Examples are exhibited in Fig. 4.12 for Λ,Ξ,Ω [527].

4.3.6 The critical end point

As discussed in previous sections, a prominent feature of QCD is the appear-
ance of a critical end point belonging to the universality class of the three-
dimensional Ising model [22, 468]. In the chiral limit, the CEP converts into a
tricritical end point [49, 468] (cf. Secs. 1, 2.2, 3.2). At the CEP, a line of �rst
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Fig. 4.12 Azimuthal anisotropy coe�cient v2 as a function of transverse momentum for
strange baryons (solid curves QPM(1.0), QPM(2.0), QPM(4.0) [from top to bottom, with
decoupling temperatures adjusted to data up to 2.5 GeV/c] compared with squares for
Λ, dashed curve QPM(2.0) compared with stars for Ξ, dotted curve QPM(2.0) compared
with circles for Ω, data from [528]). Impact parameter b = 5.2 fm, initial conditions
e0 = 30 GeV fm−3, n0 = 0.4 fm−3, τ0 = 0.6 fm/c being the initial time when matter
is thermalized and the hydrodynamical era starts. These parameters are appropriate for
RHIC-200.

order phase transitions terminates. According to [129, 155, 190, 195] the lo-
cation of the critical end point in 2 or 3 �avor QCD is at (T, µB) = (162, 360)
MeV. Our above presented formulation of a QPM does obviously not include
phase transition e�ects. The mentioned structures in c4,6 (cf. Fig. 4.10) result
from a change in the curvature behavior of G2(T ) as dictated by lattice QCD
data and parametrized conveniently by Eq. (4.44).

A phenomenological procedure for including CEP e�ects is to combine
the above regular part of the EoS with a singular part. The latter includes
the proper critical exponents of the three-dimensional Ising model [529]. One
possibility of combining regular and singular parts has been explored in [477]
by combining a bag model EoS and a resonance gas EoS. By construction,
both parts are intermixed via the singular contribution to the EoS.

Here, we would like to keep our QPM parametrization, which is already
adjusted to lattice QCD data, and arm the model with a proper singular
part [530, 531]. To be speci�c, starting from a thermodynamic potential,
e. g. Gibbs free enthalpy, it can be decomposed into an analytic and a non-
analytic part where the latter is related to phase transitions and critical
phenomena [532]. Accordingly, the EoS formulated in terms of the entropy
density is given through s = sa+sn. Here, the analytic contribution sa has to
be adjusted to the known EoS outside of the critical region. The non-analytic
part sn should embody the feature of being continuous left to the CEP (i. e. at
small chemical potentials) whereas on the right (at large chemical potentials)
it generates a �rst order phase transition. A convenient parametrization of
sn for the 3D Ising model characterized by a set of critical exponents is given
in [529]. Still, the corresponding variables employed usually in condensed
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matter physics including the order parameter need to be mapped into the
T - µB plane in the vicinity of the CEP. Details of this mapping and a
useful formulation of the entropy density contribution can be found in the
pioneering work [477] we rely on. In the following, we estimate the phase
border line to be given by Tc(µB) = Tc

(
1 + 1

2d(µB/3Tc)
2
)
with d = −0.122

according to [129, 155, 156, 159, 190, 195] and locate the CEP at µB,c = 360
MeV in agreement with [129, 155, 190, 195].
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Fig. 4.13 Isentropic trajectories (Left: toy model (4.53) depending on the strength
parameter A for s/nB = 50, 28; dashed, thin and solid lines exhibit results for
A = 0., 0.5, 1.0 respectively. Right: truncated quasi-particle model adjusted to lattice
QCD [130, 131, 138, 501] with CEP e�ects included, parametrized by D = 0.06 and
A = 0.5 for s/nB = 200, 100, 50, 33 (from left to right).) Dotted lines represent the
estimated phase border line. For ∆T = 10 MeV, ∆µB = 10 MeV.

As a simple toy model, let us employ the �rst terms in (4.46), however,
with constant expansion coe�cients. The entropy density contributions are
given by

sa(T, µB) = 4c̄0T 3 +
2
9
c̄2µ

2
BT ,

sn(T, µB) =
2
9
c̄2µ

2
BT A tanh (Sc(T, µB)) (4.53)

with c̄0 = (32+21Nf )π2/180, c̄2 = Nf/2 and Nf = 2. nB follows from (4.53)
via standard thermodynamic relations (cf. [477]) with integration constant
nB(0, µB) = 4

3 c̄4(µB/3)3 where c̄4 = Nf/4π2. The ansatz for sn has been
chosen such that sn → 0 for T → 0 and the net baryon density vanishes
at µB = 0. The parameter A describes the strength of the non-analytic
contribution in the EoS. We apply the same Sc(T, µB) as in [477] assuming
a fairly large critical region parametrized by ∆T = 100 MeV, ∆µB = 200
MeV and a stretch factor D = 0.15. Hence, CEP e�ects on the EoS and in
particular on isentropic trajectories s/nB = const in the T - µB plane can
be demonstrated. In Fig. 4.13, the in�uence of the strength parameter A on
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the behavior of isentropic trajectories is exhibited. For increasing A > 0, the
trajectories for large s/nB tend to be attracted towards larger µB due to the
presence of the CEP. In fact, the CEP acts as an attractor on trajectories
on the left whereas on the right a repulsive impact is found. Evidently, the
curves on the right hand side of the CEP display the existence of the �rst
order phase transition. By shrinking the critical region to ∆T = 10 MeV,
∆µB = 10 MeV and D = 0.06, the in�uence of the CEP decreases (left
panel of Fig. 4.13) in comparison with the results obtained for a large critical
region. In particular, the sections on the hadronic side become less a�ected
by CEP when decreasing the extension of the critical region.

The parameters in the non-analytic entropy density contribution and in
particular A have to be chosen such that standard thermodynamic consis-
tency conditions are satis�ed [477]. Accordingly, during the adiabatic expan-
sion of the system and its related cooling, both nB and s must decrease. For
A < 0 with trajectories for large s/nB bent to smaller µB due to the CEP
inclusion, however, these conditions are violated in the vicinity of the �rst
order transition line. Clearly, this statement decisively depends on s in the
hadronic phase where the simple toy model cannot account for QCD.
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Fig. 4.14 Scaled baryon number susceptibility of the quasi-particle model neglecting
c6(T ) without CEP (left panel) and with CEP inclusion (right panel) as function of
T/Tc for µB = 450, 330, 300, 150 MeV (solid, dashed, dash-dotted and dotted curves
respectively).

In contrast, basing on lattice QCD we construct the EoS as truncated Tay-
lor series expansion including the coe�cients c0,2,4,6(T ) in Eq. (4.46) where
c0(T ) = p(T, µq = 0)/T 4. These lattice based trajectories are shown in Fig.
4.13 (right panel) where the pattern di�ers notably from the observations
made in the above toy model. Although �rst principle evaluations still su�er
from too heavy quark masses and deviate consequently from the resonance
gas trajectories in the low-temperature phase, the values s/nB on these lattice
QCD deduced curves agree with the values at the according nearby chemi-
cal freeze-out points inferred from data [485]. Furthermore, in the decon�ned
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phase lattice results are trustable due to convergence radius studies [130, 138]
at least up to µB = 300 MeV. Therefore, adjusting the analytic contribution
of the EoS known from the lattice data by our quasi-particle model, crit-
ical end point e�ects should become visible only for larger µB implying a
small critical region. We include the CEP in line with the procedure outlined
above in our quasi-particle model replacing c̄2 by c2(T ) in sn and considering
a small critical region characterized by ∆T = 10 MeV, ∆µB = 10 MeV and
D = 0.06 with strength parameter A = 0.5. As exhibited in Fig. 4.13 (right
panel), CEP e�ects on isentropic trajectories are signi�cant only for large µB
with negligible impact on the hadronic sections. Therefore, the pattern of the
isentropic trajectories as exhibited seems to be generic (cf. [477]). Nonethe-
less, the baryon number susceptibility χB = ∂2p/∂µ2

B being a measure of
baryon number �uctuations diverges for µB > µB,c (Fig. 4.14 right panel)
due to the discontinuity evolving in nB in contrast to the analytic behavior
(Fig. 4.14 left panel) stemming from the quasi-particle model not containing
CEP e�ects.

The issue of susceptibilities and �uctuations will be taken up again in Sec.
4.6. In the next sections further models are reviewed which use quark and/or
gluon related degrees of freedom.

4.4 Wilson line degrees of freedom and decon�nement

We recall from Sec. 2.1 that at in�nitely high temperature, by asymptotic
freedom QCD is an ideal gas of massless quarks and gluons: the plasma
screens electric �elds, so quarks are uncon�ned [69]. E�ective theories sug-
gest that from in�nite temperature, on down to perhaps a few hundred MeV,
it really stays a plasma of weakly interacting new degrees of freedom, which
are quasi-particle quarks and gluons with thermal masses (and vertices); for
recent reviews see, for example, [118, 533] and references therein. However,
SU(N) (or QCD) thermodynamics does not evolve smoothly to low tem-
peratures. Rather, at a temperature around ≈ 200 MeV5, the pressure and
energy density change drastically. Thermodynamically, this indicates a rapid
decrease in the e�ective number of degrees of freedom as the temperature is
reduced below the above-mentioned �transition temperature� Tc. In a pure
gauge theory, where matter �elds are in�nitely heavy and decouple, it would
be natural to interpret this transition as �freezing-in� of the N2 − 1 color
degrees of freedom into colorless hadrons (glueballs in this case). This is the
so-called con�nement phase transition. By now, it is known to be of second
order for N = 2 [18], and of �rst order for N = 3 [534] and N = 4 [535, 536]
(and presumably also for all N > 4 [537, 538]). We shall discuss this in more
detail in the next section, where we introduce the thermal Wilson line and

5 The precise value depends on the number of quark �avors and their masses, as well as
on the baryon-chemical potential etc., see below.
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its trace, the so-called Polyakov loop, which is an order parameter for the
decon�ning phase transition of SU(N) gauge theory.

In reality, quarks are not in�nitely heavy, of course, sincemπ = 138 MeV <
∞. In section 4.4.2 we shall attempt to incorporate quark e�ects a posteriori.
Having done so, we can see what happens when the net density (quarks minus
anti-quarks) is non-zero, which is of course the case of interest for the planned
�Compressed Baryonic Matter� (CBM) experiment at GSI-FAIR.

This brief review focuses on an elementary introduction into the role of
Wilson lines and Polyakov loops for the decon�ning phase transition. It is not
a review of �nite-temperature QCD or of perturbative resummation strategies
[118, 533] (Sec. 3.1) nor of numerical lattice approaches [539, 540] (Sec. 3.2).

4.4.1 Pure Yang-Mills SU(N) gauge theory

4.4.1.1 The Polyakov loop as order parameter for decon�nement

In this section, we consider an gauge theory without quarks, where N is the
number of colors. Experimentally, N = 3. However, it will prove useful to
consider N to be an arbitrary integer ≥ 2. For large N , the free energy itself
is an order parameter for the decon�ning phase transition [541, 542]: below
Tc, the free energy is due exclusively to glueballs. As color singlets, glueballs
only contribute of order one to the free energy. In contrast, above Tc, gluons
contribute ∼ N2 to the free energy. At very high temperature, by asymptotic
freedom the behavior of the free energy can be computed perturbatively.

There is a puzzle, however. The free energy is a gauge invariant quantity,
and so should be due to gauge invariant degrees of freedom. While glueball
properties (masses etc.) change with temperature, they remain the dominant
color-singlet excitations. If glueballs contribute of order one, what is the term
∼ N2 in the free energy due to?

The only quantity which can provide such a contribution is an expectation
value for the Polyakov loop:

`(x) =
1
N

tr L , L(x) = P exp

(
ig

∫ 1/T

0

A0(x, τ) dτ

)
. (4.54)

Here, tr denotes the trace in color space, P is path ordering, and g is the gauge
coupling constant; A0(x, τ) is the time component of the vector potential in
the fundamental representation, at a spatial position x and euclidean time
τ . L is the so-called Wilson line (here in the fundamental representation)
and ` is its trace, normalized by the dimension of the representation. The
Wilson line can be viewed as SU(3) color Aharonov-Bohm phase factor for
an in�nitely heavy test particle (which therefore stays put at its position x) in
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the fundamental representation. Thus the term ∼ N2 in the free energy is due
exclusively to the potential for the Polyakov loop, V(`). Glueballs contribute
∼ 1.

The expectation value of the Polyakov loop, `0 = 〈`〉, vanishes in the
con�ned phase because of the global Z(N) symmetry noted by 't Hooft [543�
546]: besides local gauge transformations, which are periodic in time, the
pure-gauge theory is also symmetric under gauge transformations which are
only periodic up to an element of the center of the gauge group, which is
Z(N) = {e2πij/N |j = 1 · · ·N}. In the fundamental representation, the sim-
plest global Z(N) transformation is

Ω(τ = 1/T ) = e2πi/N Ω(τ = 0) . (4.55)

Under such transformations,

`→ e2πi e /N` , (4.56)

with e = 1 the Z(N) �charge� of the fundamental loop. Note that the restored
Z(N) symmetry of the con�ned phase does not guarantee that expectation
values of Z(N)-neutral loops, such as the adjoint loop, vanish. Loops in ar-
bitrary irreducible representations R are de�ned as

`R =
1
dR

tr LR , LR = P exp

(
ig

∫ 1/T

0

Aa0(x, τ) taR dτ

)
, (4.57)

where taR are the generators of R and dR is its dimension. At in�nite temper-
ature, by asymptotic freedom we can ignore �uctuations in the gauge �eld,
and 〈`〉 → 1 (for any representation). Hence, the Z(N) center symmetry is
broken spontaneously.

Assuming dominance of the fundamental loop, Svetitsky and Ya�e noticed
that the global Z(N) symmetry predicts the order of the SU(N) phase tran-
sition (and critical properties, by universality) [547�549]. For N = 2, it is
of second order, i.e. the expectation value of ` is continuous and the e�ec-
tive mass (inverse correlation length) of the order parameter vanishes at the
transition point.

On the other hand, for N ≥ 3 the fundamental loop is a complex valued
�eld. Powers of ``∗ are invariant under U(1); the symmetry is reduced to
Z(3) by terms such as −κ3 (`3N + `∗ 3

N ) [550]. Now the phase transition is of
�rst order because `0 jumps at Tc.

The condensation of the fundamental loop at high temperature was �rst
observed in lattice Monte-Carlo simulations of the SU(2) theory by McLerran
and Svetitsky [551] and Kuti et al. [552]. They found a phase transition of
second order, where the condensation of the order parameter is continuous. It
should be noted that those early studies computed the expectation value of
the bare loop. It is an order parameter only in the lattice theory with a �nite
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lattice spacing but vanishes (even above Tc) in the continuum limit. To de�ne
an order parameter in the continuum one needs to determine renormalized
loops [553�556].

Aside from the fact that the symmetry properties of the Polyakov loop
determine the order of the SU(N) decon�ning phase transition, what else is
it good for? Pisarski went a step further and suggested an e�ective theory
where all other degrees of freedom have been integrated out, and the free
energy is exclusively due to a condensate for the (fundamental) Polyakov
loop [557], which is where this section started from. The potential for ` is
then multiplied by a factor of T 4 (in four dimensions). The pressure is then
given by p = −V(`0), the energy density by e = Tdp/dT − p etc.

In [558, 559] such an Ansatz was matched to lattice data for the SU(3)
pressure and energy density, thereby extracting the potential for the (renor-
malized) fundamental loop. It exhibits several interesting features. First, near
Tc the potential changes very rapidly, and true metastable vacua (where V
has positive curvature) can exist only within a very narrow interval ∆T ≈ 1%
around Tc. For this type of �rst-order phase transition, deep super-cooling
or super-heating is not possible, and hysteresis e�ects [560] are expected to
be much smaller than for more �typical� �rst-order transitions (which permit
deep super-cooling and super-heating). On the other hand, V ′ = 0 at ` = 0
holds even above Tc, and so the con�ned phase is metastable at all T > Tc.
This will lead to the presence of unstable modes if the system is quenched
from T < Tc to a temperature T > Tc such that V ′′(0) < 0, which will
then grow exponentially (�spinodal decomposition�). This has been observed
in simulations on the lattice [560�565]. Note that this behavior follows also
from the global Z(N) symmetry6, which can therefore provide information
not only about the order of the phase transition but also about its dynamics.

Secondly, there is a very small �nucleation barrier� between the con�ned
and decon�ned phases at Tc, i.e. that the potential is very �at. This implies
a small interface tension between those phases at the transition temperature,
and a small string tension and screening mass meff(Tc+). Indeed, SU(3)
lattice results �nd that σ(Tc)/σ(0) ≈ 0.1, and that the screening mass ob-
tained from the two-point function of Polyakov loops decreases sharply as
T → Tc+ [566]. For lattice measurements of the tension of interfaces between
con�ned and decon�ned vacua, which indeed is rather small, see [567, 568].
It seems likely that the real-time dynamics of phase conversion for such a
potential should be very di�erent from that of ordinary, strongly �rst-order
transitions, which proceed through nucleation. Some aspects of possible real-
time dynamics in this potential were studied in [569, 570], where a Lorentz-
invariant kinetic term for the Polyakov loop in Minkowski time was assumed.

6 Which prohibits terms ∼ `, hence V′(0) = 0 for any T is implied.
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4.4.1.2 Matrix models of Polyakov loops

In the previous section, we have integrated out all degrees of freedom ex-
cept for the loop in the fundamental representation, thereby generating an
e�ective scalar �eld theory for the order parameter which is globally invari-
ant under the center symmetry. Such a model, however, doesn't tell us how
loops in other representations behave and how factorization arises at large
N . One way out is to simply extend the e�ective theory to include loops in
higher representations as independent scalar degrees of freedom [571]. How-
ever, even then, the factorization property is not reproduced in general. Also,
lattice measurements of the SU(3) renormalized adjoint loop in the con�ned
phase [553] �nd that its expectation value is zero to within the numerical
accuracy. This observation is not explained by Z(N) symmetry since the ad-
joint loop is neutral. It is also not explained naturally by factorization alone,
which would allow an expectation value on the order of 1/N2 ∼ 10%.

A natural solution for these questions is o�ered by matrix models. Here,
the basic degrees of freedom are the SU(3) Wilson line matrices L. Damgaard
et al. [572�578] showed that when �uctuations in the matrix model are ne-
glected, the expectation value of any loop, including those with vanishing
Z(N) charge, vanish in the con�ned phase. If the Wilson line is constant in
space, L(x) = L, the functional integral reduces to a single integral over L,

Z =
∫
dL exp

(
−N2V(L)

)
. (4.58)

Kinetic terms have been constructed in [579] but shall be ignored here (we
consider just the matrix-valued mean-�eld theory). To be invariant both un-
der SU(N) gauge and global Z(N) transformations, the potential must be a
sum of Z(N) neutral loops:

V(L) = −m2 `ad +
∑
eR=0

κR Re `R , (4.59)

where the adjoint loop has been pulled out of the sum. Note that, by group
theory, higher powers of any loop can be reexpressed as a linear sum over
loops in other representations, so this is the most general potential possible.

Since `ad = |`N |2 +O(1/N2), at large N the adjoint loop is simply a mass
term for the fundamental loop, while loops in higher representations look
like interactions of the fundamental loop (plus new terms, such as tr L2/N ,
etc.) [579�582]:

V(L) = −m2|`N |2 + κ4

(
|`N |2

)2
+ κ6

(
|`N |2

)3
+ . . . . (4.60)

The couplings κR in (4.59) have been relabeled as κ2n, where the subscript
now denotes the power of `N . As before, the U(1) symmetry is broken to
Z(N) by a term ∼ κN Re (`N )N , but this is negligible at large N .
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We can now return to the question as to why the expectation values of all
loops, even of Z(N) neutral ones, vanish in the con�ned phase. On physical
grounds, it appears rather obvious that the con�ned phase corresponds to
zero potential (mathematically more precise arguments are given in sec. IVA
of [579]). If the potential vanishes, though, the expectation value of any loop
is simply an integral over the invariant group measure. For any (nontrivial)
representation, however, whatever the Z(N) charge of the loop, its integral
over the measure vanishes, ∫

`R dL = 0 . (4.61)

4.4.2 QCD: �nite pion masses

4.4.2.1 Explicit breaking of Z(N) by quarks

Pure SU(N) is, of course, only interesting in theory. In reality, the dynamics
is also a�ected by the presence of dynamical fermions in the fundamental
representation (quarks). For example, the critical temperature in physical
units decreases from Tc/

√
σ0 ' 0.63 for in�nitely heavy quarks (pure gauge

theory) to Tc/
√
σ0 ' 0.41 for massless quarks [539]. The scale is set by the

T = 0 string tension of SU(3):
√
σ0 ' 425 MeV.

On the other hand, the lattice also �nds approximate ��avor independence�
of the pressure [131]. That is, p/pSB, where pSB is the Stefan-Boltzmann
ideal-gas pressure, is a nearly universal function of T/Tc. Also, near Tc, the
temperature-susceptibility for the Polyakov loop peaks strongly [583] even in
full QCD with dynamical fermions. Such observations suggest that perhaps
fermions do not change the picture fundamentally.

The simplest way to incorporate fermion e�ects into the e�ective theory of
Polyakov loops is through a �background magnetic �eld� term ∼ −h `N [549,
584�587]. Such a term tilts the potential towards positive, real values of
`N , which now aquires an expectation value even at low temperatures. If h
is not too large though, 〈`N 〉 remains an approximate order parameter for
decon�nement, in the sense that it changes rapidly within a small interval of
temperature. For h larger than some critical value hc, the phase transition
ceases to exist in the strict sense (for example, hc = 0 for a second-order
phase transition but hc > 0 for an ordinary �rst-order transition with �nite
correlation lengths); we shall nevertheless continue to use the term �critical
temperature Tc� in a more loose sense, namely for the temperature where the
derivative of the order parameter ∂〈`N 〉/∂T peaks.

In general, we expect that h→ 0 as the quark masses are sent to in�nity
since this limit brings us back to the pure gauge theory. On the other hand,
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if the quarks are made lighter and lighter, h should grow7. At some point,
it might not su�ce any more to �integrate out� the quarks and represent
them by a term h `N . For very light quarks (and/or for large q − q asymme-
try) one would then need to study quark e�ects dynamically (in particular,
chiral symmetry restoration), which will likely couple to that of Polyakov
loops [588�595]. The following sections attempt to shed some light on these
issues.

4.4.2.2 Quark mass dependence of the QCD transition
temperature

In QCD, Tc depends on the mass of the quarks [501], while in the e�ective
Lagrangian for Polyakov loops, it depends on the strength of the �background
magnetic �eld� h. By matching, one can extract the function h(mq), which
gives us an idea of the typical magnitude of the symmetry breaking term
both for heavy and (by naive extrapolation) light quarks. It also allows us to
estimate the decon�ning critical endpoint hc for three colors [596].
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Fig. 4.15 h as a function of mπ , obtained by matching to three �avor lattice data for
Tc(mπ). The solid line corresponds to an exponential increase of h with decreasing mπ .
The broken horizontal line displays the endpoint of the line of �rst-order phase transitions,
h = hc; the intersection with the h(mπ) curve then gives the corresponding pion mass.
Figure from [596].

7 Also, we expect that h is proportional to the number of quark �avors but inversely
proportional to the number of colors since the number of gluons ∼ N2, while the number
of quarks ∼ Nf N : h ∼ Nf/N .
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From Fig. 4.15, the reduction of Tc by ≈ 33% as mπ : ∞→
√
σ0 requires

only small explicit breaking of the Z(3) symmetry for the Polyakov loop. h ≤
0.15 even for the smallest pion masses studied in ref. [501]. This is due to the
rather small masses (or interface tension) for the �rst-order phase transition of
the SU(3) gauge theory. Also, h(mπ) appears to follow the expected behavior
∼ exp(−mπ). The exponential �t shown by the solid line corresponds to
h(mπ) = a exp(−b mπ/

√
σ0), with a = 0.19 and b = 0.47 . Surprisingly, by

naive extrapolation one obtains a pretty small explicit symmetry breaking
even in the chiral limit, h ≈ 0.2.

The endpoint of the line of �rst-order transitions at hc = 0.026 (indicated
by the dashed horizontal line) intersects the curve h(mπ) at mπ/

√
σ0 ≈ 4.2.

For heavier pions the theory exhibits a �rst-order decon�ning phase tran-
sition, which then turns into a cross over for mπ <∼ 4.2

√
σ0 ≈ 1.8 GeV.

This is compatible with the estimates from [586] which span the range
mcrit
π = 1.4 GeV to 2.5 GeV, depending on Nf .
A direct con�rmation of such large values ofmcrit

π from the lattice would be
useful to test whether indeed SU(3) is close to the Gross-Witten point [579],
where the �rst-order transition disappears right away, for any nonzero back-
ground �eld. This could perhaps be done by following the ratio of screening
masses for the imaginary and real parts of the fundamental loop as a func-
tion of mπ. Perturbatively (to leading order), in the pure gauge theory this
ratio is 3/2 since Im ` ∼ trA3

0, while Re ` ∼ trA2
0. At Tc+, from a Z(3)

symmetric loop potential mi/mr is ∼ 3 [550, 597]. For �nite quark masses
this ratio should increase and �nally diverge at the decon�nement critical
endpoint [598]: while Re ` is critical, Im ` is not.

There is no phase transition for intermediate quark masses, with a �rst
order chiral transition appearing for three �avors of light quark masses, near
the chiral limit [42]. The �rst-order chiral phase transition itself ends in a
critical point when the quarks are too heavy. Given that the explicit symme-
try breaking term for the Polyakov loop appears to remain rather small even
when extrapolated to mπ = 0 (namely h→ 0.19), the chiral critical endpoint
might be located rather close to the chiral limit. Lattice estimates for Nf = 3
range frommcrit,χ

π ' 290 MeV [192] for standard staggered fermion action and
Nt = 4 lattices; improved p4-actions predict values as low as ' 67 MeV [599].

Hence, although in terms of mπ the endpoint of �rst-order decon�nement
phase transitions appears to be far from the physical point, this could very
well originate in the rather unusual properties of the three-color gauge theory,
and of the Gross-Witten point. Polyakov loops should then remain important
degrees of freedom in QCD with physical pion and kaon masses.

4.4.2.3 Nonzero quark-antiquark asymmetry

We �nally proceed to include e�ects from a nonzero excess of quarks over
antiquarks, represented by a quark-chemical potential µ > 0. The potential is



234 4 Model descriptions of strongly interacting matter near decon�nement

given by the sum of contributions of gluons and quarks, Vgl(L)+Vqk(L), which
are (gauge invariant) functions of the Wilson line. The gluonic contribution
is constructed as before, Sec. 4.4.1. Here, we will restrict the analysis to
the Gross-Witten point, or the N = 3 analogy thereof, and only include a
mass term: Vgl(L) = −m2 `N `N , `N = tr L/N , `N = `∗N . Under charge
conjugation, the Wilson line transforms into its complex conjugate, and the
chemical potential changes sign. In general, Vqk involves all possible traces
of eµ L and e−µ L∗ in such combinations which are invariant under charge
conjugation. These two matrices represent, respectively, the propagation of a
particle forward in imaginary time, and of an anti-particle backward in time.
The simplest possible contribution to the quark loop potential is then [584�
586, 600�603]

Vqk(L) = −h
2
(
eµ `N + e−µ `N

)
= −h (cosh(µ) Re `N + i sinh(µ) Im `N ) , (4.62)

(The parameter µ is the quark chemical potential divided by temperature.)
At zero chemical potential, quarks generate a real background Z(N) �eld

for the real component of the loop, ∼ Re `N , see the discussion at the be-
ginning of the present Sec. 4.4.2. When the chemical potential is nonzero,
however, the background Z(N) �eld not only contains a piece proportional
to the imaginary part of the loop, ∼ Im `N , but with a coe�cient which is
itself imaginary. (Unless N = 2, where Im `N ≡ 0; this case will not be dis-
cussed here further.) Hence, the potential generated by quarks is complex,
(4.62). This is how the fermion sign problem appears in a matrix model.

In this case, though, it is easy to show that the partition function is
manifestly real. If a given matrix, L, contributes, then so does its charge
conjugate, L∗. Adding the contributions of L and L∗ we can write Z =∫

dL exp(−Ṽ(L)) cos(h̃ Im `N ), where h̃ = (N2 − 1)h sinh(µ) and
Ṽ(L) = (N2 − 1) (Vgl(L)− h cosh(µ) Re `N ). It should be noted that µ > 0
e�ectively increases the background Z(N) -breaking �eld; its strength is now
given by h coshµ. Turning on the chemical potential therefore corresponds
to moving away from the decon�ning critical endpoint at hc [604]. If corre-
lations are dominated by the Polyakov loop even for physical quark masses,
then correlation lengths should decrease as µ increases. At �xed temperature,
in an expansion about µ = 0, a decrease of the screening masses with µ was
indeed observed in [605], see also [195].

We also note that at large N (but with h �xed), e�ects due to a nonzero
quark-chemical potential appear only in subleading terms [604]. This is be-
cause at large N , the di�erence between the measure for SU(N) and that for
U(N) is of order O(1/N), and because terms which break U(1) invariance of
Vgl are negligible. Letting eµ`N → `N and e−µ`N → `N , one can then �rotate�
the quark-chemical potential away. The very weak dependence of the (pseudo-
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)critical temperature on the chemical potential at small µ [155, 156, 159]
might �nd a natural explanation.

To describe both the decon�ning and the chiral transitions in the region of
small quark masses, it is necessary to introduce a chiral order parameter, and
couple that to the Wilson line [588�595]. First attempts to do this within a
matrix model have been undertaken by Chen and deTar [592]. In the plane of
µ and T , there may be a critical end point at large µ, where the correlation
length for the sigma meson diverges; that for the Polyakov loop will remain
�nite, except from its coupling to the sigma. It is possible that for three
colors, the coincidence of the chiral and decon�ning �transitions� at µ = 0
breaks down at some �nite value of µ [604].

The mentioned coupling of the Wilson line to a chiral order parameter is
modeled in the next section on the mean �eld level within Polyakov-loop-
extended quark models.

4.5 Phase diagram and thermodynamics of the PNJL
and PQM models

The present section is devoted to a review of quark models which, on the
one hand side, describe chiral symmetry and its spontaneous breaking (on
the mean �eld level) and, on the other hand side, incorporate aspects of the
Polyakov loop discussed in the previous Sec. 4.4.

4.5.1 The NJL model

Models of the Nambu and Jona-Lasinio (NJL) type [606] have a long history
and have been used extensively to describe the dynamics and thermodynam-
ics of the lightest hadrons [39, 607�609], including investigations of phase
diagrams [343, 610]. Such schematic models o�er a simple and practical il-
lustration of the basic mechanisms that drive spontaneous chiral symmetry
breaking, a key feature of QCD in its low-temperature, low-density phase.

The NJL model is based on an e�ective Lagrangian of relativistic fermions
(quarks) which interact through local current-current couplings, assuming
that gluonic degrees of freedom can be frozen into pointlike e�ective inter-
actions between quarks. Lattice QCD results for the gluonic �eld strength
correlation function [611] demonstrate that the colour correlation length, i.e.
the distance over which colour �elds propagate in the QCD vacuum, is small,
of order 0.2 fm corresponding to a characteristic momentum scale Λ of or-
der 1 GeV. Consider now the basic non-local interaction between two quark
colour currents, Jµi = ψ̄γµtiψ, where ti are the generators of the SU(Nc)
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colour gauge group. The contribution of this current-current coupling to the
action is:

Sint = −1
2

∫
d4x d4y Jµi (x) g2Dij

µν(x, y) J
µ
j (y) , (4.63)

where Dij
µν is the full gluon propagator and g is the QCD coupling. In pertur-

bative QCD this Sint generates the familiar one-gluon exchange interaction
between quarks and maintains its non-local structure. That is the situation
realised in the quark-gluon phase at extremely high temperatures. As one ap-
proaches the hadronic phase around a critical temperature of about 0.2 GeV,
the propagating gluons experience strong screening e�ects which cannot be
handled perturbatively. If the range over which colour can be transported is
now restricted to the short distance scale Λ−1, while typical momentum scales
(Fermi momenta) of the quarks are small compared to Λ, then the quarks
experience an interaction which can be approximated by a local coupling
between their colour currents:

Lint = −Gc J iµ(x) J
µ
i (x) , (4.64)

where Gc ∼ ḡ2 Λ−2 is an e�ective coupling strength of dimension length2

which encodes the QCD coupling, averaged over the relevant distance scales,
in combination with the squared correlation length, Λ−2. In essence, by �inte-
grating ou� gluon degrees of freedom and absorbing them in the four-fermion
interaction Lint, the local SU(Nc) gauge symmetry of QCD is now replaced
by a global SU(Nc) symmetry of the NJL model. Apart from this step, the in-
teraction Lagrangian (4.64) evidently preserves the chiral SU(Nf )×SU(Nf )
symmetry that it shares with the original QCD Lagrangian for Nf massless
quark �avours.

A Fierz transform of the colour current-current interaction (4.64) produces
a set of exchange terms acting in quark-antiquark channels. For the Nf = 2
case:

Lint →
G

2
[
(ψ̄ψ)2 + (ψ̄iγ5τψ)2

]
+ ... , (4.65)

where τ = (τ1, τ2, τ3) are the isospin SU(2) Pauli matrices. Not shown for
brevity is a series of terms with combinations of vector and axial vector
currents, both in colour singlet and colour octet channels. The constant G
is proportional to the colour coupling strength Gc. Their ratio is uniquely
determined by Nc and Nf .

Eq. (4.65) is the starting point of the standard NJL model. In the mean
�eld (Hartree) approximation, the NJL equation of motion leads to the gap
equation

m = m0 −G〈ψ̄ψ〉 . (4.66)
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With a small bare (current) quark mass m0 as input, this equation links the
dynamical generation of a large constituent quark mass m to spontaneous
chiral symmetry breaking and the appearance of the quark condensate

〈ψ̄ψ〉 = −Tr lim
x→ 0+

〈T ψ(0)ψ̄(x)〉 = −2iNfNc
∫

d4p

(2π)4
m θ(Λ2 − p 2)
p2 −m2 + iε

.

(4.67)

For m0 = 0 a non-zero quasiparticle mass develops dynamically, together
with a non-vanishing chiral condensate, once G exceeds a critical value. The
procedure requires a momentum cuto� Λ ' 2m beyond which the interaction
is �turned of�. Note that the strong interaction, by polarizing the vacuum and
turning it into a condensate of quark-antiquark pairs, transforms an initially
pointlike quark with its small bare mass m0 into a massive quasiparticle with
a �nite size. (Such an NJL-type mechanism is commonly thought to be at the
origin of the phenomenological constituent quark masses m ∼ 0.3-0.4 GeV).

While the NJL model illustrates the transmutation of originally light (or
even massless) quarks and antiquarks into massive quasiparticles, it generates
at the same time pions as Goldstone bosons of spontaneously broken chiral
symmetry. NJL type approaches have also been used extensively to explore
colour superconducting phases at high densities through the formation of
various sorts of diquark condensates [27, 28, 343].

4.5.2 Introducing the PNJL model

Despite their widespread use, NJL models have a principal de�ciency. The
reduction to global (rather than local) colour symmetry has the consequence
that quark con�nement is missing. Con�nement is the second key feature of
low-energy QCD besides spontaneous chiral symmetry breaking. While con-
�nement is a less signi�cant aspect for Nc = 2 thermodynamics which can be
described quite successfully using the simplest NJL approach [612], it �gures
prominently for Nc = 3 QCD. There have been ongoing discussions whether
decon�nement and the restoration of chiral symmetry are directly connected
in the sense that they appear at the same transition temperature Tc, as sug-
gested by earlier lattice computations. In any case, as one approaches Tc from
above, all versions of the �classic� NJL model encounter the problem that they
operate with the �wrong� degrees of freedom. Quarks as coloured quasiparti-
cles are incorrectly permitted to propagate over large distances even in the
hadronic sector of the phase diagram. In contrast, con�nement and spon-
taneous chiral symmetry breaking imply that QCD below Tc turns into a
low-energy e�ective theory of weakly interacting Goldstone bosons (pions)
with derivative couplings to colour-singlet hadrons (rather than quarks).
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As discussed in Secs. 2.1 and 4.4, in the limit of in�nitely heavy quarks,
the decon�nement phase transition is characterized by spontaneous breaking
of the Z(3) center symmetry of QCD. The corresponding order parameter
is the thermal Wilson line, or Polyakov loop, winding around the imaginary
time direction with periodic boundary conditions:

φ (x) = N−1
c TrP exp

[
i

∫ β

0

dτ A4 (x, τ)

]
, (4.68)

with β = 1/T the inverse temperature. Here A4 = iA0 is the temporal
component of the Euclidean gauge �eld (A, A4) and P denotes path ordering.
In the presence of dynamical quarks the Z(3) symmetry is explicitly broken.
The Polyakov loop ceases to be a rigourous order parameter but still serves
as an indicator of a rapid crossover towards decon�nement.

Recent developments have aimed at a synthesis of the NJL model with
Polyakov loop dynamics. The principal idea is to introduce both the chiral
condensate 〈ψ̄ψ〉 and the Polaykov loop φ as classical, homogeneous �elds
which couple to the quarks according to rules dictated by the symmetries and
symmetry breaking patterns of QCD, thus unifying aspects of con�nement
and chiral symmetry breaking. We refer to this combined scheme as the PNJL
(Polyakov-loop-extended NJL) model (see also [613, 614]).

Throughout this presentation we work with two �avours (Nf = 2) and
specify the PNJL Lagrangian [613] as follows. Its basic ingredients are the
Nambu and Jona-Lasinio type four-fermion contact term and the coupling to
a (spatially constant) temporal background gauge �eld representing Polyakov
loop dynamics:

LPNJL = ψ̄ (iγµDµ − m̂0)ψ +
G

2

[(
ψ̄ψ
)2 +

(
ψ̄iγ5τψ

)2]
− U (φ[A], φ∗[A];T ) , (4.69)

where ψ = (ψu, ψd)
T is the quark �eld,

Dµ = ∂µ − iAµ and Aµ = δµ0A
0 , (4.70)

with A0 = −iA4. The gauge coupling g is conveniently absorbed in the def-
inition of Aµ(x) = gAµa(x)λa2 where Aµa is the SU(3) gauge �eld and λa
are the Gell-Mann matrices. The two-�avour current quark mass matrix is
m̂0 = diag(mu,md) and we shall work in the isospin symmetric limit with
mu = md ≡ m0. As previously mentioned, G is the coupling strength of the
chirally symmetric four-fermion interaction.

The e�ective potential U(φ, φ∗;T ) is expressed in terms of the traced
Polyakov loop (4.68), reduced to our case of a constant Euclidean �eld A4:

φ =
1
3
Trc exp

[
iA4

T

]
. (4.71)
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In a convenient gauge (the so-called Polyakov gauge), the Polyakov loop
matrix can be given a diagonal representation [594].

The e�ective potential U has the following general features. It must satisfy
the Z(3) center symmetry just like the pure gauge QCD Lagrangian. Further-
more, in accordance with lattice results for the behaviour of the Polyakov loop
as a function of temperature T , the potential U must have a single minimum
at φ = 0 at small T , while at high T it develops a second minimum which
becomes the absolute minimum above a critical temperature T0. In the limit
T →∞ we have φ→ 1. The following general form is chosen for U , including
a φ3 term which re�ects the underlying Z(3) symmetry:

U (φ, φ∗;T )
T 4

= −b2 (T )
2

φ∗φ− b3
6

(
φ3 + φ∗3

)
+
b4
4

(φ∗φ)2 (4.72)

with

b2 (T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

+ a3

(
T0

T

)3

. (4.73)

A precision �t of the coe�cients ai, bi is performed to reproduce the pure-
gauge lattice data.

There is a subtlety about the Polyakov loop �eld, φ, and its conjugate,
φ∗, in the presence of quarks. At zero chemical potential we have φ = φ∗,
i.e. the �eld φ is real, it serves as an order parameter for decon�nement and
a mean-�eld calculation is straightforward. At non-zero quark chemical po-
tential, Z(3) symmetry is explicitly broken and φ di�ers from φ∗ while their
thermal expectation values 〈φ〉 and 〈φ∗〉 remain real [604]. A detailed analysis
of the stationary points of the action under these conditions requires calcula-
tions beyond mean �eld which will be reported elsewhere [615]. We proceed
here, as in [613], by introducing Φ ≡ 〈φ〉 and Φ̄ ≡ 〈φ∗〉 as new independent
�eld variables which replace φ and φ∗ in Eq. (4.72). This approximate pre-
scription corresponds to a modi�ed mean-�eld scheme which can account for
the di�erence between Φ and Φ̄ in the presence of quarks. The more accurate
treatment is under way.

Using standard bosonization techniques, we introduce the auxiliary bosonic
�elds σ and π for the scalar-isoscalar and pseudoscalar-isovector quark bilin-
ears in Eq. (4.69). The expectation value of the σ �eld is directly related to
the chiral condensate by 〈σ〉 = G〈ψ̄ψ〉 and the gap equation becomes

m = m0 − 〈σ〉 . (4.74)

Note that 〈σ〉 is negative in our representation, and the chiral (quark) con-
densate is 〈ψ̄ψ〉 = 〈ψ̄uψu + ψ̄dψd〉.

Before passing to the actual calculations, we summarize basic assumptions
behind Eq. (4.69) and comment on limitations to be kept in mind. The PNJL
model reduces gluon dynamics to a) chiral point couplings between quarks,
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and b) a simple static background �eld representing the Polyakov loop. This
picture can be expected to work only within a limited range of temperatures.
At large T , transverse gluons are known to be thermodynamically active de-
grees of freedom, but they are ignored in the PNJL model. To what extent
this model can reproduce lattice QCD thermodynamics is nonetheless a rel-
evant question. We can assume that its range of applicability is, roughly,
T ≤ (2 − 3)Tc, based on the conclusion drawn in ref. [616] that transverse
gluons start to contribute signi�cantly for T > 2.5Tc.

4.5.3 Parameter �xing

The parameters of the Polyakov loop potential U are �tted to reproduce the
lattice data [105] for QCD thermodynamics in the pure gauge sector. Mini-
mizing U(Φ, Φ̄, T ) one has Φ = Φ̄ and the pressure of the pure-gauge system
is evaluated as p(T ) = −U(T ) with Φ(T ) determined at the minimum. The
entropy and energy density are then obtained by means of the standard ther-
modynamic relations. Fig. 4.16(a) shows the behaviour of the Polyakov loop
as a function of temperature, while Fig. 4.16(b) displays the corresponding
(scaled) pressure, energy density and entropy density. The lattice data are
reproduced extremely well using the ansatz (4.72,4.73), with parameters sum-
marized in Tab. 4.1. The critical temperature T0 for decon�nement appearing
in Eq. (4.73) is �xed at T0 = 270 MeV in the pure gauge sector.

a0 a1 a2 a3 b3 b4
6.75 -1.95 2.625 -7.44 0.75 7.5

Table 4.1 Parameter set used in [613] for the Polyakov loop potential (4.72, 4.73).

The pure NJL model part of the Lagrangian (4.69) has the following pa-
rameters: the �bare� quark mass m0, a three-momentum cuto� Λ and the
coupling strength G. We �x them by reproducing the known chiral physics
in the hadronic sector at T = 0: the pion decay constant fπ, the chiral con-
densate |〈ψ̄uψu〉|1/3 and the pion mass mπ are evaluated in the model and
adjusted at their empirical values. The results are shown in Tab. 4.2.
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Fig. 4.16 (a): Using the �t of the Polyakov loop (dotted line) to lattice results taken from
[554] in the pure gauge sector (empty symbols), the PNJL model predicts the Polyakov loop
behaviour as a function of temperature in the presence of dynamical quarks (solid line).
This prediction is compared to lattice data in two �avours (full symbols) taken from [176].
(b): Scaled pressure, entropy density and energy density as functions of the temperature
in the pure gauge sector, compared to the corresponding lattice data taken from [105].

Λ [GeV] G[GeV−2] m0[MeV]

0.651 10.08 5.5

|〈ψ̄uψu〉|1/3[MeV] fπ [MeV] mπ [MeV]

251 92.3 139.3

Table 4.2 Parameter set used for the NJL model part of the e�ective Lagrangian (4.69),
and the resulting physical quantities. These values of the parameters yield a constituent
quark mass m = 325 MeV.

4.5.4 Thermodynamics at �nite chemical potential

4.5.4.1 General features

We now extend the model to �nite temperature and chemical potentials us-
ing the Matsubara formalism. We consider the isospin symmetric case, with
an equal number of u and d quarks (and therefore a single quark chemi-
cal potential µ). The quantity to be minimized at �nite temperature is the
thermodynamic potential per unit volume:
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Ω = U
(
Φ, Φ̄, T

)
+
σ2

2G

− 2Nf T
∫

d3p

(2π)3
{

Trc ln
[
1 + e−(Ep−µ̃)/T

]
+ Trc ln

[
1 + e−(Ep+µ̃)/T

]}
− 6Nf

∫
d3p

(2π)3
Ep θ(Λ2 − p 2) , (4.75)

where µ̃ = µ + iA4 and Ep =
√

p 2 +m2 is the quark quasiparticle energy.
The last term involves the NJL three-momentum cuto� Λ. The second (�nite)
term does not require any cuto�.

Notice that the coupling of the Polyakov loop to quarks e�ectively reduces
the residues at the quark quasiparticle poles as the critical temperature is
approached from T > Tc: expanding the logarithms in the second line of (4.75)
one �nds Trc ln (1 + exp[−(Ep − µ− iA4)/T ]) = 3φ exp[−(Ep − µ)/T ] + ... ,
with φ then to be replaced by 〈φ〉 ≡ Φ which tends to zero as T → Tc.

From the thermodynamic potential (4.75) the equations of motion for the
mean �elds σ, Φ and Φ̄ are determined through

∂Ω

∂σ
= 0 ,

∂Ω

∂Φ
= 0 ,

∂Ω

∂Φ̄
= 0 . (4.76)

This set of coupled equations is then solved for the �elds as functions of
temperature T and quark chemical potential µ. Fig. 4.17(a) shows the chiral
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Fig. 4.17 Left: Scaled chiral condensate and Polyakov loop Φ(T ) as functions of temper-
ature at zero chemical potential. Right: Plots of ∂〈ψ̄ψ〉/∂T and ∂Φ/∂T .

condensate together with the Polyakov loop Φ as functions of temperature
at µ = 0 where we �nd Φ = Φ̄. One observes that the introduction of quarks
coupled to the σ and Φ �elds turns the �rst-order transition seen in pure-
gauge lattice QCD into a continuous crossover. The crossover transitions for
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the chiral condensate 〈ψ̄ψ〉 and for the Polyakov loop almost coincide at a
critical temperature Tc ' 220 MeV (see Fig. 4.17(b)). We point out that this
feature is obtained without changing a single parameter with respect to the
pure gauge case. The value of the critical temperature found here is a little
high if compared to the available data for two-�avour Lattice QCD [58, 501]
which give Tc = (173 ± 8) MeV. For quantitative comparison with existing
lattice results we choose to reduce Tc by rescaling the parameter T0 from
270 to 190 MeV. In this case we loose the perfect coincidence of the chiral
and decon�nement transitions, but they are shifted relative to each other by
less than 20 MeV. When de�ning Tc in this case as the average of the two
transition temperatures we �nd Tc = 180 MeV.

4.5.4.2 Detailed comparison with lattice data

The primary aim is now to compare predictions of the PNJL model with
the lattice data available for full QCD thermodynamics (with quarks in-
cluded) at zero and �nite chemical potential µ. Consider �rst the pressure
p (T, µ = 0) = −Ω (T, µ = 0) of the quark-gluon system at zero chemical po-
tential. Results are presented in Fig. 4.18 in comparison with corresponding
lattice data. We point out that the input parameters of the PNJL model have
been �xed independently in the pure gauge and hadronic sectors, so that the
calculated pressure is a prediction of the model, without any further tuning
of parameters. With this in mind, the agreement with lattice results is quite
satisfactory. As a word of caution it is noted that the shown lattice results
are obtained with rather large quark masses whereas physical quark masses
are used in the PNJL model. Also shown in Fig. 4.18 is the result obtained
in the standard NJL model. Its de�ciencies are evident. At low temperatures
the pressure comes out incorrect. The missing con�nement permits quarks to
be active degrees of freedom even in the forbidden region T < Tc. At high
temperatures, the standard NJL result for the pressure is signi�cantly lower
than the one seen in the lattice data. The gluonic thermodynamics is missing
altogether in the NJL model, whereas in the PNJL model it is partially taken
into account by means of the Polyakov loop e�ective potential U(Φ, Φ̄, T ). As
stated previously, the range of validity of this approach is limited, however,
to temperatures smaller than 2.5 Tc, beyond which transverse gluon degrees
of freedom become important.

The introduction of the Polyakov loop within the PNJL quasiparticle
model leads to a remarkable improvement in basically all thermodynamic
quantities. The coupling of the quark quasiparticles to the �eld Φ reduces
their weight as thermodynamically active degrees of freedom when the criti-
cal temperature Tc is approached from above. The quasiparticle exponentials
exp[−(Ep±µ)/T ] are progressively suppressed in the thermodynamic poten-
tial as T → Tc. This is what can be interpreted as the e�ect of con�nement
in the context of the PNJL model.
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One must note that the lattice data are grouped in di�erent sets obtained
on lattices with temporal extent Nt = 4 and Nt = 6, both of which are not
continuum extrapolated. In contrast, our calculation should, strictly speak-
ing, be compared to the continuum limit. In order to perform meaningful com-
parisons, the pressure is divided by its asymptotic high-temperature (Stefan-
Boltzmann) limit for each given case. At high temperatures the predicted
curve should be located closer to the Nt = 6 set than to the one with Nt = 4.
This is indeed the case.
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Fig. 4.18 Scaled pressure divided by the Stefan-Boltzmann (ideal gas) limit as a function
of temperature at zero chemical potential: comparison between the PNJL model prediction
[613] (full line), the standard NJL model result (dashed) and lattice results corresponding
to Nt = 4 (open symbols) and Nt = 6 (full symbols). Lattice data are taken from [108].

At non-zero chemical potential, quantities of interest that have become
accessible in lattice QCD are the �pressure di�erence� and the quark number
density. The (scaled) pressure di�erence is de�ned as:

∆p (T, µ)
T 4

=
p (T, µ)− p (T, µ = 0)

T 4
. (4.77)

A comparison of ∆p, calculated in the PNJL model, with two-�avour lattice
results is presented in Fig. 4.19. This �gure shows the scaled pressure di�er-
ence as a function of the temperature for a series of chemical potentials, with
values ranging between µ = 0.2T (0)

c and µ ' T
(0)
c where T (0)

c ≡ Tc(µ = 0).
The agreement between the PNJL model results [613] and the lattice data is
quite satisfactory.

A related quantity for which lattice results at �nite µ exist, is the scaled
quark number density, de�ned as:

nq (T, µ)
T 3

= − 1
T 3

∂Ω (T, µ)
∂µ

. (4.78)

Results [613] for nq as a function of the temperature, for di�erent values
of the quark chemical potential, are shown in Fig. 4.20 in comparison with
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Fig. 4.19 Scaled pressure di�erence as a function of temperature at di�erent values of
the quark chemical potential (results from Ref. [613]), compared to lattice data taken from
[130].
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Fig. 4.20 Scaled quark number densities [613] as a function of temperature at di�erent
values of the chemical potential, compared to lattice data taken from [130].

corresponding lattice data [130]. Also in this case, the agreement between the
PNJL model and the corresponding lattice data is surprisingly good.

It is a remarkable feature that the quark densities and the pressure di�er-
ence at �nite µ are so well reproduced even though the lattice �data� have
been obtained by a Taylor expansion up to fourth order in µ, whereas the
PNJL thermodynamical potential is used with its full functional dependence
on µ. We have examined the convergence in powers of µ by expanding Eq.
(4.75). It turns out that the Taylor expansion to order µ2 deviates from the
full result by less than 10 % even at a chemical potential as large as µ ∼ Tc.
When expanded to O(µ4), no visible di�erence is left between the approxi-
mate and full calculations for all cases shown in Figs. 4.19 and 4.20.

An exact copy of the PNJL model [613] has recently been employed in [617]
to calculate susceptibilities and higher order derivatives in the expansion of
the pressure p(T, µ) = −Ω(T, µ) around µ = 0 (cf. (3.28)):

p(T, µ)
T 4

=
∑

n even

cn(T )
(µ
T

)n
. (4.79)
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The resulting quark number susceptibility

c2(T ) =
1

2T 2

(
∂2p

∂µ2

)
µ=0

(4.80)

compares well with lattice QCD computations. The higher-order coe�cients
c4,6 reproduce the corresponding lattice data around Tc very well, but c4 as
obtained in the PNJL calculation tends to be too large at higher tempera-
tures. For a more quantitative understanding, further steps are yet necessary
towards a consistent treatment beyond the mean-�eld level [615].

4.5.5 Phase diagram

Lattice data for the QCD phase diagram exist up to relatively high tem-
peratures, but extrapolations to non-zero chemical potential are still subject
to large uncertainties. It is nonetheless instructive to explore the phase di-
agram as calculated in the PNJL model [613] in comparison with present
lattice QCD results. In particular, questions about the sensitivity of this
phase diagram with respect to changes of the input quark masses will be
addressed. This is an important issue, given the fact that most lattice QCD
computations so far encounter technical limitations which restrict the input
bare quark masses to relatively large values. The PNJL approach permits
to vary the bare quark mass in a controlled way compatible with explicit
chiral symmetry breaking in QCD. One can therefore interpolate between
large quark masses presently accessible in lattice simulations, the physically
relevant range of light quark masses around 5 MeV and further down to the
chiral limit.

Fig. 4.21 presents the two-�avour PNJL results of the phase boundaries
in the (T, µ) plane. These calculations should still be considered as an ex-
ploratory study since they do not yet include explicit diquark degrees of
freedom, an important ingredient when turning to large chemical potentials,
and the Polyakov loop �elds are still treated in an approximate mean-�eld
framework. Some interesting tendencies are, however, already apparent at the
present stage.

Curves are shown for three di�erent values of the bare quark mass. For
m0 = 50 MeV the PNJL result falls within the broad band of lattice ex-
trapolations using an expansion in powers of the quark chemical potential.
Reducing the bare quark mass toward physically realistic values leaves the
phase diagram at small chemical potentials basically unchanged. However,
the phase boundary is shifted quite signi�cantly to lower temperatures at
increasing chemical potentials when m0 is lowered. Also shown in the �gure
is the position of the critical point separating crossover from �rst order phase
transition. The existence of a tricritical point was suggested many years ago
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Fig. 4.21 Phase diagram of the PNJL model for di�erent values of the bare quark mass
m0. Dashed lines correspond to a �rst order phase transition, full lines to a crossover (or
second order phase transition, respectively, for the case m0 = 0). The band represents the
extrapolation from lattice QCD results [156]. Also shown for orientation are the chemical
freezeout �data� obtained through a thermal �t [618].

within the framework of the e�ective potential for composite operator ap-
proach to the study of dynamical symmetry breaking [619�621]. We con�rm
its existence also in the PNJL model. In fact, examining the chiral conden-
sate and the Polyakov loop as functions of temperature for a broad range
of chemical potentials (see Fig. 4.22), one observes that there is a critical
chemical potential above which these two quantities indicate a discontinuous
jump from the con�ned (chirally broken) to the decon�ned (chirally restored)
phase. While a more precise location of this critical point is subject to further
re�ned calculations [615], the qualitative features outlined here are expected
to remain, such as the observation that the position of the critical point
depends sensitively on the input quark mass.

4.5.6 The Polyakov�quark-meson model

The quark-meson (QM) model is another variant of an e�ective �eld theory
which includes the chiral aspects of QCD. For two �avors the elementary
�elds are up and down quarks, pions and σ-mesons. In a certain sense the QM
model can be viewed as a partially bosonized version of the NJL model which
has the advantage that no cut-o� is needed since the model is renormalizable.
The Lagrangian reads
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Fig. 4.22 Constituent quark mass (a) and Polyakov loop (b) as functions of temperature
for di�erent values of the chemical potential. In both �gures, m0 = 5.5 MeV.

LQM = q̄ (iD/− g(σ + iγ5τπ)) q +
1
2
(∂µσ)2 +

1
2
(∂µπ)2 − U(σ,π) (4.81)

where the mesonic potential is de�ned as

U(σ,π) =
λ

4
(σ2 + π2 − v2)2 − cσ . (4.82)

Without the explicit symmetry breaking term c in the mesonic potential
the Lagrangian is invariant under global chiral SU(2)L × SU(2)R rotations.
The quarks receive their dynamical masses through the Yukawa coupling
to the σ-�eld, which has a non-vanishing vacuum expectation value in the
spontaneously broken phase.

As the NJL model, the QM model shows a chiral phase transition at real-
istic temperatures and similar characteristics, cf. e.g. [622�625]. Due to the
lack of con�nement also in this model single quark states are already excited
at low temperatures in the chirally broken phase, see e.g. [626], resulting
in an unrealistic EoS near the phase transition. Since the constituent quark
masses are much larger than that of the pion, the meson dynamics dominates
at low temperatures and the predictions from chiral perturbation theory are
reproduced.

As described in Sec. 4.5.2 aspects of con�nement can be incorporated by
coupling quark degrees of freedom to the Polyakov loop. One proceeds in the
same way as for the NJL model, by replacing D/ with the covariant derivative

(∂µρs) = D/− iγ0A
0 , (4.83)

where A0 denotes the (spatially constant) temporal gauge �eld, and adding
the e�ective Polyakov-loop potential U(φ, φ̄) to obtain the 'Polyakov�Quark-
Meson' (PQM) Lagrangian



4.5 Phase diagram and thermodynamics of the PNJL and PQM models 249

LPQM = q̄ (i(∂µρs)− g(σ + iγ5τπ)) q +
1
2
(∂µσ)2 +

1
2
(∂µπ)2

− U(σ,π)− U(φ, φ̄) . (4.84)

In the mean-�eld approximation the grand potential is given by

Ω = U(φ, φ̄) + U(σ) +Ωq̄q(φ, φ̄, σ) (4.85)

with the quark/antiquark contribution

Ωq̄q = (4.86)

−2NfT
∫

d3p

(2π)3
Tr c

{
ln(1 + Pe−(Ep−µ)/T ) + ln(1 + P†e−(Ep+µ)/T )

}
and the purely mesonic potential

U(σ) =
λ

4
(σ2 − v2)2 − cσ . (4.87)

In the quark/antiquark contribution P(x) denotes the Polyakov-loop opera-
tor in the temporal direction (cf. (4.68))

P(x) = P exp

(
i

∫ β

0

dτA0(x, τ)

)
. (4.88)

Furthermore, the divergent vacuum part in this contribution is absorbed in
the renormalization which is done in the vacuum. The quark/antiquark single-
quasiparticle energy is given by

Ep =
√

p2 +M2
q (4.89)

with the constituent quark mass Mq = gσ. The remaining color trace in
the quark/antiquark contribution (4.86) is evaluated by using the identity
Tr lnA = ln detA and yields

Ωq̄q = −2NfT
∫

d3p

(2π)3
{

ln
[
1+3(φ+ φ̄e−(Ep−µ)/T )e−(Ep−µ)/T+e−3(Ep−µ)/T

]
+ ln

[
1+3(φ̄+ φe−(Ep+µ)/T )e−(Ep+µ)/T+e−3(Ep+µ)/T

]}
.

(4.90)

It should be stressed again, that no ultraviolet cuto� is necessary because the
PQM model is renormalizable in contrast to the PNJL model.

The equations of motion are obtained by minimizing the thermodynamic
potential (4.85) w.r.t. the three constant mean �elds σ, φ and φ̄:
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∂Ω

∂σ
=
∂Ω

∂φ
=
∂Ω

∂φ̄

∣∣∣∣
σ=〈σ〉,φ=〈φ〉,φ̄=〈φ̄〉

= 0 . (4.91)

The solutions of these coupled equations determine the behavior of the chiral
order parameter 〈σ〉 and the Polyakov-loop expectation values 〈φ〉 and 〈φ̄〉
as a function of T and µ.

4.5.7 Quark-meson parameters

The four parameters of the QM model, i.e. g, λ, v and c, are chosen such
that chiral symmetry is spontaneously broken in the vacuum and the σ-
�eld develops a �nite expectation value 〈σ〉 ≡ fπ, where fπ = 93 MeV is
set to the pion decay constant. Due to the pseudoscalar character of the
pions the corresponding expectation values vanish, 〈π〉 = 0. The Yukawa
coupling constant g is �xed by the constituent quark mass in the vacuum g =
Mq/fπ. Using the partially conserved axial vector current (PCAC) relation
the explicit symmetry breaking parameter c is determined by c = m2

πfπ,
where mπ is the pion mass. The quartic coupling constant λ is given by the
sigma mass mσ via the relation λ = (m2

σ−m2
π)/(2f

2
π). Finally, the parameter

v2 is found by minimizing the potential in radial direction, yielding v2 =
〈σ〉2 − c/(λ〈σ〉). For the ground state where 〈σ〉 = fπ this expression can be
rewritten as v2 = f2

π −m2
π/λ . It is positive in the Nambu-Goldstone phase.

In the vacuum the model parameters are �xed to mπ = 138 MeV, mσ = 600
MeV, fπ = 93 MeV and Mq = 300 MeV which result in c ∼ 1.77 · 106 MeV3,
v ∼ 87.6 MeV, λ ∼ 19.7 and g ∼ 3.2.

4.5.8 Polyakov-loop potential parameters

The choice of parameters for the Polyakov-loop potential have been discussed
in subsection 4.5.2 and are the same for the PQM model, except for the ex-
pansion coe�cient b2, where T0 should be made Nf - and µ-dependent. The
argument goes as follows. In the presence of dynamical quarks, the running
coupling α is changed due to fermionic contributions. The size of this e�ect
can be estimated within perturbation theory, see e.g. [627�631]. At zero tem-
perature it leads to an Nf -dependent decrease of ΛQCD, which translates into
an Nf -dependent decrease of the critical temperature T0 at �nite tempera-
ture. The two-loop β-function of QCD with massless quarks is given by

β(α) = −bα2 − cα3 , (4.92)

with the coe�cients
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b =
1
6π

(11Nc − 2Nf ) , (4.93)

c =
1

24π2

(
34N2

c − 10NcNf − 3
N2
c − 1
Nc

Nf

)
. (4.94)

Here, an RG scheme is assumed that minimizes (part of) the higher-order
e�ects. This is an appropriate scheme for the mean-�eld analysis. At leading
order the corresponding gauge coupling is given by

α(p) =
α0

1 + α0b ln(p/Λ)
+O(α2

0) , (4.95)

with α0 = α(Λ) at some UV-scale Λ, and ΛQCD = Λ exp(−1/(α0b)). At
p = ΛQCD the coupling (4.95) exhibits a Landau pole. At �nite temperature
the relation (4.95) allows to determine the Nf -dependence of the critical tem-
perature T0(Nf ). For Nf = 0 it is given by T0 = 270 MeV which corresponds
to �xing the coupling α0 at the τ -scale Tτ = 1.770 GeV and a running cou-
pling of α0 = 0.304 accordingly. If one keeps the coupling α0 at Tτ �xed, this
identi�cation yields the relation

T0(Nf ) = Tτe
−1/(α0b) , (4.96)

and Tab. 4.3 for the Nf -dependent critical temperature T0 in the Polyakov-
loop potential for massless �avors:

Nf 0 1 2 2 + 1 3
T0 [MeV] 270 240 208 187 178

Table 4.3 The critical Polyakov-loop temperature T0 for Nf massless �avors.

Massive �avors lead to suppression factors of the order T 2
0 /(T

2
0 + m2) in

the β-function. For 2 + 1 �avors and a current strange quark mass ms ≈ 150
MeV one obtains T0(2 + 1) = 187 MeV. We remark that the estimates for
T0(Nf ) have an uncertainty at least of the order ±30 MeV. This uncertainty
comes from the perturbative one-loop nature of the estimate and the poor
accounting for the temperature e�ects. For example, with the two-loop coef-
�cient (4.94) and restricting on Nf = 2 yields T0(2) = 192 MeV. Fortunately,
the results only show a mild T0 dependence.

There are no double counting e�ects due to the inclusion of the Dirac de-
terminant in the PQM and the independent adjustment of the Polyakov-loop
model parameters: the Polyakov-loop potential parameters, in particular b2,
genuinely depend on the running coupling, which is changed in the presence
of quarks. This e�ect is modeled by changing T0 → T0(Nf ) as de�ned in
(4.96). The direct contributions to the grand potential which originate from
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the fermionic determinant Ωq̄q, (4.86), are not governed by this rede�nition,
and have to be added separately.

A second step implements a µ-dependent running coupling in the b2 co-
e�cient, analogous to the Nf -dependence discussed above. Indeed, one can
argue that this is a minimal necessary generalization: without a µ-dependent
b2 the con�nement-decon�nement phase-transition has a higher critical tem-
perature than the chiral phase transition at vanishing chemical potential.
This is an unphysical scenario because QCD with dynamical massless quarks
in the chirally restored phase cannot be con�ning since the string breaking
scale would be zero.

As for the Nf -dependence one can resort to perturbative estimates, by
allowing for an additional µ-dependent term in the one-loop coe�cient b,

b(µ) =
1
6π

(11Nc − 2Nf )− bµ
µ2

T 2
τ

. (4.97)

This simple choice of the µ-dependent part can be motivated by using
HDL/HTL results on the e�ective charge [509]

α(p, T, µ) =
α(p)

1 +m2
D/p

2
, (4.98)

with the Debye mass m2
D = (Nc/3 + Nf/6)g2T 2 + Nf/(2π2)g2µ2. The µ-

derivative of the modi�ed coupling, µ∂µα = bµµ
2/p2, can be related to a

momentum derivative p∂pα = −b(p, µ)α2. Within the simple approach based
on a µ-dependence, that is strictly only valid in the perturbative regime, one
can estimate the momentum-dependent coe�cient b(p, µ) by b(µ) = b(γ Tτ , µ)
at an (average) momentum scale γ Tτ with γ ≤ 1.

The coe�cient bµ can be �xed such that the chiral transition temperature
and the con�nement-decon�nement transition agree at some arbitrary non-
vanishing µ. Interestingly, it turns out that then the transition temperatures
agree for all values of µ. The related value of bµ is provided by γ ' 1/4 and

bµ '
16
π
Nf . (4.99)

Inserting the µ-dependent coe�cient b(µ) into (4.96) then leads to a T0 with
additional µ-dependence, such that

T0(µ,Nf ) = Tτe
−1/(α0b(µ)) . (4.100)

(4.100) together with (4.99) should be viewed as a rough estimate of the µ-
dependence of T0. For more quantitative results the non-perturbative running
of the coupling in the presence of �nite temperature and quark density has
to be considered. This can be incorporated in a self-consistent RG-setting.
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4.5.9 Phase structure and thermodynamic variables

The phase structure of the PQM model is determined by the behavior of the
order parameters σ, φ and φ̄ and the grand canonical potential as a function
of temperature and quark chemical potential. All numerical results have been
obtained for Nf = 2. Then T0 = 208 MeV in agreement with Tab. 4.3. This
value is di�erent from that taken in Ref. [613, 632] where T0 = 270 MeV,
the value of Nf = 0. In these works T0 = 210 MeV has been �xed in order
to compare with lattice results. The Nf - and µ-dependence suggested above
o�ers a qualitative explanation for this choice.

In the left panel of Fig. 4.23 the temperature dependence of the chiral
condensate 〈q̄q〉 and the Polyakov-loop expectation value φ at µ = 0 is shown
in relative units. These results can be directly compared to those of the PNJL
model in Fig. 4.17. They are qualitatively similar.

Fig. 4.23 Left: The normalized chiral condensate 〈q̄q〉 and the Polyakov loop φ as a
function of temperature for µ = 0. Right: The temperature dependence of ∂〈q̄q〉/∂T and
∂φ/∂T for µ = 0. The Polyakov variable is scaled by a factor of 5. A chiral crossover is
found at T ∼ 180 MeV and a decon�nement crossover at a similar temperature.

At µ = 0 a chiral crossover temperature Tc = 184 MeV is found with
an uncertainty of ∼ ±14 MeV originating in the error estimate ±30 MeV
for T0. For example, using the two-loop running of the coupling (4.94), and
hence T0(Nf ) = 192 MeV yields Tc ∼ 177 MeV. In the presence of dynamical
quarks the Polyakov loop shows also a crossover at the same pseudo-critical
temperature. This can be read o� from the peak position of ∂〈q̄q〉/∂T and
∂φ/∂T , shown in the right panel of Fig. 4.23.

In two-�avor lattice simulations extrapolated to the chiral limit a pseudo-
critical temperature Tc = 173 ± 8 MeV is found using improved staggered
fermions [58]. Recently, a recalculation of the transition temperature with
staggered fermions for two light and one heavier quark mass close to their
physical values yields a Tc = 192 ± 7 MeV using the Sommer parameter
r0 for the continuum extrapolation [186]. This result has to be contrasted
with another recent lattice analysis with staggered fermions but using four
di�erent sets of lattice sizes Nτ = 4, 6, 8 and 10 to perform the continuum
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extrapolation [187]. >From the same physical observable this group �nds
a critical temperature Tc = 151 ± 3 MeV. Functional RG studies yield a
critical value of Tc = 172+40

−34 MeV [630, 631], where the error originates in an
estimate of the uncertainty similar to the considerations put forward here.
On the other hand, using the same parameters for the quark-meson model
without the Polyakov-loop modi�cations a crossover temperature of Tc ∼ 150
MeV emerges [633]. This situation calls for re�ned studies both on the lattice
as well as within functional methods to resolve the apparent quantitative
inaccuracies.

The phase diagram in the (T, µ)-plane resulting from the PQM model
with the parameter set discussed above is shown in Fig. 4.24. Two choices
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Fig. 4.24 Chiral phase diagrams for the PQM model. Upper lines for a µ-independent
Polyakov-loop potential and lower lines with µ-dependent corrections. The corresponding
CEP's are approximately located at (Tc, µc) = (163, 164) MeV (upper case) and at (150,
168) MeV (lower case).

for the variation of T0 are given, ignoring or including the µ-dependence. In
both cases the phase diagram features a critical endpoint (CEP), where the
line of �rst-order transitions terminates in a second-order transition. Lattice
simulations are not conclusive concerning the existence and location of the
CEP [2, 58, 156, 159, 195].

There are indications from lattice simulations at small chemical po-
tentials that decon�nement and chiral symmetry restoration appear along
the same critical line in the phase diagram. For the PQM model and µ-
independent T0(Nf ) the coincidence of decon�nement and chiral transition
at µ = 0 disappears for �nite µ. The decon�nement temperature is larger
than the corresponding chiral transition temperature. This is an unphysical
scenario because the decon�nement temperature should be smaller or equal
to the chiral transition temperature. When resorting to the µ-dependent
T0(µ,Nf ), (4.100), coinciding transition lines for the entire phase diagram
within an accuracy of ±5 MeV are found.
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The corresponding order parameters as function of temperature for several
chemical potentials are collected in Fig. 4.25 with Nf - and µ-dependent T0.
The values of the chemical potential are chosen such that one curve runs
through the CEP (µc = 168 MeV) and the other through a �rst-order phase
transition (µ = 270 MeV).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  50  100  150  200  250  300  350

T [MeV]

µ=0  MeV
µ=168 MeV
µ=270 MeV

Fig. 4.25 Left: The normalized chiral quark condensate 〈q̄q〉 as a function of temperature
for three di�erent chemical potentials µ = 0, 168, 270 MeV. For µ = 270 MeV a �rst-order
transition is found at Tc ∼ 81 MeV. Right: Same as left panel for the normalized Polyakov
loops φ̄ and φ.

A prime thermodynamic state variable is the pressure. It is usually nor-
malized to the QCD pressure in the Stephan-Boltzmann (SB) limit for non-
interacting Nf massless quarks and (N2

c − 1) massless gluons

pSB

T 4
= (N2

c − 1)
π2

45
+NcNf

[
7π2

180
+

1
6

(µ
T

)2

+
1

12π2

(µ
T

)4
]
, (4.101)

where the �rst term denotes the gluonic contribution and the rest involves
the fermions.

The PQM results are displayed in Fig. 4.26. For all values of T and µ the
pressure p/T 4 stays below the QCD SB limit, a feature that is also observed
in lattice calculations and other non-perturbative approaches. For vanish-
ing chemical potential the pressure is a smooth function of the temperature
consistent with a crossover transition. At temperatures of twice the critical
temperature it reaches approximately 80% of the SB limit (left panel of Fig.
4.26). On the lattice two classes of data for the pressure obtained with a
temporal extent Nτ = 4 and Nτ = 6 at µ = 0 are currently available both
of which are not extrapolated to the continuum [108, 138]. The results are in
agreement with lattice simulations with a temporal extent of Nτ = 6 which
is also closer to the continuum limit.

In the right panel of Fig. 4.26 the scaled pressure is shown as function
of the temperature for three di�erent quark chemical potentials. An increase
of the chemical potential leads to an increase of the pressure as more quark
degrees of freedom are active. For a certain chemical potential the crossover
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Fig. 4.26 Left: Scaled pressure p/pSB for µ = 0. The PQM model prediction (solid line)
is compared to lattice results for Nτ = 4 and Nτ = 6. Lattice data taken from Ref. [108].
Right: Scaled pressure p/pSB for three di�erent quark chemical potentials, µ = 0, 168, 270
MeV. Tc(µ = 0) = 184 MeV.

transition changes to a �rst-order phase transition. In this case the pressure
has a kink at the transition point but remains a continuous function. The
kink at T ∼ 81 MeV for the µ = 270 MeV curve is clearly visible.

Another interesting observable is the net quark density. It is obtained from
the thermodynamic potential via nq = −∂Ω(T, µ)/∂µ. The quark density,
normalized to 1/T 3, is displayed as a function of the temperature in the left
panel of Fig. 4.27 for three di�erent chemical potentials µ = 100, 168 and 270
MeV. In comparison to the pure quark-meson model without the Polyakov
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Fig. 4.27 Left: The quark number density nq/T 3 for various values of µ. The dashed
lines denote the corresponding Stefan-Boltzmann limits. Right: The scaled quark-number
susceptibility χq/T 2 as a function of temperature for three di�erent quark chemical po-
tentials, µ = 0, 168, 270 MeV.

loop, the quark density in the con�ned phase is much more suppressed when
the interaction of quarks with the Polyakov loop is added [626, 633]. A similar
e�ect is seen in the PNJL model. Above the phase transition, the quark den-
sity of the pure quark-meson model approaches the Stefan-Boltzmann limit
nq = Nfµ(T 2 + (µ/π)2) immediately. With the Polyakov-loop dynamics this
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behavior is changed drastically. The quark densities increase slightly above
the corresponding SB limits and decrease again with growing temperature.
For high temperatures the SB limit of the quark density is always reached
from above. At a �rst-order phase transition nq jumps and drops immediately
after the transition for increasing temperatures.

The quark-number susceptibility measures the static response of the quark
number density to an in�nitesimal variation of the quark chemical potential
and is given by χq = ∂nq/∂µ. It is shown in the right panel of Fig. 4.27 as a
function of temperature for several values of µ. This observable can be used
to identify the existence and location of the critical endpoint in the phase di-
agram. At a �rst-order phase transition this quantity has a discontinuity and
in equilibrium only at a second-order critical endpoint it is divergent. Even
for �nite pion masses the critical endpoint is of second-order and induces a
divergent quark-number susceptibility. For µ = 168 MeV, close to the critical
chemical potential of the CEP, χq diverges at the critical temperature.

The modi�cations caused by the quark-gluon interaction on the quark
number susceptibility, are similar as those already discussed in the context of
the quark-number density. Compared to the pure quark-meson model χq is
again more suppressed below the chiral phase transition. Above the transition
χq lies above the corresponding SB limit χq/T 2 = Nf (1 + 3/π2(µ/T )2). At
high temperatures the SB limit (not shown in the �gure) is again reached
from above.

4.5.10 Summary of the present status

The PNJL and the PQM approaches represent a minimal synthesis of the
two basic principles that govern QCD at low temperatures: spontaneous chi-
ral symmetry breaking and con�nement. The respective order parameters
(the chiral quark condensate and the Polyakov loop) are given the mean-
ing of collective degrees of freedom. Quarks couple to these collective �elds
according to the symmetry rules dictated by QCD itself.

A limited set of input parameters is adjusted to reproduce lattice QCD
results in the pure gauge sector and pion properties in the hadron sector.
Then the quark-gluon thermodynamics above Tc up to about twice the criti-
cal temperature is well reproduced, including quark densities up to chemical
potentials of about 0.2 GeV. In particular, the PNJL and the PQM models
correctly describe the step from the �rst-order decon�nement transition ob-
served in pure-gauge lattice QCD (with Tc ' 270 MeV) to the crossover tran-
sition (with Tc around 200 MeV) when Nf = 2 light quark �avors are added.
The non-trivial result is that the crossovers for chiral symmetry restoration
and decon�nement almost coincide at small µ, as found in lattice simulations.
It is interesting to consider a possible Nf - and µ-dependence in the parame-
ters of the Polyakov-loop potential via the running coupling α. A qualitative
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estimate is provided by the one-loop β-function for α as well as using the hard
dense loop approximation. This leads to anNf - and µ-dependent T0, the criti-
cal temperature of the Polyakov-loop model, which decreases with increasing
Nf and µ. These modi�cations yield coinciding peaks in the temperature
derivative of the Polyakov-loop expectation value and the chiral condensate
at µ = 0, in agreement with the lattice �ndings of Refs [156, 634]. Interest-
ingly this coincidence of the decon�nement and chiral symmetry restoration
persists at �nite µ.

The models also reproduce the quark number densities and pressure dif-
ference at various chemical potentials surprisingly well when confronted with
corresponding lattice data. Considering that the lattice results have been
found by a Taylor expansion in powers of the chemical potential, this agree-
ment indicates rapid convergence of the power series in µ.

The phase diagram predicted in these models has interesting implications.
Starting from large quark masses an extrapolation to realistic small quark
masses can be performed. The location of the critical point turns out to be
sensitive to the input value of the bare (current) quark mass.

The conclusion to be drawn at this point is as follows. A quasiparticle ap-
proach, with its dynamics rooted in spontaneous chiral symmetry breaking
and con�nement and with parameters controlled by a few known properties
of the gluonic and hadronic sectors of the QCD phase diagram, can account
for essential observations from two-�avor Nc = 3 lattice QCD thermodynam-
ics up to about twice the critical temperature of about 0.2 GeV. Presently
ongoing further developments include:

• systematic steps beyond the mean-�eld approximation;
• extensions to 2+1 �avors;
• inclusion of explicit diquark degrees of freedom and investigations of color

superconductivity in the high density domain;
• detailed evaluations of susceptibilities and transport properties at �nite

chemical potential.

Concerning the �rst item in the above list it is important to note that es-
pecially the description of phase transitions (order, universality class) might
not come out correctly in pure mean-�eld approaches (cf. also Sec. 2.2). Here
the renormalization group method is superior. This method is reviewed below
in Sec. 4.7. In the next section, �uctuations in the presence of phase transi-
tions are studied, using as an illustrative example the NJL model which has
been introduced in the present section.

4.6 Probing the QCD phase boundary with �uctuations

The e�ective chiral models, e.g. the ones discussed in the last section, de-
scribe generic and universal properties of the QCD phase diagram related
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with the chiral phase transition [27, 50, 635]. In particular, the PNL model
exhibits a critical end point (CEP) as the matching point of the �rst order
and cross-over transition. Clearly, the position of the CEP and the properties
of any physical observable outside the critical region are model dependent.
However, the critical behavior of physical observables at the transition line
should be universal and model independent. In particular, based on the uni-
versal properties of the QCD chiral phase transition it is rather clear that if
the CEP exist then it belongs to the 3-dimensional Ising model universality
class [22, 42, 49, 197, 633, 636]. This implies, that the CEP is a particular
point on the QCD phase diagram where the �uctuations of the net quark and
electric charge densities are diverging [52, 637, 638].

One of the objectives of the CBM experiment with ultra-relativistic heavy
ion collisions is to map the QCD phase diagram and study the properties of
high density strongly interacting medium. Of particular importance would
be here to �nd the CEP and to identify the �rst order phase transition.

In this section, based on the NJL model calculations we argue, that by
measuring the charge density �uctuations for di�erent collision energies one
can, in principle, identify the chiral phase transition experimentally.

4.6.1 Charge density �uctuations near the critical end
point

In heavy ion phenomenology the �uctuations of conserved charges are directly
accessible experimentally. Since these are also observable that are sensitive
to critical properties related with chiral phase transition, thus they can give
a direct access to probe the QCD phase diagram. In statistical physics �uc-
tuations of conserved charges Qi are quantify by the corresponding suscep-
tibilities, χQi . Of particular importance are susceptibilities related with the
net�quark number χq, the electric charge χQ and the isospin χI conservation.

The susceptibilities describe the response of charge densities nQi to any
change in the corresponding chemical potentials µQi . Thus, in heavy ion
collisions the relevant susceptibilities are de�ned as:

χq =
∂nq
∂µq

, χI =
∂nI
∂µI

, χQ =
∂nQ
∂µQ

. (4.102)

In isospin symmetric medium they are linearly related

χQ =
1
36
χq +

1
4
χI (4.103)

Fig. 4.28 shows the NJL model results [636] on the net�quark and isovec-
tor susceptibilities along the phase boundary as a function of the transition
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Fig. 4.28 The quark number (left) and isovector (right) susceptibilities χq and χI as
functions of the temperature along the phase boundary. In the left panel the solid (dashed)
line denotes χq in the chirally broken (symmetric) phase. The vertical dotted-line indicates
the position of the tricritical point TCP. The calculations were done in the chiral limit in

an isospin symmetric system with the vector coupling constant G
(S)
V = 0.3GS .

temperature Tc(µc). The calculations were done in the chiral limit and under
the mean �eld approximation of the NJL model thermodynamics [636].

The properties of the critical �uctuations shown in Fig. 4.28 are quite
interesting. There is an increase of χq with decreasing transition temperature
when approaching towards the TCP. The position of the TCP is signaled
by the singularity of the net quark susceptibility χq and its non monotonic
behavior. In the absence of TCP, the net quark susceptibility would be a
monotonic function of Tc along the phase boundary, as illustrated by the
dashed-dotted line in Fig. 4.28. Such a monotonic change along the transition
line is seen in the behavior of the isovector susceptibility. There is also a region
of ∆T ' 30 MeV around TTCP where the χq �uctuations are enhanced due
to appearance of the critical point on the phase diagram.

The qualitative behavior of χq and χI seen in Fig. 4.28 is consistent with
the results of the Landau theory discussed in Section 2 and universality argu-
ments. First, the discontinuity across the phase boundary vanishes at µq = 0.
Second, the singularity of χq shows up only in the chirally broken phase, while
the susceptibility in the symmetric phase is monotonous along the phase
boundary and shows no singular behavior. In addition the non-singular be-
havior of χI at TCP is to be expected since there is no mixing of isospin
density with the sigma �eld due to SU(2)V isospin symmetry [52].

In heavy ion collisions the change in temperature Tc corresponds to change
in the c.m.s collision energy. An increase of

√
s results in an increase of Tc and

decrease in µc. Thus, the critical region around tricritical point (∆T,∆µ) can
be (approximately) converted to a range of center-of-mass energies in A�A
collisions. Assuming for simplicity that the relation of Tc and

√
s is the same

as for the chemical freezeout parameters extracted from data [451], we �nd
in the actual calculations that ∆T ' 30 MeV would corresponds to ∆

√
s ∼ 1

A·GeV.
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From the results shown in Fig. 4.28 it is clear that the non-monotonic
behavior of the baryon density �uctuations with increasing beam energy may
give rise to observable e�ects in heavy-ion collisions to identify the critical
end point TCP/CEP. Due to linear relation between di�erent susceptibilities
(4.103) it is clear that the electric charge density �uctuations should show
a non-monotonic behavior as well. In addition, a non-monotonic behavior is
expected for any observable that directly related to the net quark number
density-density correlator. Thus, measurements of the corresponding non-
monotonic structure in the baryon number or electric charge density, net-
proton number density or in the mean transverse momentum would be an
excellent experimental probe of CEP/TCP.

In heavy ion collision an additional complication to explore and map the
QCD phase diagram experimentally appears due to �nite size and live-time,
the secondary hadronic rescatterings, in-medium e�ects and possible devia-
tions from thermal and/or chemical equilibrium. All these e�ects can dilute
observation of the critical �uctuations along the chiral phase transition [635].
In the next section we will discuss how deviation from equilibrium could
in�uence the critical behavior of charge density �uctuations.

4.6.2 Charge density �uctuations in the presence of
spinodal phase separation

We have argued that the non-monotonic behavior of charge �uctuations in
the c.m.s collision energy in heavy ion experiments would be an ideal and
transparent signal for the CEP. However, such conclusion is based on the
assumption that the �rst order phase transition appears in equilibrium. In
heavy ion collisions, we are dealing with quickly expanding dynamical system,
such that, deviations from equilibrium are not excluded.

A �rst-order phase transition is known to exhibit a convex anomaly in the
thermodynamic pressure [493, 639�646]. There is an interval of energy density
or baryon number density where the derivative of pressure is positive. This
anomalous behavior characterizes a region of instability in the temperature
and baryon density, (T, nq)-plane. This region is bounded by the spinodal
lines, where the pressure derivative with respect to volume vanishes. The
above anomalous properties of the �rst order transition could be possibly
uncovered in non-equilibrium system.

In the following, we will discuss what is the in�uence of the spinodal phase
separation on the baryon number density �uctuations. We show that spin-
odal instabilities result in divergence of the electric and the baryon number
density �uctuations. Consequently, a critical behavior of charge �uctuations
is not necessarily attributed to the CEP but is also there along the �rst order
transition if spinodal phase separation appears in a medium.
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Our discussion is based on the NJL model calculations, however our main
conclusion on the properties of charge �uctuations in the presence of spinodal
instability is quite general and is independent on the particular choice of the
e�ective chiral Lagrangian.

In the NJL model the dynamical quark massM places the role of an order
parameter for chiral phase transition. It is obtained as the solution of the gap
equation:

M = m+ 24GS
∫

d3p

(2π)3
M

E

[
1− n(+)(M,T, µq)− n(−)(M,T, µq)

]
, (4.104)

where n± are the quark and antiquark momentum density functions.
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Fig. 4.29 Left: The dynamical quark mass at �xed temperature as a function of quark
chemical potential. The broken line indicates an equilibrium �rst order phase transition.
The dotted lines constrain the isothermal spinodal points. Right: The pressure as a function
of inverse quark number density for �xed temperature T = 30 MeV [645, 646].

The left panel of Fig. 4.29 shows the solutions of the above gap equation
for the constituent quark mass M at �xed temperature T = 30 MeV and
for di�erent values of the quark chemical potential. The behavior of M , seen
in Fig. 4.29, is typical for systems that exhibit a �rst order phase transition:
There is no unique solution of the gap equation, instead, there are metastable
solutions that correspond to the local minima of thermodynamic potential.
For �nite current quark masses in the NJL Lagrangian, consider here, the
chiral symmetry is explicitly broken. Consequently, M is not any more an
order parameter and is never zero as seen in Fig. 4.29.

To identify the equilibrium transition from chirally broken to approxi-
mately symmetric phase one usually performs the Maxwell construction. In
this case the chiral phase transition parameters are �xed such that the three
extrema of the thermodynamic potential are degenerate. The location of an
equilibrium transition from massive quasiparticles to almost massless quarks,
calculate at �xed T = 30 MeV, is shown as dashed line in Fig. 4.29.

The non-monotonic behavior of the dynamical quark mass M seen in Fig.
4.29 should a�ects any thermodynamic observable sinceM(T, µq) determines
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the properties of medium constituents. The right panel of Fig. 4.29 shows the
inverse density dependence of thermodynamic pressure at �xed temperature.
The pressure exhibits a non-monotonic structure as a consequence of the be-
havior of the dynamical quark mass seen in Fig. 4.29, left panel. The unstable
solution of the gap equation leads to mechanical instabilities in the thermo-
dynamic pressure where its volume derivative is positive. This region appears
between spinodal points characterized by the minimum and the maximum of
the pressure. Outside of this region the system is mechanically stable. The
volume dependence of the pressure can be studied at �xed temperature or at
�xed entropy. In the �rst case the spinodal points are isothermal whereas in
the second they are isentropic. Changing the temperature or entropy results
as the isothermal or isentropic spinodal linesin (T, nq)-plane. If the volume
derivative of P exists then the spinodal lines are de�ned through the condi-
tions: (

∂P

∂V

)
T

= 0 or
(
∂P

∂V

)
S

= 0 . (4.105)

Considering the properties of dynamical quark mass and thermodynamic
pressure for di�erent T and µq one �nds the phase diagram for the chiral
phase transition. Fig. 4.30 shows the resulting diagram in the NJL model in
the (T, nq)-plane that accounts for spinodal instabilities. For �nite current
quark mass the CEP separates cross over from the �rst order chiral phase
transition.

Assuming equilibrium transition there is a coexistence phase that ends
at the CEP. However, accounting for expected instabilities due to a convex
anomaly one can distinguish the metastable from mechanically unstable re-
gions that are separated by the spinodal lines.

Fig. 4.31, left panel, shows the evolution of the net quark number �uc-
tuations along a path of �xed T = 50 MeV in the (T, nq)�plane across the
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Fig. 4.31 Left: The net quark number susceptibility at T = 50 MeV as a function of the
quark number density across the �rst order phase transition. Right: The net quark number
susceptibility in the stable and meta-stable regions [645, 646].

1st order transition. Within coexistence region, there is a singularity in χq
that appears when crossing the isothermal spinodal lines. There, the �uctu-
ations diverge and the susceptibility changes its sign. Between the spinodal
lines, the susceptibility is negative. This implies instabilities in baryon num-
ber �uctuations when crossing the transition between the chirally symmetric
and broken phases.

The behavior of χq seen in Fig. 4.31 is a direct consequence of the ther-
modynamic relation (

∂P
∂V

)
T

= −n
2
q

V
1
χq
, (4.106)

which connects the pressure derivative with the net�quark susceptibility.
Along the isothermal spinodal lines the pressure derivative in (4.106) van-
ishes. Thus, for non-vanishing density nq, the χq must diverge to satisfy
(4.106). Furthermore, since the pressure derivative ∂P/∂V |T changes sign
when crossing the spinodal line, there must be a corresponding sign change
in χq, as seen in Fig. 4.31, left panel.

In equilibrium �rst order phase transition, the density �uctuations are
�nite. The �uctuations increase as one approaches the CEP along the �rst
order transition and decrease again in the cross over region. This led to the
prediction of a non-monotonous behavior of the �uctuations with increasing
beam energy as a signal for the existence of CEP as discussed in the last
section. We stress that strictly speaking this is valid only for the idealized
situation where the �rst order phase transition takes place in equilibrium.
In a more realistic, non-equilibrium system, one expects to observe large
�uctuations in a broad region of the phase diagram, i.e., over a broader
range of beam energies, due to the spinodal instabilities as seen in Fig. 4.31,
right panel [645, 646]. Consequently, large �uctuations observed in heavy
ion experiment and their drop at su�ciently high collision energy could be
considered as a signal of the �rst order chiral phase transition.
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4.7 The Renormalization Group method and the critical
structure of QCD medium

As the underlying microscopic theory of the strong interaction, QCD de-
scribes qualitatively di�erent physics at di�erent length or momentum scales.
QCD belongs to the class of non-Abelian Yang-Mills theories and has the im-
portant property that the strength of the strong gauge coupling varies with
the size of the characteristic momentum transfer in a physical scattering pro-
cess. Because QCD is an asymptotically free theory, the coupling runs in such
a way that it is large for small momentum and small for large momentum
transfers. Thus, at large momenta or equivalently at small distances, per-
turbative methods for the computation of physical observables can be used
reliably because the applicability of perturbation theory is based on small
couplings. An example of the applicability of perturbative methods is the
successful description of jet physics at high momenta.

The situation becomes signi�cantly more complicated at smaller mo-
mentum scales or larger distances. Perturbation theory breaks down and
non-perturbative methods become indispensible. Analytical methods start-
ing from �rst principles that allow to treat QCD at low-energies are only
beginning to emerge. In fact, some success in the calculation of low-energy
physics has been achieved with Schwinger-Dyson and functional renormaliza-
tion group techniques and by numerical methods using Monte Carlo simula-
tions, but physical mechanisms can best be analyzed in e�ective model cal-
culations when detailed descriptions for this momentum regime are needed.

The situation is further complicated at �nite temperature and/or baryon
density. For instance, at very high temperatures perturbative calculations
of the pressure in terms of the coupling constant are plagued by serious
infrared divergences. This aspect is described in Sec. 3.1. Furthermore, it is
generally expected that, at high enough temperature and densities, hadronic
matter attains a state in which broken chiral symmetry is restored and the
fundamental degrees of freedom, quarks and gluons, are no longer con�ned.
The system undergoes a phase transition from the ordinary hadronic phase
to a chirally restored and decon�ned quark gluon plasma (QGP). Moreover,
recent theoretical studies reveal an increasing richness in the structure of the
phase diagram of strongly interacting matter. An overview over the di�erent
phases of QCD is given in Sec. 2.2.

As is well known from condensed matter physics, a viable non-perturbative
method is the renormalization group (RG) [647]. The terminology renormal-
ization group is rather unfortunate because the mathematical structure of
the method is not that of a group. Neither is there one universal method
which immediately may be applied to a given problem without care. In gen-
eral, the RG is a framework, a certain set of ideas which has to be adapted
to the nature of the problem at hand. All RG approaches have in common
the idea of re-expressing the parameters, which de�ne a given problem in
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terms of some other ones while keeping the interesting physical aspects of
the underlying problem unchanged. Thus, the RG method has a wide range
of applicability not only to equilibrium statistical physics or quantum �eld
theory. In the context of equilibrium critical behavior, it represents a very
e�cient way to describe critical phenomena and in particular phase transi-
tions. It can be used to characterize universal and non-universal aspects of
second-order as well as �rst-order phase transitions and is thus well adapted
to reveal the full phase diagram of strongly interacting matter. Applications
of the RG method to the phase diagram in the framework of an e�ective two-
�avor quark-meson model, which captures essential chiral aspects of QCD,
can be found for example in [626, 633, 648, 649].

In the following the concept of the e�ective average action and its asso-
ciated renormalization group equation will be introduced. Since it is clearly
impossible to review the many facets of RG formulations here, we will con-
centrate on the so-called Wilsonian RG approach.

4.7.1 Renormalization group methods

The renormalization group deals with the e�ect of scale changes in a given
theory. The central issue is the understanding of the macroscopic physics
at large distances or low momenta in terms of the underlying fundamen-
tal microscopic interaction. In order to understand the evolution from the
microscopic to the macroscopic scales one has to consider the quantum or
statistical �uctuations on all scales in between. The general RG idea is to
treat the �uctuations not all at once but successively from scale to scale
[647].

This idea combined with functional methods leads to the so-called 'func-
tional' RG. By means of functional methods, the computation of generating
functionals of correlation functions becomes feasible. All important physical
information is contained in the correlation functions as soon as the �uctu-
ations have been integrated out. Instead of evaluating correlation functions
by averaging over all �uctuations at once, only the change of the correla-
tion functions induced by an in�nitesimal momentum shell of �uctuations
is considered. This goes along Wilson's philosophy of integrating out modes
momentum shell by momentum shell.

From a technical point of view this means one has to work with func-
tional di�erential equations - the so-called RG or �ow equations - instead
of functional path integrals which is usually the case in standard quantum
�eld theory. The di�erential structure of the RG equations has a larger ver-
satility and o�ers several advantages compared to an integral formulation.
Analytically and numerically it is better accessible and more stable. This is
of great interest in non-Abelian gauge theories such as QCD. During the evo-
lution from microscopic to macroscopic scales these theories turn from weak
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to a strong coupling and thus they become non-perturbative at macroscopic
scales. In this sense RG methods provide a powerful tool to investigate non-
perturbative phenomena of quantum �eld theories and statistical physics.

4.7.1.1 The e�ective average action

There are various RG methods known in the literature [622, 650�656]. One
particular formulation of RG �ows is based on the concept of the e�ective av-
erage action Γk, which is a simple generalization of the standard e�ective ac-
tion Γ , the generating functional of the one-particle irreducible (1PI) Green's
functions [657]. It therefore contains all information about masses, couplings,
form factors etc. and furthermore, it incorporates all quantum e�ects and
thermal �uctuations in equilibrium matter. In the later case, the e�ective
action represents a thermodynamic potential, which is related to the free en-
ergy, the logarithm of the grand canonical partition function, W [J ] = lnZ[J ]
with a scalar source J , by a Legendre transform

Γ [Φ] = −W [J ] +
∫
ddxJ(x)Φ(x) (4.107)

with the so-called classical �eld Φ = δW [J ]/δJ . A consequence of this trans-
formation is that the full Γ has to be a convex functional. The generating
functional W [J ] generates all connected Green's functions and is de�ned by

W [J ] = ln
∫
Dχ exp

{
−S[χ] +

∫
ddxJ(x)χ(x)

}
(4.108)

where S[χ] represents the classical action for a real scalar �eld χ in d Eu-
clidean dimensions.

The generalization of the e�ective action to the e�ective average action is
achieved by implementing an infrared (IR) cuto� scale k in the functional
integral for W [J ], (4.108). This is accomplished by adding an IR cuto� term
∆Sk[χ] to the classical action S[χ]. In this way, W [J ] is turned into a scale
dependent functional Wk[J ]. The IR cuto� is quadratic in the �elds χ and is
best formulated in momentum space as

∆kS[χ] =
1
2

∫
ddq

(2π)2
Rk(q)χ(−q)χ(q) , (4.109)

where Rk(q) denotes an appropriately chosen IR cuto� function. The regula-
tor function is not completely arbitrary but has to satisfy certain conditions.
It formally acts as a momentum-dependent mass term, which vanishes rapidly
for q2 � k2. On the one hand, it suppresses the IR cuto� ∆Sk for large mo-
menta q in a smooth manner. As an example a typical choice of the IR cuto�
function is shown in the left panel of Fig. 4.32. The choice of a smooth cuto�
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function has also the advantage that no non-analytic momentum dependence
is introduced as would be the case for a sharp cuto�. Thus, the functional
integration of the high momentum modes in (4.108) is not disturbed. On the
other hand, for momenta much smaller than the IR scale k, q2 � k2, the IR
cuto� function behaves as Rk(q) ' k2. This implies that all �eld components
of χ with momenta smaller than the IR cuto� scale k acquire an e�ective
mass proportional to k and decouple from the dynamics as a consequence of
the decoupling theorem by Appelquist and Carrazone [658].

Fig. 4.32 A typical IR cuto� function Rk(q)/k2 (left panel) and its scale derivative
k ∂
∂k
{Rk(q)/k2} (right panel).

Finally, in terms of Wk[J ] the e�ective average action Γk is obtained by a
modi�ed Legendre transform similar to (4.107)

Γk[Φ] = −Wk[J ] +
∫
ddxJ(x)Φ(x)−∆kS[Φ] (4.110)

where the IR cuto� ∆Sk has been substracted. This modi�ed transforma-
tion destroys the convexity of Γk for any �nite scale k. Only in the limit
k → 0, Γk becomes a convex functional again because the modi�ed Legen-
dre transformation tends back towards the pure Legendre transformation,
(4.107). However, all symmetries of the system that are respected also by
the IR cuto� ∆kS, are symmetries of Γk as well. This property concerns not
only translation and rotation invariance but also chiral symmetry because a
chirally invariant form for Rk can be found. Furthermore, an e�ective average
action for gauge theories can also be formulated even though the IR cuto�
∆kS may not be gauge invariant. Accordingly, the usual Ward identities re-
ceive further corrections for �nite k which vanish in the limit k → 0. For RG
reviews with a focus on gauge theories, see for example [654, 655].

The average action Γk corresponds to an integration over all modes of
the quantum �elds with Euclidean momenta larger than the infrared cuto�
scale, i.e., q2 > k2. The modi�ed Legendre transform guarantees that the
only di�erence between Γk and Γ is the e�ective IR cuto� ∆kS and thus
only quantum �uctuations with momenta larger than k are included.

In the limit k → 0, the infrared cuto� is removed and the e�ective average
action becomes the full quantum e�ective action Γ containing all quantum
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Fig. 4.33 The e�ective average action Γk as an interpolation between the bare action in
the UV and the full e�ective action Γ in the IR.

�uctuations. Thus, for any �nite infrared cuto� k the integration of quantum
�uctuations is only partially done. The in�uence of modes with momenta
q2 < k2 is not considered. This scenario is visualized in Fig. 4.33 where the
k-dependent e�ective average action Γk as an interpolation between the bare
action in the ultraviolet and the full e�ective action in the infrared is shown.

In the limit k →∞ the e�ective average action matches the bare or clas-
sical action. In a theory with a physical UV cuto� Λ, we therefore associate
Γk=Λ with the bare action because no �uctuations are e�ectively taken into
account. As the scale k is lowered, more and more quantum �uctuations are
taken into account. As a consequence, Γk can be viewed as a microscope with
a varying resolution whose length scale is proportional to 1/k. It averages
the pertinent �elds over a d-dimensional volume with size 1/kd and permits
to explore the system on larger and larger length scales. In this sense, it is
closely related to an e�ective action for averages of �elds, hence its deno-
tation as e�ective average action becomes manifest. Thus, for large scale k
one has a very precise spatial resolution, but one also investigates e�ectively
only a small volume 1/kd. For lower k the resolution is smeared out and the
detailed information of the short distance physics is lost. However, since the
observable volume is increased, long distance e�ects such as collective phe-
nomena which play an important role in statistical physics become more and
more visible.

The momentum-shell idea, presented above, is in close analogy to a re-
peated application of the so-called block-spin transformation on a lattice in-
vented by Kadano� et al. [659]. This transformation is based on integrating
out the �uctuations with short wavelengths and a subsequent rescaling of the
parameters which govern the remaining long-range �uctuations such as the
mass, coupling constant etc. On the sites of a coarse lattice more and more
spin-blocks are averaged over. Hence, in the language of statistical physics,
the e�ective average action can also be interpreted as a coarse grained free
energy with a coarse graining scale k.
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4.7.1.2 Functional �ow equation

As already mentioned, the dependence of the e�ective average action Γk on
the scale k is governed by a functional di�erential equation or �ow equation.
Its derivation is straightforward from (4.110): by calculating its k-derivative
and reexpressing the emerging two-point functionW (2)

k by Γ (2)
k the �ow equa-

tion follows

∂tΓk[Φ] =
1
2
Tr

(
∂tRk

Γ
(2)
k [Φ] +Rk

)
. (4.111)

Here, Γ (2)
k [Φ] stands for the second functional derivative with respect to the

�eld Φ

Γ
(2)
k [Φ] =

δ2Γk
δΦδΦ

(4.112)

and denotes the exact inverse average propagator. The trace involves a d-
dimensional integration over momenta (or coordinates) as well as a summa-
tion over internal indices (e.g. �avor, color and/or Dirac indices). It is conve-
nient to introduce the logarithmic variable t = ln(k/Λ) with some arbitrary
momentum scale Λ with the total derivatives ∂t ≡ kd/dk.

The right hand side of the �ow equation (4.111) is both infrared and ultra-
violet �nite. The regulator Rk in the denominator (in the propagator) ensures
the infrared �niteness. Its derivative, ∂tRk, in the numerator expresses the
fact that only a narrow range of the whole momentum integration, hidden in
the trace, e�ectively contributes to the �ow. This is visualized in the right
panel of Fig. 4.32: the function ∂tRk has a peak for momenta around q2 ∼ k2

and decays rapidly. Thus, only momenta around this peak in the momen-
tum trace of (4.111) are taken e�ectively into account. In other words this
is also equivalent to an integration of a smeared momentum shell around a
given scale k. The addition of many momentum shells, starting deep in the
ultraviolet, up to a certain infrared scale k is shown in Fig. 4.33.

The �ow equation (4.111) is often labeled as functional or Exact RG (fRG).
It is an exact non-perturbative functional equation in the sense that it can
be derived from �rst principles. It has a simple graphical one-loop structure
but is not of perturbative one-loop order. Because it depends on the full �eld-
dependent inverse average propagator, Γ (2)

k [φ] + Rk, arbitrarily higher loop
orders are incorporated. Thus, the �ow equation includes generally the e�ects
from all orders of a perturbative expansion. In addition, the one-loop struc-
ture has some advantages because technical complications due to overlapping
loop integrations do not arise. One can thus use standard one-loop Feynman
diagrams and perturbative techniques for practical calculations which estab-
lishes a direct connection between perturbation theory and solutions of RG
equations. Furthermore, RG equations for any n-point functions can be de-
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rived by taking appropriate functional derivatives of (4.111) with respect to
the �elds. These equations have a similar structure as an analogous derivation
of n-point functions in a Schwinger-Dyson framework.

4.7.1.3 Truncations

Unfortunately, general methods for the solution of partial functional di�er-
ential equations are not known. Strategies to �nd their solutions are mainly
restricted to iterative procedures that can be applied once some small pa-
rameters are identi�ed. In the absence of a clearly identi�ed small expansion
parameter, a useful strategy to �nd a solution is to make an Ansatz for the
e�ective average action Γk which is based on a certain expansion pattern.

The idea is that an expansion of Γk in terms of some invariants turns the
functional di�erential equation into a coupled system of non-linear ordinary
or partial di�erential equations for in�nitely many couplings or vertices. In
order to reduce the in�nite system to a numerically manageable size one
needs to truncate the most general expansion pattern of Γk. So far, several
complementary systematic expansion schemes have been explored in the lit-
erature. One such systematic scheme is the 'derivative expansion' where Γk
is expanded in powers of derivatives. An example for this type of truncation
for a one-component scalar �eld theory is the expression

Γk[φ] =
∫
ddx

{
Vk(φ) +

1
2
Zk(φ)(∂µφ)2 +O(∂4)

}
. (4.113)

The �rst term of this expansion, Vk, corresponds to the scale-dependent scalar
e�ective potential and contains no derivatives. The �rst correction includes
the �eld-dependent wave function renormalization Zk(φ) in front of the stan-
dard kinetic term. Higher corrections of this expansion of the order O(∂4) are
suppressed. Note, that this does not necessarily mean that the corresponding
higher-order corrections are small. Furthermore, it is not even guaranteed
that the chosen truncation scheme converges because the scale-dependent
e�ective potential and also Zk(φ) are often non-analytic functions of the
�elds. Nevertheless, one hopes that these expansions are asymptotic, similar
to ordinary perturbation theory, and the calculation of physical quantities
of interest are feasible at least to a certain degree of accuracy. What is im-
portant to require here, is that the in�uence of the neglected higher order
terms on the evolution of those terms, kept in the expansion, is small. As
for all non-perturbative analytical methods the truncation error has to be
controlled separately which is often not an easy task.

Another point one should mention in this context is the dependence of
the results on the choice of the regulator function Rk. For an exact solution
without any truncations the infrared physics for k → 0 does not depend
on a particular choice of Rk. As already mentioned, the explicit form of
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Fig. 4.34 Di�erent trajectories in the 'theory space' for di�erent choices of the regulator
Rik, i = 1, . . . , 4. The end point of all trajectories is independent of the explicit form of
the regulator and represents the full e�ective action Γk→0 in the infrared.

the regulator function Rk is not �xed uniquely. Thus, di�erent choices of
Rk correspond to di�erent trajectories in the space of all possible action
functionals, the so-called 'theory space'. It is spanned by all possible invariant
�eld operators. The common starting point of each trajectory in this theory
space is the bare action SΛ and the end point in the infrared is the full
e�ective action Γk→0. It is unique only if no truncations are made, see Fig.
4.34. Once approximations are made, the dimension of the space becomes
�nite and the trajectories as well as their endpoints will depend on the choice
of Rk. In this way an arti�cial scheme dependence is introduced similar to
the scheme dependence in the perturbative renormalization theory. One may
use this scheme dependence as an additional tool to study the quality of a
given approximation scheme.

4.7.1.4 Proper-time �ow equation

The �ow equation, Eq. (4.111), is not the only exact renormalization group
equation. Several other equivalent formulations, e.g. Polchinski's �ow equa-
tions, are known in the literature which are also exact. Another class of RG
�ow equations can be obtained by approximations to the exact RG �ows. An
example of such an approximation is the so-called proper-time RG (PTRG)
which is based on a Schwinger proper-time regularization of the one-loop
e�ective action [626, 649, 660]. As opposed to the ERG �ow equation, the
PTRG has no �rst principle derivation. The �nal PTRG �ow equation can
be motivated by a one-loop improvement and is governed by

∂tΓk[Φ] = −1
2

∞∫
0

dτ

τ

[
∂tfk(τk2)

]
Tr exp

(
−τΓ (2)

k [Φ]
)
, (4.114)
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where the regulator function fk(τk2) plays a similar role as the Rk in the
ERG �ow equation [661�664]. Similar to the ERG �ow (4.111), the trace
involves momentum integrations and a summation over internal spaces de-
pending on the symmetries of the underlying theory. On the rhs of (4.114) the
primary second derivative of the classical action S(2) has been replaced by the
corresponding derivative of the scale-dependent e�ective action, Γ (2)

k . This
replacement represents the one-loop improvement. Without this replacement,
an ordinary one-loop e�ective action would be reproduced after the evolution
towards the IR.

Due to the proper-time integral the PTRG �ow (4.114) does not depend
linearly on the full �eld-dependent propagator in contrast to the ERG �ow
(4.111). As a consequence the PTRG cannot be an exact �ow as already men-
tioned and shown in [665, 666]. Nevertheless, by adding further more com-
plicated terms to (4.114) it is possible to obtain a generalized proper-time
�ow which is again an exact �ow [667] but much more di�cult to solve. How-
ever, there are arguments that these corrections must be negligible around
criticality.

In summary, the standard PTRG �ow is a well-de�ned approximation to a
�rst-principles �ow like the ERG �ow [668]. So far, applications of the PTRG
�ow are typically based on �ows of the form of (4.114) and further approx-
imations thereof. It is amazing how precisely for instance critical exponents
can be calculated within this standard PTRG approach. In addition, com-
pared to the ERG �ow, the proper-time �ow has a numerically simpler and
physically more intuitive representation. The RG method, in general, is a
non-perturbative technique and is de�nitely superior to mean-�eld approxi-
mations. It is therefore very appealing to apply RG methods to QCD.

In the following the PTRG �ow will be used to investigate strongly inter-
acting matter. We start with a brief review of some IR features of QCD and
focus on the formation of light mesonic bound states and their e�ective chiral
description. Semi-quantitative considerations using the presented RG tech-
nique naturally lead to a chiral quark-meson model as an e�ective description
for scales below the mesonic 'compositeness' scales which is presented in the
next subsection.

4.7.2 QCD in an RG framework

In QCD quarks and gluons represent the microscopic degrees of freedom,
whereas the macroscopic degrees of freedom are the observed color neutral
particles like the mesons, baryons and/or glueballs. Hence there must be a
transition from the microscopic to the macroscopic degrees of freedom and the
relevant degrees of freedom change with the scale k. Such a scale dependence
can be treated via the RG. In order to apply RG techniques to QCD an initial
starting e�ective action has to be formulated.
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When constructing e�ective models for the macroscopic degrees of freedom
one usually relies on the guiding symmetries of QCD because a �rst-principle
derivation from QCD is still missing. One important symmetry of QCD is the
local SU(Nc) color invariance which is related to con�nement. This symmetry
cannot be used here since the observed hadronic spectrum consists of color
blind states. This is the reason why we will concentrate on the chiral aspects
of QCD. The current masses of the two light quark �avors are much smaller
compared to those of other quark �avors. This justi�es to consider QCD with
only two light quark �avors as a realistic starting point. For vanishing cur-
rent quark masses the classical QCD Lagrangian does not couple left- and
right-handed quarks. Ignoring for the moment the axial anomaly and baryon
number conservation it exhibits a global chiral SUL(Nf )× SUR(Nf ) invari-
ance where Nf denotes the number of quark �avors. In the observed hadron
spectrum, however, only the vector-like subgroup SUV (Nf ) is realized which
implies a spontaneous symmetry breaking of the chiral SUL(Nf )×SUR(Nf )
symmetry down to the SUV (Nf ) symmetry. For two quark �avors this break-
ing pattern predicts the existence of three massless parity-odd Goldstone
bosons, the three pions π. The observed �nite but small masses are a conse-
quence of the additional explicit chiral symmetry breaking due to the �nite
current quark masses.

4.7.2.1 Hierarchy of momentum scales

At scales above ∼ 2 GeV the dynamics of the relevant quark and gluonic
degrees of freedom appear to be well described by perturbative QCD. Due to
the running of the QCD gauge coupling the quark-gluon interaction strength
will change with respect to a change of the momentum scale. Thus at lower
scales bound states of quarks and gluons, quark condensates etc. emerge and
con�nement sets in.

To each such non-perturbative phenomenon one can associate an appro-
priate scale. Focusing on the physics of scalar and pseudoscalar mesons and
assuming that all other bound states are integrated out it appears that all
these scales are rather well separated from each other. An overview of the
possible hierarchy of the di�erent momentum scales is given in Fig. 4.35.

Somewhere around 1 GeV the so-called 'compositeness' scale kφ arises.
Around these scales mesonic bound states are formed. Below the composite-
ness scale, typically around 500 MeV, the chiral symmetry breaking scale kχ
appears at which the chiral quark condensate develops a non-vanishing value.
Finally, the last scale where con�nement sets in, is related to the Landau pole
in the perturbative evolution of the strong coupling constant and it is of the
order of ΛQCD ∼ 200 MeV.

Thus, for scales kχ ≤ k ≤ kφ the most relevant degrees of freedom are
quarks and mesons and their dynamics is dominated by a strong Yukawa
coupling g between them. This picture legitimates the use of a quark-meson
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Fig. 4.35 Hierarchy of momentum scales: di�erent non-perturbative phenomena and their
approximate scales.

model but only if one assumes that the dominant QCD e�ects are included
in the meson physics. Below the scale kχ the strong coupling αs increases
further and quark degrees of freedom will con�ne. Getting closer to ΛQCD it
is not justi�ed to neglect those QCD e�ects which certainly go beyond the
meson dynamics. Of course, gluonic interactions are expected to be crucial
for an understanding of the con�nement phenomenon. However, due to the
increase of the constituent quark masses towards the IR the quarks decouple
from the further evolution of the mesonic degrees of freedom. As long as
one is only interested in the dynamics of the mesons one expects that the
con�nement on the mesonic evolution has only little in�uence even for scales
below ΛQCD. Hence there are good prospects that the meson physics can be
described by an e�ective quark-meson model [623, 625, 669]. However, it is
possible to incorporate explicit gluonic degrees of freedom into this model,
for instance, by coupling quark degrees of freedom to the Polyakov loop. This
is explained in Sec. 4.5 and is neglected in the following.

4.7.2.2 The quark-meson model as initial e�ective action

As motivated above, a good ansatz for the initial starting e�ective action at
the compositeness scale kφ for the RG evolution is given by the two �avor
quark-meson model

Γk=kφ =
∫
d4x

{
q̄ (i∂/+ g(σ + iγ5τπ)) q +

1
2
(∂µσ)2 + (∂µπ)2 − U(σ,π)

}
(4.115)

with the purely mesonic potential
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U(σ,π) =
λ

4
(σ2 + π2 − v2)2 − cσ .

The quark �elds are denoted by q and the Yukawa coupling g describes
the common interaction strength of the σ and the three pion �elds π =
(π1, π2, π3) with the quarks and antiquarks. The isoscalar-scalar σ �eld
and the three isovector-pseudoscalar pion �elds π together form a chiral 4-
component �eld φ = (σ,π) whose squared �eld φ2 is also invariant under
O(4)-rotations. Without the explicit symmetry breaking term c the e�ective
action is invariant under global chiral SU(2)L × SU(2)R symmetry transfor-
mations which are also isomorphic to O(4)-transformations.

The physical picture underlying this ansatz is the following: the e�ec-
tive action of the quark-meson model at the compositeness scale kφ, (4.115),
emerges from short distance QCD in basically two steps. Starting from QCD
in the UV one �rst computes an e�ective action which only involves quarks.
This corresponds to an integration over the gluonic degrees of freedom in a
quenched approximation. This will generate many e�ective nonlocal four and
higher quark vertices and a nontrivial momentum dependence of the quark
propagator. In the second step decreasing the scale further these four and
higher quark interactions will cause the formation of mesonic bound states.
Thus, at the compositeness scale not only quarks but also composite �elds,
the mesons, are present and interact with each other. The four quark inter-
actions have been replaced by mesonic �elds and for the higher interactions
a certain truncation has to be performed. It is obvious that for scales below
the compositeness scale a description of strongly interacting matter in terms
of quark degrees of freedom alone would be rather ine�cient.

Thus, the ansatz for the e�ective action (4.115) at the compositeness scale
corresponds to a gradient expansion to lowest order (cf. (4.113)) where wave-
function renormalization corrections are neglected. It also incorporates a
truncation to four quark interactions and higher quark interactions have been
suppressed. This is then translated into a purely quadratic mesonic potential
at kφ with a positive mass term. Consequently, the chiral order parameter
represented by the minimum of the mesonic potential vanishes. This implies
that chiral symmetry is restored at the compositeness scale and the scalar
expectation value 〈σ〉 will vanish [626]. For lower scales, chiral symmetry
is spontaneously broken and the expectation value increases for decreasing
scales.

4.7.2.3 Flow equation for the grand canonical potential

The phenomenological scenario, introduced above, is described by a �ow
equation. In order to derive this �ow equation the ansatz for the e�ective
action is plugged into the PTRG (4.114). In the following we omit the dis-
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cussion of the solution of the �ow equation for the vacuum and generalize
the investigation to a system in thermal equilibrium with �nite net-baryon
or net-quark number density. This generalization of the PTRG to thermal
equilibrium can be done straightforwardly: the temperature T is introduced
by means of the Matsubara formalism where the zeroth component of the
momentum integration in the trace of (4.114) is replaced with a summation
over temperature-dependent, discrete Matsubara frequencies. A quark chem-
ical potential µq is introduced by adding a term proportional to iµq

∫
d4xq̄γ0q

in the action (4.115). In such systems the e�ective average action plays the
role of the grand canonical potential Ω and depends on the temperature T
and a single averaged quark chemical potential µq if isospin symmetry is as-
sumed i.e. if the di�erence between the up-quark and the down-quark mass
is neglected.

This then leads to the following �ow equation, which describes the scale-
dependent grand canonical potential Ωk [633, 648]:

∂tΩk(T, µ;φ2) =
k4

12π2

[
3
Eπ

coth
(
Eπ
2T

)
+

1
Eσ

coth
(
Eσ
2T

)
−2NcNf

Eq

{
tanh

(
Eq − µq

2T

)
+ tanh

(
Eq + µq

2T

)}]
,

(4.116)

with the quasi-particle energies Eq =
√

1 + g2φ2/k2 for the (anti-)quarks,
Eπ =

√
1 + 2Ω′

k/k
2 for the pions and Eσ =

√
1 + 2Ω′

k/k
2 + 4φ2Ω′′

k/k
2 for

the σ-meson. The grand canonical potential also depends on the expectation
value of the square of the chiral 4-component �eld φ2 = 〈φ〉2 which coincides
with 〈σ〉2 since 〈π〉2 = 0. As a function of φ2 the potential Ωk can have certain
minima. The global minimum of Ωk corresponds to the chiral order parameter
and is itself a function of the scale k. The primed (or double-primed etc.)
potential in the �ow equation denotes the φ2-derivative (or higher derivatives
etc.) of the potential, e.g., Ω′

k := ∂Ωk/∂φ
2.

The �ow equation in this truncation has a very simple and intuitive phys-
ical interpretation: at �rst, the �ow equation has an overall scale factor k4

which re�ects the correct dimension of the e�ective potential in d = 4 space-
time dimensions. The di�erent degrees of freedom contribute in an additive
way to the �ow. In the square brackets one recognizes the three degenerate
pion, one sigma and the quark/antiquark contributions which are propor-
tional to Nf . The fermionic contributions enter with a negative sign due to
the fermion loop and have a degeneracy factor of (2s+1)NcNf with s = 1/2.
The quark chemical potential enters only in the quark/antiquark part with
the appropriate sign as it should be. It in�uences the bosonic part of the �ow
equation only implicitly through the quasi-particle energies of the mesons
which are functions of the potential derivatives (Ω′, Ω′′). For comparison, one
obtains standard mean-�eld theory results for the grand canonical potential
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if the bosonic �uctuations are neglected, i.e. if the �rst two terms of the �ow
equation (4.116) are ignored. On the other hand, including these terms, the
RG results are much better than that obtained in mean-�eld theory, 1/N -
expansions or ladder resummations. Finally, the vacuum �ow equation can
be deduced analytically by examining the limits T → 0 and µq → 0 of this
equation.

The �ow equation (4.116) constitutes a set of coupled, highly non-linear,
partial di�erential equations which cannot be solved with analytical methods:
the unknown quantity, the potential Ωk, appears also as derivatives on the
rhs of this equation. One can now proceed in principle in two ways in order
to integrate this equation numerically: either one discretizes the unknown
potential Ωk on a φ2-grid or one expands the potential in powers of φ2 around
its minimum φ2

0 up to a certain order. On the one hand, the advantage of the
potential expansion is that only a �nite set of coupled �ow equations has to be
solved, depending on the chosen expansion order. For each higher order of the
potential expansion, however, a new coupled �ow equation is generated which
increases the numerical e�ort drastically. On the other hand, a drawback of
this expansion method is that �nally the potential is only known around the
minimum φ2

0, once the system has been solved [661, 664].
This is di�erent for the grid solution: here, the potential is not only known

around the minimum but also for arbitrary φ2. This is of importance, for
example, in a �rst-order phase transition around the critical temperature
(or quark chemical potential) where two degenerate minima of the poten-
tial emerge. In this case the knowledge of all local minima is required to
describe the phase transition correctly. This is cumbersome in a potential
expansion, except for some simple potentials. Thus, a precise determination
of the critical temperature of a �rst-order transition is very di�cult within an
expansion scheme around only one potential minimum. Another important
advantage of the grid solution is that the potential is not �xed to a certain
truncation. During the evolution, arbitrary higher mesonic O(4)-symmetric
self-interactions in the potential are allowed to be generated numerically by
the RG evolution. By calculating higher potential derivatives it is possible
to extract and investigate the �ow of these higher contributions. For these
reasons the grid solution is favored. For each grid point a �ow equation is
obtained, which �nally leads to a coupled closed system and can be solved
with standard numerical methods.

4.7.2.4 RG evolution towards the infrared

The RG evolution is started at the compositeness scale kφ and is displayed
in Fig. 4.36 where the k-evolution of the potential as a function of (posi-
tive) φ and its minimum φ0 (dashed line), starting at kχ, is visualized. The
dynamics at the beginning of the scale evolution just below the composite-
ness scale is almost entirely driven by quark �uctuations. These �uctuations
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Fig. 4.36 Scale evolution of the grand canonical potentialΩk towards the infrared starting
at kφ. The dashed line shows the scale evolution of the nontrivial minimum of the potential
starting at kχ. For small values of k, the potential becomes more and more convex and
the minimum becomes scale-independent.

rapidly drive the squared scalar mass term in the action to negative values.
This then immediately leads to a potential minimum away from the origin
such that the vacuum expectation value φ0 becomes �nite. This happens at
the chiral symmetry breaking scale kχ < kφ, not far below kφ. The reason
for this behavior lies in the suppression of the meson contributions. All me-
son masses are much larger than the constituent quark masses around these
scales and are therefore further suppressed during the evolution. Below kχ the
systems stays in the regime with spontaneous chiral symmetry breaking (see
dashed line). Around scales of the order of the pion mass the potential mini-
mum becomes scale-independent. The reason for this stability of the vacuum
expectation value is that the quarks acquire a relatively large constituent
mass Mq. These heavy modes will decouple from the further evolution once
the scale drops below Mq. The evolution is then essentially driven by the
massless Goldstone bosons in the chiral limit. Of course, for non-vanishing
pion masses the evolution of the model is e�ectively terminated around scales
k ∼ mπ. Quarks below such scales appear to be no longer important for the
further evolution of the mesonic system. Due to con�nement quarks should
anyhow no longer be included for scales below ΛQCD. As already mentioned,
the �nal goal of such an evolution is to extract experimental quantities such
as meson (pole) masses, decay constants etc. in the IR. These are also used to
�x the initially unknown model parameters at the UV scale for the vacuum.
They are adjusted in such a way that chiral symmetry is spontaneously bro-
ken in the IR (see also discussion in Sec. 4.5.6). This means for example that
the minimum φ0 is set to the pion decay constant fπ = 93 MeV in the IR.
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Finally, once the parameters for the vacuum are �xed, the �nite temperature
and density behavior of the system can then be predicted without further
adjustments.

4.7.3 The phase diagram of the quark-meson model

The knowledge of the thermodynamic potential Ω as a function of its natural
variables T and µq in the IR completely speci�es the equilibrium thermody-
namics of the system. Other quantities of interest can then be expressed as
derivatives in the usual way. For example, the net quark number density and
the chiral quark number susceptibility are given by

nq(T, µq) = −∂Ω(T, µq)
∂µq

and χq(T, µq) = −∂
2Ω(T, µq)
∂µ2

q

. (4.117)

In general, any phase transition is characterized by an order parameter. It is
�nite in the broken symmetry phase and vanishes in the restored phase. For
the chiral phase transition the order parameter is identi�ed with the expec-
tation value of the sigma �eld, namely the minimum φ0 of the potential. Its
thermodynamic behavior is determined by the corresponding equation of mo-
tion that is obtained by minimizing the potential Ω in radial σ-direction. This
leads to the so-called gap equation whose solution determines the behavior
of the order parameter as a function of T and µq.

The resulting phase diagrams in the (T, µq)-plane for the chiral limit and
for physical pion masses are both shown in Fig. 4.37, left panel. For a physical
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Fig. 4.37 Left panel: Two phase diagrams of the linear two-�avor quark-meson model
obtained with the RG method: One for physical pion masses (right solid line which ends in
the CEP) and another one for the chiral limit. Solid lines are �rst-order and dashed lines
second-order transition lines. Right panel: Contour regions for two di�erent ratios of the
quark number susceptibilities Rq around the CEP and TCP.

pion mass Mπ = 138 MeV in the vacuum the two-�avor quark-meson model
exhibits a smooth crossover on the T axis (not visible in the �gure) and a
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�rst-order chiral phase transition on the µq axis. For increasing temperatures
this �rst-order phase transition (solid line) persists up to a critical endpoint
(CEP) where the chiral transition becomes second order. The critical behav-
ior of this point falls into the universality class of the Ising model in three
dimensions which can be modeled by a one-component scalar φ4 theory in
three dimensions. Typical for the RG treatment is the bending of the �rst-
order transition lines for smaller temperatures. But very close to the µq axis
the slope of the �rst-order line dTc/dµq diverges. This feature is in agreement
with the Clausius-Clapeyron relation. For temperatures above the CEP the
phase transition is washed out and a smooth crossover takes place which is
not shown in the �gure.

In the chiral limit a second-order phase transition (dashed line) belonging
to the O(4) universality class is found on the T axis [42]. A critical tem-
perature Tc ∼ 170 MeV is obtained for two massless quark �avors which is
in good agreement with lattice simulations. But note, that the value for the
critical temperature is a non-universal quantity and depends on the used in-
put parameters. For increasing µq the second-order transition line ends in a
tricritical endpoint (TCP) which is a critical point where three phases coex-
ist. This point has a so-called trivial Gaussian �xed point structure meaning
that the universal critical exponents are those of the trivial Gaussian model,
i.e. mean-�eld theory. The location of the TCP in the phase diagram is not
universal and depends on the choice of parameters [670]. Thus, the existence
of this point, the shape of the transition line and its universality class are
predictions within the underlying quark-meson model.

For temperatures below ∼ 15 MeV two phase transitions with a further
critical point (labeled as �2nd TCP� in the �gure) emerges. The left transition
line represents a �rst-order transition down to the T = 0 axis. At this tran-
sition the order parameter jumps not to zero but to a �nite value. The chiral
symmetry remains spontaneously broken and is only restored for higher µq's
which then produce the second (right) transition line. At this right transition
line we initially �nd a �rst-order transition where the order parameter jumps
to zero and chiral symmetry is restored. But for smaller temperatures close
the µ axis the order parameter tends smoothly to zero. It seems that this
transition is again of second order. If this is true we infer that there must
be a second tricritical point in the phase diagram in the chiral limit. For �-
nite pion masses the right second-order transition turns into a crossover and
is again not visible in the phase diagram anymore. Analogously, the second
tricritical point, if it exists, should turn into a critical point. Some remnants
of this critical point can indeed be seen in the vacuum expectation value and
in the behavior of the meson masses.
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4.7.3.1 The size of the critical region around the TCP and CEP

In Fig. 4.37, right panel, a contour plot for two �xed ratios of the chiral
quark number susceptibility and its massless free quark gas limit, Rq(T, µq) =
χq(T, µq)/χfree

q (T, µq), is shown in the phase diagram near the TCP and CEP.
This ratio is used here as an estimate for the size of the critical region around a
critical endpoint. In general, the size of a critical region is de�ned through the
breakdown of the mean-�eld theory and the emergence of nontrivial critical
exponents. Usually, this size can be determined by the well-known Ginzburg
criterion which is based on an expansion of the singular part of the free energy
for a second-order phase transition. However, since the expansion coe�cients
are not known for the strong interaction the Ginzburg criterion is only of
limited use in the present context.

An alternative estimate for the size of the critical region for hadronic mat-
ter, which is pursued here, can also be de�ned by calculating susceptibilities
such as χq and using their enhancement as the criterion. The susceptibility
has the following thermodynamic features: in the chiral limit, the suscep-
tibility always jumps across the �rst- or the second-order transition and is
suppressed far below the chiral phase transition. In the restored phase χq
tends towards the value of the massless free quark gas, χfree

q . Only at the
TCP the susceptibility diverges when this point is approached from the bro-
ken phase. When the chiral limit is left, the critical behavior of the transition
around the CEP changes. For temperatures above the CEP the discontinuity
vanishes across the transition and the quark number susceptibility changes
gradually due to the smooth crossover. This also leads to a �nite height of
χq. The height decreases for decreasing chemical potentials towards the T
axis. For temperatures below the CEP it is discontinuous and jumps across
the �rst-order line. Hence, χq is �nite everywhere else and diverges in equilib-
rium only at the CEP. Thus, the divergence of χq survives even at �nite pion
masses. Below the chiral transition, the susceptibility is again suppressed and
in the restored phase it tends towards χfree

q of a massless free quark gas. Only
at the �rst-order transition there is a discontinuity. In contrast to the chiral
limit, χq is a smooth continuous function for temperatures above the CEP.

A comparison of the critical region around the CEP with the one around
the TCP, obtained with two dimensionless ratios Rq, is shown in Fig. 4.37,
right panel, in a larger sector of the phase diagram containing both critical
points. The CEP is far away from the TCP at larger values of the chemical
potential and smaller temperature as expected. Because of the sharp transi-
tion lines in the chiral limit the critical region around the TCP is chopped
o� in the chirally symmetric phase. The region of enhanced χq around the
CEP is elongated in the direction of the extrapolated �rst-order transition
line. The deeper reason for this shape can be understood by a study of the
critical exponents of the susceptibility which specify its power-law behavior
in the vicinity of the critical point. In the case of the susceptibility the form
of this divergence depends on the path by which one approaches the critical
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point. For the path asymptotically parallel to the �rst-order transition line
the divergence scales with an critical exponent γ which e.g. in mean �eld is
γ = 1. For any other path, not parallel to the �rst-order line, the divergence
scales with another critical exponent ε which in mean-�eld theory is equal
to 2/3. Since γ > ε the susceptibility is enhanced in the direction parallel to
the �rst-order transition line. This is the reason for the elongated shape of
the critical region in the phase diagram since the inequality of the critical
exponents remains valid within the RG treatment.

It is instructive to compare these �ndings with those obtained in mean-
�eld theory. In general, �uctuations are neglected in mean-�eld theory. Thus,
the impact of the quantum and thermal �uctuations on the shape of the
region around the critical points in the phase diagram can be investigated.
Repeating a similar calculation of the contour plot of Fig. 4.37 now for the
scalar susceptibility in mean-�eld approximation an elongated region in the
direction of the �rst-order transition line is again found. The results for three
di�erent ratios of the scalar susceptibilities around the CEP in reduced units
are collected in Fig. 4.38. The light curves are the mean-�eld and the other
ones the RG results. The region obtained with the RG is much more com-
pressed. While the interval in the temperature direction is comparable in both
cases, the e�ect in the chemical potential direction is enormous. In the RG
calculation the interval is shrunken by almost one order of magnitude, despite
the fact that the corresponding critical exponents are quite similar. A similar
result is obtained for the critical region of the quark number susceptibility.
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Fig. 4.38 Contour regions in the phase diagram for di�erent ratios of the scalar suscep-
tibilities around the CEP in reduced units. Dark lines: RG result, light lines: mean-�eld
approximation.
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4.7.4 Summary of the present status

A brief introduction to the functional renormalization group methods with
a focus on the �ow equation for the e�ective average action is presented.
The class of the proper-time �ow is introduced and its relation to the e�ec-
tive average action is discussed. QCD in an RG framework is exposed and
the hierarchy of di�erent momentum scales presented. Within the presented
Wilsonian RG approach the phase structure of hadronic matter in the context
of a two-�avor quark-meson model is analyzed. This e�ective model captures
essential features of QCD such as the spontaneous breaking of chiral sym-
metry in the vacuum. It can therefore yield valuable insights into the critical
behavior which is associated with chiral symmetry. Of special importance is
the emergence of a CEP in the phase diagram which is intensely discussed at
present in connection with �uctuation signals in heavy-ion collisions (cf. Sec.
4.6). Here the size of the critical region around the CEP is of special impor-
tance. So far, most studies of this issue which are available in the literature,
have been performed in the mean-�eld approximation which neglects ther-
mal and quantum �uctuations. As is also well known from condensed matter
physics, �uctuations in the vicinity of a phase transition are important. These
can be assessed in the RG approach which is able to correctly predict critical
exponents in the vicinity of critical points of the phase diagram.

From universality arguments it is expected that the quark-meson model
(and most likely QCD) has a TCP in the chiral limit. For the parameter set
chosen a mean-�eld calculation is not able to �nd such a point, while the RG
predicts its existence. The expected critical behavior at the TCP which has a
Gaussian �xed-point structure with mean-�eld critical exponents is veri�ed.
When e�ects of �nite pion masses are included, a CEP emerges in both
the mean-�eld and the RG calculation. By analyzing susceptibilities close
to the CEP nontrivial critical exponents consistent with the expected 3D
Ising universality class are found. As a consequence of quantum and thermal
�uctuations, the size of the critical region around the CEP is substantially
reduced, as compared to mean-�eld results. This is particularly true in the
µq-direction where a shrinking by almost one order of magnitude is observed.
This e�ect may have consequences for the experimental localization of the
CEP in the phase diagram since it further complicates its detection through
event-by-event �uctuations.



4.8 Strongly coupled quark gluon plasma 285

4.8 Strongly coupled quark gluon plasma

4.8.1 Why is it strongly coupled?

The �nding [512, 671, 672] that QGP at RHIC is not a weakly coupled gas
but rather a strongly coupled liquid has led to a paradigm shift in the �eld. It
was extensively debated at the �discovery� BNL workshop in 2004 [505, 671,
673] (at which the abbreviation sQGP was established) and multiple other
meetings since. The experimental situation was then summarized by �white
papers� of four RHIC experiments. During few intervening years theorists had
to learn a lot, some of which is new physics and some borrowed from other
�elds which happened to have experience with strongly coupled systems.
Those range from ultracold trapped quantum gases to classical plasmas to
string theory.

In short, we are facing two fundamental issues: (i) One is to understand
dynamics of strongly coupled gauge plasmas, and explain why QGP at RHIC
(T = (1−2)Tc) is strongly coupled, and what exactly it means in quantitative
terms. (ii) The second is the huge old problem of understanding con�nement,
and what exactly happens near the decon�nement/chiral restoration, at |T −
Tc| � Tc.

As usual, progress proceeds from catching/formulating the main concepts
and qualitative pictures, to mastering some technical tools, doing some toy
calculations which �nally lead to quantitative predictions: now we are some-
where in the middle of this process. The work is going on at many fronts and
at di�erent level of sophistication.

At the classical level, treating medium as ensemble of interacting classi-
cal (quasi)particles, we learned that transport properties are quite di�erent
for gases and liquids. It is very valuable, since our main tool � lattice gauge
theories � have great di�culties in deriving transport parameters like viscos-
ity. We also learned how one can treat color degrees of freedom in strongly
coupled non−Abelian plasmas. Recently those were generalized to a plasma
with both electrically (gluons and quarks) andmagnetically (monopoles and
dyons) charged quasiparticles. Such novel plasmas were never studied before,
and we will discuss below how mixture of both types of particles helps reduce
di�usion and viscosity.

Quantum-mechanical studies of sQGP are more di�cult. With quasipar-
ticle masses and forces derived from lattice, one may study various bound
states above Tc and their dissolution. There is evidence that s-wave mesons
and basic baryons may survive up to (1 − 2)Tc. Unusual many-body states
seem to be also bound, including �gluonic polymeric chains�. However truly
many-body studies at quantum level are still ahead of us.

The ultimate level of quantum �eld/string theory is even more di�cult
than quantum many-body one: and yet a spectacular progress in this direction
has been made due to a remarkable new tool - the AdS/CFT correspondence,
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which we will try to introduce below. Paying a price of shifting from QCD
to its cousin and to working in the limit of in�nite number of colors, one
can make use of profoundly consistent math and rich black hole physics. It
provided concrete answers to viscosity, di�usion constant and jet quenching,
and even �holograms� with complete description of conical �ow. Work in
progress is to provide a detailed picture of complete evolution, from collision
point to hydrodynamical evolution. And yet, to be honest, while intuition �on
gravity side� is being built, deep microscopic understanding of these results
from �the gauge side� is still missing and is put aside for later.

A bit more concrete list of arguments explaining why we think QGP is
strongly coupled at T > Tc is constantly growing: here is its current version:
1. Heavy Ion Phenomenology: Collective �ows observed at RHIC are
explained by hydrodynamics so well, that sQGP seems to be �the most
perfect liquid� ever known, with unusually small viscosity-to-entropy ratio
η/s ∼ .1� 1 [46]. Gluon/quark jets are strongly quenched, including heavy
(charmed) ones. Single electron data on charm quenching and elliptic �ow
can be described by charm di�usion constant Dc which is remarkably small,
an order of magnitude below the pQCD estimates.
2. Lattice quasiparticles and potentials. Combining data on quasipar-
ticle masses and inter-particle potentials, one �nds that sQGP quasiparticle
are not at all free to move but should form bound states [674]: that was
one of the departures from �weakly coupled� ideology. In particular, lowest
charmonia ηc, J/ψ remains bound till near T ≈ 2Tc, as was observed on the
lattice [675, 676]. Perhaps experimental observation that J/ψ suppression at
RHIC is no stronger than at SPS hints in the same direction. Heavy-light
resonances enhance transport cross sections [677] and may help to explain
charm quenching, cf. also Part II. (Note that it is the same mechanism as
the one used to make ultracold trapped atoms strongly coupled, going by the
name of �Feshbach resonances� and allowing the scattering length to be large
a→∞.)
3. Classical plasmas: The parameter characterizing interaction strength
used in this �eld is Γ ∼ 〈potential energy〉/〈kinetic energy〉. When it is small
we deal with a gas, at Γ ∼ 1 − 10 such plasmas are good liquids, becom-
ing glassy and eventually solid at Γ > 300. This key parameter in sQGP
is is certainly above one [678�680]. Molecular dynamics simulations to be
described below give the �rst glimpse of its properties for non-Abelian plas-
mas[679, 680], as well as plasmas containing magnetic monopoles [681].
4. AdS/CFT correspondence: Exact correspondence between a conformal
(CFT) N=4 supersymmetric Yang-Mills theory at strong coupling and string
theory in Anti-de-Sitter space (AdS) in classical SUGRA regime was conjec-
tured by Maldacena [682]. The results obtained this way on the g2Nc → ∞
regime of the CFT plasma are all in qualitative agreement to what we know
about sQGP. Indeed, it has a very similar thermodynamics, it is equally good
liquid with record low viscosity, there is very strong jet quenching and small
di�usion constant for heavy quarks. We will present these results below: but a



4.8 Strongly coupled quark gluon plasma 287

real intellectual challenge to theorists lies in their interpretation, as well as in
understanding deep new insights into the origin of dissipation/equilibration
o�ered by physics of black holes involved in it.
5. Electric-Magnetic duality and con�nement is last but not least in
this list. In a way, it was on the mind of theorists from Maxwell to Dirac, to
't Hooft and Polyakov, who discovered monopoles in gauge theories. We long
viewed con�nement as a dual superconductivity, and the famous Seiberg-
Witten solution of the N=2 supersymmetric Yang-Mills (SYM) theory is an
example how con�nement can be induced by condensed monopoles[683]. If
so, at T ≈ Tc one expects [681] a high density of magnetic monopoles. They
provide a substantial part of sQGP. As we will discuss below, electric and
magnetic charge must run in the opposite directions: this o�ers a completely
new view at the phase diagram, as an arena at which the electric-magnetic
�ght/competition takes place.

4.8.2 Radial, elliptic and conical �ows

Phenomenology of heavy ion collisions and their macroscopic description via
hydrodynamics is too large subject to be discussed here. Let me just remind
here that the amount of data involved is quite extensive. The �ow a�ects dif-
ferent secondaries di�erently, yet their spectra are in quantitative agreement
with the data for all of them, from π to Ω−. At non-zero impact parameter
the original excited system has a deformed almond-like shape: thus its ex-
pansion in the transverse plane leads to the so called elliptic �ow described
by the (Fourier) parameter

v2(s, pt,Mi, y, b, A) = 〈cos(2φ)〉

where φ is the azimuthal angle. Multiple arguments stand for the collision
energy s, transverse momentum pt, particle mass/type Mi, rapidity y, cen-
trality b or number of participants, and the atomic number A characterizing
the absolute system size. Hydrodynamics of QGP appended in a hadronic
phase by hadronic cascade [684�686] explains all of those dependences in de-
tails for about 99% of the particles. Only at the large pt > 2GeV an ideal
hydro fails: here a di�erent regime starts. Viscous e�ects [46, 687, 688] extend
the agreement even further and provide an estimate of the viscosity.

New hydrodynamical phenomenon8 suggested in [689�691], is the so called
conical �ow which is induced by jets quenched in sQGP. Although the QCD
Lagrangian tells us that charges are coupled to gluons and thus it is glu-
ons which are to be radiated, at strong coupling those are rapidly quenched

8 In the �eld of heavy ion collisions Mach cone emission was actively discussed in 1970's: but
it turned out not to work. The reason: nuclear matter, unlike sQGP, is not a particularly
good liquid.
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themselves. E�ectively the jet energy is dumped into the medium and then it
transformed into coherent cone of sound waves, which remarkably survive till
freezout. They are detected by observed peaks in angular correlations with
the trigger jets, at the Mach cone direction.
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Fig. 4.39 Left: A schematic picture of �ow created by a jet going through the �reball.
The trigger jet is going to the right from the origination point B. The companion quenched
jet is moving to the left, heating the matter (in shadowed area) and producing a shock
cone with a �ow normal to it, at the Mach angle cosθM = v/cs, where v, cs are jet and
sound velocities. Right: The background subtracted correlation functions from STAR and
PHENIX experiments, a distribution in azimuthal angle ∆φ between the trigger jet and
associated particle. Unlike in pp and dAu collisions where the decay of the companion jet
create a peak at ∆φ = π (STAR plot), central AuAu collisions show a minimum at that
angle and a maximum corresponding to the Mach angle (downward arrows).

Fig. 4.39 explains a view of the process, in a plane transverse to the beam.
Two oppositely moving jets originate from the hard collision point B. Due to
strong quenching, the survival of the trigger jet biases it to be produced close
to the surface and to move outward. This forces its companion to move inward
through matter and to be maximally quenched. The energy deposition starts
at point B, thus a spherical sound wave appears (the dashed circle in Fig.
4.39). Further energy deposition is along the jet line, and is propagating with
a speed of light, till the leading parton is found at point A at the moment of
the snapshot.

The main prediction is that the shape of the jet passing through sQGP
drastically changes: most of associated secondaries �y preferentially to a very
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large angle with jet direction, ≈ 70 degrees consistent with the Mach angle
for (a time-averaged) speed of sound. Data on 3-particle correlations from
STAR, PHENIX and even CERES at SPS (see QM08) con�rmed conical
interpretation of this signal.

Casalderrey and Shuryak[692] have shown, using conservation of adiabatic
invariants, that �reball expansion should in fact greatly enhance the sonic
boom: the reason is similar to enhancement of a sea wave (such as tsunami)
as it goes onshore. They also showed that data exclude 1-st order phase
transition, because in this case conical �ow would stop and split into two,
which is not observed. Antinori and Shuryak[693] suggested a decisive test by
b-quark jets. Those can be tagged experimentally even when semi-relativistic:
the Mach cone should then shrink, till its opening angle goes to zero at
the critical velocity v = cs = 1/

√
3. (Gluon radiation behaves oppositely,

expanding with decreasing v.) A number of authors have reproduced conical
�ow in hydro, see e.g. [694]: but really quantitative study of it is still to be
done.

4.8.3 Classical strongly coupled non-Abelian plasmas

In the electromagnetic plasmas the term �strongly coupled� is expressed via
dimensionless parameter Γ = (Ze)2/(aWST ) characterizing the strength of
the inter-particle interaction. Ze, aWS , T are respectively the ion charge, the
Wigner-Seitz radius aWT = (3/4πn)1/3 and the temperature. Only in the
case of small Γ one can use Boltzmann equation, cascades and other simple
tools appropriate for a gas: otherwise it is not possible because particles are
strongly correlated.

Gelman, Zahed and Shuryak [679, 680] proposed a classical model for the
description of strongly interacting colored quasiparticles as a nonrelativistic
Non-Abelian Coulomb gas. The sign and strength of the inter-particle inter-
actions are �xed by the scalar product of their classical color vectors subject
to Wong's equations [695]. Details should be looked up in the papers: let us
just explain here its physical meaning. For SU(2) color group a color vec-
tor rotates around the direction of the total color �eld induced by all other
particles at its position: same as magnetic moments would do in a magnetic
�eld. For arbitrary group precession on a group is determined by the Poisson
brackets of color vectors: {Qa, Qb} = fabcQc which are classical analogue
of the SU(Nc) color commutators: thus one should use fabc, the structure
constants of the appropriate group. For the non-Abelian group SU(2) the ad-
joint color vectors reside on a 3-dimensional unit sphere: with one conserved
quantity ((Qa)2) it makes 2 d.o.f. The SU(3) group has 8 dimensions: with
two conserved combinations (Qa)2, dabcQaQbQc it is 6 d.o.f. Although color
precession equations do not look like the usual canonical equations of motion
for pairs of coordinates and momenta, they actually can be rewritten as pairs
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Fig. 4.40 The di�usion constant (left) and shear viscosity (right) of a one species cQGP
as a function of the dimensionless coupling Γ . Blue points are the MD simulations; the red
curve is the �t.

of conjugated variables, as can be shown via the so called Darboux parame-
terization. Thus one can de�ne the phase space and use all theorems related
to it for this system.

The model can be studied using Molecular Dynamics (MD), which means
solving numerically equations of motion for 102 − 103 particles. It displays
strong correlations and various phases, as the Coulomb coupling is increased
ranging from a gas, to a liquid, to a crystal with anti-ferromagnetic-like color
ordering. Skipping the details, we jump to the results on transport properties.
In Fig. 4.40 one can see the result for di�usion and viscosity vs coupling: note
how di�erent and nontrivial they are. When extrapolated to the sQGP they
suggest that the phase is liquid-like, with a di�usion constant D ≈ 0.1/T and
a bulk viscosity to entropy density ratio η/s ≈ 1/3.

Next step in studies of classical molecular dynamics included magnetic
quasiparticles (monopoles) of QGP: we will discuss those in Sec. 4.8.5.

4.8.4 Quantum mechanics of the quasiparticles

In the decon�ned phase, at T > Tc, the basic objects are quasiparticles,
or �dressed� quarks and gluons. Perturbatively they get masses of he order
Meff ∼ gT and a dispersion curve, which is close to that of a massive par-
ticle. It follows from lattice measurements [511] (admittedly, with still poor
accuracy) that in the T domain (1-3)Tc (i) these masses are very large, about
Meff ≈ (3 − 4)T ; and (ii) quarks and gluons have very close masses, in
contrast to pQCD. Thus quasiparticles are rather heavy (non-relativistic).

Furthermore, lattice data on the interaction (deduced for static quarks)
plus quantum mechanics leads to existence of quasiparticle bound states. The
most obvious state to think of is charmonium, which had a long story of a
debate whether J/ψ survives in QGP or not. The answer depends on which
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e�ective potential is used. In contrast to earlier works, Shuryak and Zahed
argued [512] that one has to remove the entropy term and use the �energy�
potentials U(T, r) = F − TdF/dT rather than the free energy F (T, r). The
argument is based on relatively short time of charm quark motion in charmo-
nium relative to that of heat transfer (level crossings). If so, it leads to deeper
potentials and better binding, so J/ψ survives till T = (2 − 3)Tc. This was
con�rmed by direct calculation of spectral densities by the maximal entropy
method [675, 676]. It also nicely correlates well with surprisingly small J/ψ
suppression observed at RHIC, where T < 2Tc.

It was then pointed out in [674] that also multiple binary colored bound
states should exist in the same T domain. Since QGP is a decon�ned phase,
there is nothing wrong with that, and the forces between say singlet q̄q and
octet qg quasiparticle pairs are about the same. Liao and Shuryak [513, 696]
have also found evidence for survival of the s-wave baryons (N,∆...) at T <
1.6Tc.

A particularly interesting objects are multibody [696] bound states, such
as �polymer chains�. Those can be �open strings� q̄gg..gq or closed chains of
gluons (e.g. very robust ggg state we studied). Their binding per bond was
proved to be the same as for light-quark mesons, and both are bound till
about 1.5Tc or so. They have interesting AdS/CFT analogs (see below) and
they also can be viewed as precursor to the formation of the QCD strings
from the decon�ned phases.

A curve of marginal stability (CMS) is not a thermodynamic singularity
but it often indicates a change of physics. Zahed and Shuryak [512] argued
that resonances can strongly enhance transport cross section near multiple
CMS's and thus explain small viscosity. Rapp, Greco and van Hees [677]
studied q̄c resonances, and found that they can signi�cantly enhance charm
stopping.

Similar phenomenon does happen for ultracold trapped atoms, which are
extremely dilute but due to Feshbach-type resonances at which the scattering
length a → ∞ they behave like very good liquids with very small viscosity,
see[697, 698]. In fact they are �second best� liquids after the QGP.

Unfortunately, quantum many-body theory of strongly coupled gases is
quite involved, and so neither for ultracold trapped atoms nor for sQGP
quasiparticles we do not have at the moment any realistic simulations good
enough to estimate the role of quantum corrections to MD results.

4.8.5 The magnetic side of sQGP and con�nement

One of the oldest and most fundamental question of QCD is understand-
ing con�nement, as well as the decon�nement transition region at T ≈ Tc.
Since SPS-RHIC experiments are done in this temperature region, the answer
should obviously be important for understanding sQGP. Recently there was
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a signi�cant paradigm shift in relation to this question as well, which regards
decon�nement and phenomena close to it as a result of a struggle between
electric and magnetic objects for dominance.

One important element of the story are magnetic excitations � the
monopoles. According to 't Hooft-Mandelstam scenario, con�nement of elec-
tric objects (quarks) is due to monopole condensate � �dual superconductor�
� expelling electric �eld into the �ux tubes. Monopoles themselves were �rst
found by 't Hooft and Polyakov, as solutions in gauge theories with (adjoint
color) scalars, having non-zero vacuum expectations in the �Higgs phase�.
Seiberg and Witten found famous solution [683] for one of them, the N=2
SYM, providing explicit example of how dual superconductor and electric-
magnetic duality should work. Here there is no place to explain those in any
detail: however some important features found in that context are generic,
not only they persist in QCD and other gauge theories, but they provide a
clue to what is happening.

But �rst some brief explanations are in order. Although QCD does not
have explicit Higgs scalar, its role is taken by a nonzero mean 〈A0〉 related
to the so called Polyakov loop

L = exp(ig
∫ β

0

A0dτ)

where β = 1/T is the so called Matsubara time, the time extension of �nite-T
lattices. The mean value 〈L〉 as a function of T is known from lattice works.

A nonzero mean 〈Aa0T a〉 is a color matrix, which can be diagonalized: such
�adjoint Higgsing� makes some gluons massive but leaves (Nc − 1) gluons
(which commute with it) massless . Thus the SU(3) color group contains 2
di�erent U(1) �electrodynamics� with massless �photons�: those correspond
to two magnetic charges which monopoles may have.

Electric-magnetic duality is an idea which is alive since the time of
Maxwell: and in a theory with magnetic objects one may naturally ask why
do we formulate gauge theory putting electric objects � quarks � into the La-
grangian, while insisting that monopoles are found only as some composites
(solutions). Can it be formulated di�erently, interchanging their roles?

For gauge �elds it simply means rewriting B as gradient and E as a curl
of another �dual� potential. For monopoles that means including them into
the action, as new source �elds. This can be done: but since both description
should describe the same theory serious issues of consistency appear. At the
quantum mechanics level the famous Dirac [699] condition must be held,
demanding basically that the product of two couplings is �xed

αelectric · αmagnetic = 1

This requires that while one of them may be small, the other must necessarily
be large!
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At the quantum �eld theory level the Dirac condition elevates into a re-
quirement that two couplings must run into the opposite directions! And in-
deed, the electric (usual) αs = e2/4π has asymptotic freedom and gets small
at large momenta (UV), while magnetic is U(1) with Landau pole, running
into zero at IR.

What does it mean for QGP? At high T the usual electric description
is the perturbative one. One can calculate e.g. quark and gluon masses and
�nd them to be light M/T ∼ √αelectric � 1. The monopoles are heavy and
strongly interacting, thus they can be considered composites which play a
minor role. However as T goes down and one approaches the decon�nement
transition, the inverse is happening. Electrically charged particles � quarks
and gluons � are getting heavier, while monopoles get lighter and more impor-
tant. At some point their masses and roles get comparable, and then tables
are turned and their fortuned reversed. Electric objects gets strongly coupled
and complicated while monopoles gets lighter, proliferate and take over the
heat bath. In Seiberg-Witten theory all of it can be analytically traced in
great detail, but, as emphasized by Liao and Shuryak [681] the same quali-
tative features are there in QCD as well.
New phase diagram proposed focuses on the competition of electric and

magnetic quasiparticles (EQPs and MQPs). It is divided into (i) the �magnet-
ically dominated� region at T < TE=M and (ii) �electrically dominated� one
at T > TE=M . In our opinion, the key aspect of the physics involved is the
coupling strength of both interactions. So, a divider is some E-M equilibrium
region at intermediate T -µ. Since it is not a singular line, one can de�ne it
in various ways, e.g. by a condition that electric and magnetic couplings are
just equal

αelectric = αmagnetic = 1 (4.118)

Besides equal couplings, the �E-M equilibrium� region should also have com-
parable densities as well as masses of both electric and magnetic quasiparti-
cles.

The �magnetic-dominated� low-T (and low-µ) region (i) can in turn be
subdivided into the confining part (i-a) in which electric �eld is con�ned
into quantized �ux tubes surrounded by the condensate of MQPs, forming
't Hooft-Mandelstam �dual superconductor� [700, 701], and a new �post-
con�nement� region (i-b) at Tc < T < TE=M in which EQPs are still
strongly coupled (correlated). Increasing T and/or µ one enters either the
high-T "electric-dominated" perturbative wQGP, or color-electric supercon-
ductor at high-µ, with electrically charged diquark condensate taking over the
monopole condensate: here there is magnetic con�nement of the monopoles.
A phase diagram explaining this viewpoint pictorially is shown in Fig. 4.41.

After we presented the picture, let us provide some illustrations in its favor,
from lattice works. The T -dependence of the electric and magnetic screening
masses calculated by Nakamura et al [702], are shown in Fig. 4.42, left panel.
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Fig. 4.41 A schematic phase diagram on a (�compacti�ed�) plane of temperature and
baryonic chemical potential T − µ. The shaded region shows �magnetically dominated�
region g < e, which includes the e-con�ned hadronic phase as well as �postcon�ned�
part of the QGP domain. Light region includes �electrically dominated� part of QGP and
also color superconductivity (CS) region, which has e-charged diquark condensates and
therefore obviously m-con�ned. The dashed line called �e=g line� is the line of electric-
magnetic equilibrium. The solid lines indicate true phase transitions, while the dash-dotted
line is a decon�nement cross-over line.

0 1 2 3 4 5 6
T/T

c

0

1

2

3

4

5

m/T

Magnetic
Electric

0.2 0.4 0.6 0.8
r [fm]

0.4

0.8

1.2

g(
r)

T/Tc = 1.10
T/Tc = 1.19
T/Tc = 1.42
T/Tc = 1.63
T/Tc = 2.85
T/Tc = 3.80

monopole-antimonopole correlation

Fig. 4.42 Left: Temperature dependence of electric and magnetic screening masses accord-
ing to Nakamura et al [702]. The dotted line is �tted by Polyakov assumption, mg ∼ g2T .
For the electric mass, the dashed and solid lines represent LOP and HTL resummation
results, respectively. Right: Spatial correlation function for monopole-antimonopole, at dif-
ferent temperatures [703].

Note that electric mass is larger than magnetic one at high T , but drops
steeply towards zero at Tc (because here electric objects gets too heavy and
e�ectively disappear). The magnetic screening mass however grows toward
Tc and the point at which electric and magnetic masses are equal (the E-M
equilibrium point we emphasized above) is thus in the region of

TE=M ≈ (1.2− 1.5)Tc = 250− 300MeV (4.119)

.
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The second example (so far unpublished picture courtesy of D'Alessandro
and D'Elia related to paper [703]) in Fig. 4.42, right panel, is the correlation
function of monopole with antimonopole, traced on the lattice. Note that
it develops a characteristic liquid-phase peak, which gets more visible at
higher T . This is the �rst direct con�rmation of Liao-Shuryak scenario, with
a magnetic coupling running upward at higher T .

The third lattice example is related to a puzzling behavior of static Q̄Q
potentials close to Tc. At T = 0 we all know that a potential between heavy
quarks is a sum of the Coulomb and linear terms

V = −(4/3)αs/r + σ(T = 0)r (4.120)

At decon�nement T > Tc the linear term σF = 0 has vanishing string tension,
for free energy F (T, r)) = −T log〈W 〉 related to Wilson line W . However if
one calculates the energy or entropy separately, by

F (T, r) = U(T, r)− TS(T, r), S = −∂F/∂T (4.121)

one still �nds [555] a linear growing energy with nonzero tension: in fact at
T = Tc σU is several times that in vacuum. The total energy added to a
pair is surprisingly large reaches about E(T = Tc, r → ∞) = 3 − 4GeV ,
and the entropy as large as S(T = Tc, r → ∞) ∼ 20. Where all this energy
and entropy may come from in the decon�ned phase? Liao and Shuryak [704]
found that a su�ciently dense gas of monopoles leads to electric �ux tubes,
even in the plasma phase. Indeed: the monopoles scatter from the electric �ux
tube back into plasma, compressing it. Whether they are Bose condensed (in
dual superconductor) or not is not crucial for mechanical stability of the
�ux tubes, but the absence of supercurrents induces thermal losses and thus
plasma tubes are metastable. (Metastable magnetic �ux tubes � dual to what
we now discuss� are well known e.g. in solar plasmas.)
Plasma with magnetic charges was studied in [681] by molecular dy-

namics. Simulations included transport properties such as di�usion coe�-
cients and viscosity. A number of collective modes have been discovered, and
their oscillation frequencies and damping parameters calculated.

The results will be shown together with those from AdS/CFT correspon-
dence and also compared with empirical data from RHIC experiments. Those
are summarized in Fig. 4.43, as a log-log plot of properly normalized dimen-
sionless (heavy quark) di�usion constant and viscosity.

The dashed curve in the left lower corner is for N=4 SUSY YM theory
in weak coupling, where viscosity is from [705] and di�usion constant from
[706]. The curve has a slope of one on this plot, as in weak coupling both
quantities are proportional to the same mean free path. As one can easily see,
weak coupling results are quite far from empirical data from RHIC, shown
by a gray oval in the right upper corner. Viscosity estimates follow from
deviations of the elliptic �ow at large pt from hydro predictions [46], and
di�usion constants are estimated from RAA and elliptic �ow of charm [707].
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Fig. 4.43 Plots of Log[1/(η/s)] v.s. Log[1/(2πTD)] including results from our MD sim-
ulations, the AdS/CFT calculations, the weakly coupled CFT calculations, as compared
with experimental values, see text.

The curve for strong-coupling AdS/CFT results (viscosity according to
[708] with O(λ−3/2) correction, di�usion constant from [709]), shown by up-
per dashed line, is on the other hand going right through the empirical region.
At in�nite coupling this curve reaches s/η = 4π which is conjectured to be
the ever possible upper bound.

The MD results � three solid lines on the right � correspond to our cal-
culations with di�erent EQPs/MQPs ratio. They are close to the empirical
region, especially the optimal version, with the equal mixture of EQPs and
MQPs.

4.8.6 AdS/CFT correspondence and conformal sQGP

AdS/CFT correspondence [682] is a duality between speci�c gauge theory
known as N=4 super-Yang-Mills theory (SYM) in 4 dimensions and (10-
dimensional) superstring theory in a speci�c setting. Before we describe the
results obtained, here is a brief introduction, explaining its logic and what
all these words mean.

The N=4 SYM theory is a cousin of QCD: it also has gauge �elds with
SU(Nc) color symmetry, but instead of quarks it has four ��avors� of fermions
called gluinos, as their adjoint colors are the same as for gluons. There are
also 6 adjoint scalars: with 2 polarizations of gluons it makes 8 bosonic modes,
same as 2×4 fermions. This makes supersymmetry possible and leads to can-
cellations of power divergences. This theory is the most symmetric theory
possible in 4 dimensions: its coupling does not run!
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(How do we know this? One may calculate the �rst coe�cient of the beta
function, and indeed see that negative gauge contribution is nicely canceled
by fermions and scalars. But there are in�nitely many coe�cients, and one
has to check them all! An elegant way to prove the case is based on an-
other outstanding feature of the N=4 SYM: this theory is self − dual under
electric-magnetic duality. As we discussed above, the Dirac condition requires
the product of electric and magnetic couplings to be constant: and so in
QCD and other gauge theories they indeed run in the opposite directions,
electric becoming weak in ultraviolet and magnetic weak in infrared. But
the multiplet of (lowest) magnetic objects of the N=4 SYM theory include
6 scalars (the monopoles), plus 4 fermions (monopoles plus one gluino zero
mode occupied), plus 2 spin-1 (monopoles with 2 gluinos): this turns out
to be exactly the same set of states as the original electric degrees of free-
dom (gluons-gluinos-Higgses). That means that an e�ective magnetic theory
has the same Lagrangian as the original electric formulation: thus it must
have the same beta function. Since two couplings cannot run in the opposite
direction following the same beta function, they cannot run at all!)

If the coupling constant does not run, it means that there is no analog of
ΛQCD in this theory, and since all the �elds are massless and all the cou-
pling dimensionless, the N=4 SYM theory knows no scales at all. It is thus
a conformal �eld theory � the CFT in the AdS/CFT correspondence. One
consequence is that the �nite-T version of this theory (we will be mostly inter-
ested in) is the same whether T is large or small, since there is no other scale
to compare with! This is similar to QCD plasma in �quasi-conformal regime�:
at high enough T > 3Tc all dimensionless ratios like (energy density)/T 4 are
practically T -independent.

Weakly coupled N=4 SYM theory can be studied perturbatively, like any
other gauge theory. What makes it unique is that AdS/CFT correspondence
allows also to study it in the strong coupling limit, de�ned by a large value of
the so called 't Hooft coupling, a combination of gauge coupling and number
of colors which go together

λ = g2Nc � 1 (4.122)

Now is the time to explain what AdS stands for. String theory is a large
subject to explain in few words: let me just mention that one of the discov-
eries of 1990's was realization that it has solitonic objects of (nearly) any
dimensions p called Dp branes. Think of them as some p-dimensional mem-
branes, embedded in 9+1 dimensions of space-time. For example D3 branes
have in�nite extension in 3 coordinates x1, x2, x3, while being are just points
in the remaining 6 coordinates x4...x9. Since branes are material objects with
some mass and charge, they create gravity/Coulomb �eld around them. Large
(Nc → ∞) number of branes put into the same point, create strong gravity
�eld, described by classical Einstein/Maxwell equations. The solution is just
a speci�c (6-dimensional) charged black hole: in fact it turns out the so called
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extremal black hole which has the lowest possible mass for a given charge. It
is spherically symmetric, so one can separate the 5 angles (making the 5-dim
sphere S5) from the radius r in 6-dimensions, on which metrics depends

ds2 =
−dt2 + dx2

1 + dx2
2 + dx2

3√
1 + L4/r4

+
√

1 + L4/r4(dr2 + r2dΩ2
5) (4.123)

Approximate form of this metric, at r � L when 1 in the root can be ig-
nored, is further simpli�ed: in the last term r2 cancels out and 5-dimensional
sphere gets decoupled (and ignored). What is left is quite simple Anti-de-
Sitter 5-dimensional metric, which we rewrite in a new coordinate z = L2/r
as �standard AdS metric�:

ds2 =
−dt2 + dx2

1 + dx2
2 + dx2

3 + dz2

z2
(4.124)

Note that z counts the distance from �the AdS boundary� z = 0, where the
4-d gauge theory is located.

So far nothing unusual happened: all formulae come straight from string
and general relativity textbooks. A truly remarkable theoretical discovery
is the so called �holography�: the exact duality (one-to-one correspondence)
between the 5-dim �bulk� e�ective theory in AdS5 to 4-dim �boundary� (r →
∞) gauge theory. There is a dictionary, relating any observable in the gauge
theory to another one in string theory: the duality means the answers are the
same in both formulations.

The last step, which makes it so useful, is the relation between the gauge
coupling, the AdS radius L and the string tension α′ (which comes from the
total mass of the brane set):

L4 = g2Nc(α′)2 = λ(α′)2 (4.125)

It tells us that large gauge coupling λ >> 1 corresponds to large AdS radius
(in string units) and one can use classical (rather than quantum) gravity. At
the same time the string and gravity couplings gs ∼ g2 may remain small: so
one may do perturbative calculations in the bulk!

At this point many readers are probably very confused by the new 5-th
dimension of space. One possible approach is to think of it as just a mathe-
matical trick, somewhat analogous to more familiar introduction of the com-
plex variables. Suppose an Experimentalist measured some complicated cross
section which is approximately a sum of Breit-Wigner resonances. His friend
Phenomenologist may be able to write the answer as an analytic function
with certain pole singularities in the complex energy plane, which will help
for �tting and for evaluating integrals. Even better, their other friend Theo-
rist cleverly developed a �bulk theory�, deriving the pole positions from some
interaction laws on the complex plane.
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The truth is that there is a perfectly physical meaning of the 5-th coordi-
nate. A hint is provided by the fact that distance along it

∫ b
a
dl =

∫ b
a
dz/z =

log(b/a) is the logarithm of the ratio. Thus its meaning is the �scale�, the ar-
gument of the renormalization group. If one takes a bulk object and move it
into larger z, its hologram at the boundary (z=0) grows in size: this direction
thus corresponds to the infrared direction.

The running coupling constant would thus be a z-dependent �eld called
�dilaton�. Indeed, there are theories with gravity dual, in which this �eld
(the coupling) does run:unfortunately, known examples do not (yet?) include
QCD! In spite of that, there are e�orts to built its gravity dual �bottom-up�,
introducing weak coupling at ultraviolet (small z) [710] and con�nement in
infrared (large z) [711] by certain modi�cation of the rules: these approaches
are known as AdS/QCD, but we will not discuss them here.

Completing this introduction, let us brie�y consider one of the �rst ex-
amples of �AdS/CFT at work�: the strong-coupling Coulomb law calculated
via AdS/CFT [712, 713]. The setting, shown in Fig. 4.44, includes two static
charges (heavy fundamental quarks) separated by the distance R. Their elec-
tric �ux in the bulk forms a singular object � the string (shown by the solid
curve) � which pends by gravity force into the 5-th dimension. Simple calcu-
lation � minimization of the Nambu-Goto action or the invariant length of
the string �produces a particular shape and also gives the total string energy

E = − 4π2
√
λ

Γ (1/4)4R
(4.126)

which has (now famous)
√
λ, instead of λ in the usual (weak coupling) result,

and a fancy constant including the Euler Gamma function.
One may think that strongly coupled vacuum acts like some kind of a

dielectric constant, modifying only the coe�cient of the Coulomb law and
�elds. In order to test that one has to perform more involved calculation,
�nding the hologram of this pending string. This can be done by solving the
linearized Einstein equation for the gravity propagator (the dashed line in Fig.
4.44) and �nd (by the AdS/CFT rules) the induced stress tensor of matter at
point y in the gauge theory. Done only recently in [714], the resulting stress
tensor displays no visible trace of the �ux string in the hologram (although
there is one in the �bulk�). This happens because the most remote part of the
string (in its middle) is far in infrared and thus get projected on a larger area.
However the stress-energy distribution is not like in the perturbative (zero
coupling) case either. In particular, the energy density at large distances
from the dipole r >> R is not T00 ∼ R2/r6 as in weak coupling, but is
∼ R3/r7 instead, with a di�erent angular distribution. This feature, as well
as
√
λ dependence on coupling, was in fact understood: the clue is short color

correlation time of two charges pointed out in [672, 715].
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Fig. 4.44 Setting of the Maldacena dipole: two charges at the boundary (black dots) are
connected by the string (shown by solid curve) pending under gravity toward the AdS
center z →∞. Classical graviton propagator (the dashed line) should be used to calculate
the �hologram� � the stress tensor at the observation point y. The string is the gravity
source; the point A has to be integrated over.

4.8.7 AdS/CFT correspondence predictions for sQGP

Finite-T CFT plasma is studied following Witten's proposal to upgrade
the AdS5 metric discussed above to that of non-extremal AdS-black hole9:

ds2 =
−[1− (z/z0)4]dt2 + dx2

1 + dx2
2 + dx2

3 + dz2/[1− (z/z0)4]
z2

. (4.127)

Now it has a horizon (the zero of the time component g00) at z = z0, gener-
ating both the Hawking temperature T = 1/πz0 and the Bekenstein entropy.
To �nd the entropy one has to calculate the horizon area (see [716]): the
result (in Stephan-Boltzmann units) is surprisingly simple

S(g2Nc →∞, T )/S(g = 0, T ) = [(3/4) +O((g2Nc)−3/2)] . (4.128)

The authors �rst thought the factor (3/4) is wrong, but then it was clari�ed
that it is indeed a limit at strong coupling. In fact it compares well with the
lattice measurements in the �conformal domain� of T = few Tc where this
constant is about 0.8, with or without quarks.
Heavy-quark potentials at �nite T were calculated [712, 713] by cal-

culating the energy of the static pending string as explained in the previous
subsection, but in a modi�ed (thermal) metric. The Debye screening is now
happening when a string touches the horizon and breaks into two parts: the
screening radius is �nite O(1/T ) at strong coupling g2Nc →∞.

This feature was explained by Zahed and Shuryak [672], who used lat-
tice diagram resummation. In another work [717] they had discussed the
velocity-dependent forces as well as spin-spin and spin-orbit interaction: lad-
der resummation predicts that all of them join into one common square root

9 The power of the distance in the bracket is 4 and not 1, as for Schwarzschild, because it
should correspond to the 6-dim, not 3-dim, Newton law.
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Fig. 4.45 Left (from [709]): In Kruskal coordinates one can study two Universes at the
same time, shown right and left, and the evaluated Wilson line contains static quarks
on their boundaries. Right (from [722]): The dragged quark trails a string into the �ve-
dimensional AdS bulk, representing color �elds sourced by the quark's fundamental charge
and interacting with the thermal medium. The back reaction on gravity describes how
matter �ows on the boundary.

V (T, r, g) ∼
√

(g2Nc)[1− v1 · v2 + (spin-spin) + (spin-orbit)]/r (4.129)

where v1, v2 are velocities of the quarks. If so, the(v1 ·v2) term � the strong
coupling version of Ampere's interaction between two currents � should have
extra 1/2 at small velocity. Lin and Shuryak [718, 719] solved for a string with
two quarks moving away from each other: their answer in the small-velocity
limit is ∼ (1 + 0.68 v2 + . . .), close to 1/2 but not exactly.
Bound states of quarks at strong coupling is a very di�cult but crucial

issue. Naively, one may simply take a modi�ed (Maldacena) Coulombic po-
tential and plug it into Klein-Gordon/Dirac equations. As discussed in [672],
there is no problem with states at large orbital momentum J �

√
g2Nc,

but others famously �fall onto the center�. From gauge side nothing we know
seems to be able to stop this falling.

And yet, studies based on the AdS/CFT gravity side [720] found that
there is no falling at all! The Coulombic states at large J are supplemented
by two more families: �Regge states� with masses M ∼ MHQ/(g2Nc)1/4

and even lighter s-wave states (one may call them ηc, J/ψ) with masses
M ∼MHQ/

√
g2Nc. The issue of �falling� was further discussed by Klebanov,

Maldacena and Thorn [715]. There are also multi-body heavy-quark+scalar
states similar to �polymeric chains� q̄.g.g...q discussed in QGP context: see
more on that in Hong, Yoon and Strassler [721]. And yet � as for sQGP �
the microscopic structure of the CFT plasma remains unknown.
Transport properties of the CFT plasma was a subject of signi�cant

studies and breakthroughs. One famous work is that by Policastro, Son and
Starinets [708] who have calculated viscosity-to-entropy ratio, �nding that at
in�nite coupling it has a �nite limit η/s = 1/4π, right in the ballpark of the
empirical RHIC value. Deep reasons for this simple answer go back to the so
called �membrane paradigm� of the black hole physics, which ascribes certain
dissipative properties to its horizon.
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Heavy quark di�usion constant has been calculated by Casalderrey-Solana
and Teaney [709] who found that

DHQ =
2

πT
√
g2Nc

. (4.130)

Note that it contains large coupling in denominator and thus is parametri-
cally smaller than an expression for the momentum di�usionDp = η/(ε+p) ∼
1/4πT . This work is methodically quite di�erent from others: global Kruskal
coordinates are used (see Fig. 4.45, left panel) which allows to consider prop-
agation of the perturbation through the black hole into another �Universe�,
with the opposite time direction. This corresponds to Keldysh-Schwinger
rules for calculating probabilities involving both an amplitude and a con-
jugated amplitude together.

Jet quenching studies[723�727] have used the so called �trailing string�
solution, see Fig. 4.45, right panel. It predicts the drag force

dP

dt
= −πT

2
√
g2Ncv

2
√

1− v2
. (4.131)

Quite remarkably, the Einstein relation (which in equilibrium relates the
heavy quark di�usion constant to the drag force) is ful�lled, although it is
not easy to see how those two quite di�erent gravity settings know about it.

The magnitude of this drag force qualitatively agrees with observed single
electrons from heavy quark decays at RHIC, as was demonstrated in the
AdS/CFT line in Fig. 4.43. Right now those are seen up to pt ∼ 5GeV at
which c,b quarks contribute comparably: a challenging task would be to test
this drag prediction for charm and bottom quarks separately and see if it
does or does not work.
Two examples of holograms provide much more detailed microscopic

pictures of complicated processes in real time, showing what AdS/CFT cor-
respondence can in principle do. Fig. 4.46, left panel from Lin and Shuryak
[718, 719] shows a snapshot of the distribution and direction of a Poynt-
ing vector of matter corresponding to two heavy quarks moving away from
each other. The string now is no longer stationary and is stretching and
simultaneously falling into the 5-th direction as a function of time. Time-
dependent picture is clearly an explosion: but it is a non-hydrodynamical
one, a AdS/CFT analog of a pair of jets.

Stationary holograms from a trailing string has been calculated by Gubser
et al [722] as well as Chesler and Ya�e [728], from whom we took Fig. 4.46,
right panel. It shows remarkable picture of the conical �ow: note e.g. a surplus
of energy in front of the quark and a de�cit behind it. A Mach cone, with
opening half angle θM ≈ 50◦ is clearly visible in both the energy density and
the Poynting vector.
�Gravity duals� to heavy ion collisions is the ultimate AdS/CFT applica-

tion, aiming to reproduce the whole collision process, including equilibration,
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Fig. 4.46 Left (from [718, 719]): The contours of Poynting vector T 0i in transverse plane,
induced by two quarks moving away from each other. The magnitude is represented by
color, with darker color corresponding to greater magnitude. The direction of the momen-
tum �ow is indicated by arrows. Middle and right (from [728]): Plot of the normalized
energy density (middle) and Poynting vector (right) for one quark (supersonic jet) with
v = 3/4 at nonzero T .

entropy production and hydrodynamical explosion. This should be described
via a dynamically generated black hole (BH). Sin, Zahed and Shuryak [729]
argued that exploding/cooling �reball on the brane is dual to departing black
hole, formed by the collision debris and then falling toward the AdS center.
A speci�c solution they discussed in the paper was a brane departing from a
static black hole, which generated a �spherical� solution (no dependence on
all 3 spatial coordinates) with a time-dependent T (which however is more
appropriate for cosmology but not heavy ion applications). These authors
also discussed other idealized settings, with d-dimensional stretching, cor-
responding for d=1 to a collision of two in�nite thin walls and subsequent
Bjorken rapidity-independent expansion, with 2d and 3d corresponding to
cylindrical and spherical relativistic collapsing walls.

Janik and Peschanski [730, 731], found asymptotic (late-time) solution
corresponding to 1-d rapidity-independent Bjorken expansion. It indeed has
a departing horizon z ∼ τ1/3 (z, τ are the distance from our brane in 5-th
coordinate and the proper time). A very important feature of the Janik-
Peschanski solution is that while the horizon is stretching in one direction
and contracting in others, two e�ects compensate each other and keep the
total horizon area constant: this corresponds to entropy conservation on the
boundary, in ideal hydrodyamic expansion. Further discussion of the �rst
subleading terms O(τ−2/3) correcting the JP solution has been made by Sin
and Nakamura [732] who identi�ed them with the viscosity e�ects, but they
do not �nd any preference for a particular value of the viscosity. Janik [733]
was able to derive sub-sub-leading term in the metric O(τ−4/3) and provide
an argument why viscosity should be what was found in equilibrium.

Recently, Princeton group (Friess et al [734]) pointed out very nice an-
alytic solution to a problem of departing point-like black hole. It produces
at the boundary violent spherically symmetric explosion, in which matter is
expanding in a form of a spherical shell. This solution explicitly conserves
entropy so one may call it a �reversible' explosion. Further work towards
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identifying the �gravity dual� to the heavy-ion �reball is actively pursued by
all those groups.



Chapter 5

Summary

The main purpose of the preceding Chapts. 2, 3 and 4 has been to review
our present understanding of the bulk properties of strongly interacting mat-
ter, especially of the equation of state and the location of transition lines,
crossovers and critical points. In the present section we will not summarize
all �ndings of these previous chapters. Instead, we will focus here on issues
which are potentially related to experiments at high baryon densities. This
concerns possible predictions as well as future work which has to be performed
on the theory side to decrease the uncertainties and develop new concepts.
We shall concentrate on four points, namely (1) the quest to identify and
model the relevant degrees of freedom, especially in the transition region, (2)
the determination of the equation of state of dense and especially baryon-rich
strongly interacting matter, (3) color superconductivity and (4) the transi-
tion region between hadronic and quark-gluon matter and the possible critical
point.

1. Modeling the relevant degrees of freedom:
As has already been stressed, �rst principle calculations are so far not
applicable in the region of high net baryon densities and moderate tem-
peratures, in particular close to the transition region. Here various models
have been developed which compete with or complement each other. An
important point is that these models can not only be constrained by data,
but also by comparison to lattice QCD results for the region where the
latter works reasonably well. This has been utilized, e.g. by the models
presented in Secs. 4.2� 4.5, and 4.8. One phenomenological model which is
appealing due to its simplicity is the statistical model reviewed in Sec. 4.1
which can be used to predict particle production yields. Still one would
like to understand from a microscopic point of view why it works so well
and where its limitations show up. The hadron resonance gas model of
Sec. 4.2 rests on a vast amount of measurements of hadron properties
as summarized by the Particle Data Group [10] and on the assumption
that the main interactions between hadrons are covered by resonance pro-
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duction. Naturally, the hadron resonance gas model is restricted to the
region below the transition to the quark-gluon plasma where the relevant
degrees of freedom change. A complementary model for the region above
the transition is the one presented in Sec. 4.3 using quark and gluon
quasi-particles. These models are of phenomenological nature by resting
either on experimental results or on �ts to lattice calculations. There is
another class of models which put their prime attention to the underlying
symmetry aspects, cf. Secs. 4.4, 4.5, 4.7.
At present, it is rather unclear, whether the models presented in the pre-
vious chapter just exclude each other or whether they highlight di�erent
aspects of one complex picture. For example, it appears very natural to
describe the region below the transition by a gas of resonances. Indeed,
their appearance can explain the drastic rise in the pressure as a function
of the temperature when approaching the transition. On the other hand,
it is also natural to assume that the decon�nement transition is connected
to the underlying symmetry, the center symmetry, and therefore to the
Wilson line degrees of freedom discussed in Sec. 4.4. However, the connec-
tion between the hadronic resonances and the Wilson lines is completely
unclear. The same holds true for the possible connection between chi-
ral symmetry restoration and the hadronic resonances. And exactly the
same statement also applies to the situation above the transition: Also
here there are no obvious links between Wilson lines, chiral symmetry
and quasi-particles (for some recent ideas see [583, 589, 735]). Without a
deeper understanding of such possible connections it is not clear whether
an extrapolation of the discussed models to other (less constrained) re-
gions of the phase diagram will yield reliable results. Here more work
on the theory side is clearly required. Improved models which take into
account both phenomenological constraints as well as the underlying sym-
metries and their changes will be an important tool to understand the
physics of strongly interacting matter at high baryon densities.

2. Equation of state:
The quest for the nuclear equation of state at high densities and/or ex-
treme isospin is one of the longstanding problems of nuclear physics.
Models applicable in a density range where nucleons, or hadrons in gen-
eral, can be considered as the relevant degrees of freedom, are either
based on empirical density functionals, e�ective �eld theory or ab initio
approaches to the nuclear many-body problem (cf. Sec. 3.3). While being
well constrained at sub-nuclear densities by data, empirical functionals
diverge dramatically when extrapolated to high densities and/or extreme
isospin. The ab initio approaches di�er in detail, i.e. the particular ap-
proximation schemes and the usage of nucleon-nucleon forces, but they
show a fair agreement up to two to three times saturation density. They
predict an equation of state which is soft for symmetric nuclear matter
but relatively sti� what concerns the isospin dependence. A more sys-
tematic treatment of many-body forces and a closer connection to QCD
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will in future be achieved by a further development of chirally invariant
theories.
Constraints obtained from studying neutron stars also come into play here
(cf. Sec. 3.4): Observational evidence for masses of neutron stars above
1.7 times the solar mass also favors a sti� equation of state for isospin
asymmetric nuclear matter at high densities, i.e. for three to �ve times
saturation density. Such studies can be used to tighten the constraints for
the equation of state in nuclear collisions provided, e.g., by the analysis
of �ow data. Concerning the transition to quark matter one obtains the
following constraint from neutron star studies: If quark matter is invoked
to explain the properties of compact stars with typical masses of 1.25 to
1.45 solar masses, then the phase transition to decon�ned quark matter
is expected to occur at densities below 3.5 times saturation density, i.e.
below 0.55 fm−3.
As already pointed out, lattice QCD cannot be used at present to de-
termine the equation of state for large net baryon densities. In principle,
perturbative QCD (cf. Sec. 3.1) is applicable at �nite chemical potentials,
but only for situations where the temperature or the chemical potential or
both are very high (compared, e.g., to ΛQCD). At present, resummation
techniques are developed to extend the region of applicability of pertur-
bative QCD down to smaller values of temperature and/or chemical po-
tential. In addition, the results of both �rst principle approaches, lattice
and perturbative QCD, can be used to inspire or constrain quark model
approaches. One example has been presented in Sec. 4.3, the quark-gluon
quasi-particle model. It describes the available lattice QCD results, e.g.,
the equation of state and the susceptibilities as a measure for �uctuations
from high temperatures down to the transition point. The qualitative de-
pendence of the masses of the quasi-particles on the temperature and the
chemical potential is inspired by (resummed) QCD perturbation theory.
In that way, one can extrapolate the equation of state known for small
baryon densities from ab initio lattice calculations towards large baryon
densities relevant for CBM in a thermodynamically consistent way. In
addition, features of the QCD critical point can be included phenomeno-
logically into the model in order to study the behavior of �uctuations in
the vicinity of such an exceptional point.

3. Color superconductivity:
Whether one can get some glimpse of a color superconducting phase in a
nuclear-collision experiment is very speculative. Clearly, this possibility
hinges on the size of the gap for diquark condensation (cf. Sec. 3.5). In per-
turbative QCD one obtains rather small gaps, but it is not so clear down
to which values of the chemical potential this method is applicable (cf.
e.g. the discussion in [736]). There are model calculations which predict
sizable gaps which in turn would lead to transition temperatures not far
below the ones reachable in nuclear collisions with large net baryon den-
sities. Hence, it might be possible to see precursor phenomena of a color
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superconducting phase or the possible crossover between Bose-Einstein
condensation of diquark molecules and a homogeneous color supercon-
ducting phase.

4. Transition region and critical point:
At present, lattice QCD as a �rst principle method is the most promising
tool to determine the transition region from hadronic matter to the quark-
gluon plasma (cf. Sec. 3.2). There are two symmetry aspects which sep-
arate these two states of matter, namely chiral symmetry and the center
symmetry connected to con�nement. However, both symmetries are only
approximately realized in nature. Hence, there is no strict reason why
hadronic and quark-gluon matter should be separated by a true phase
transition. Indeed, lattice results indicate that at low baryo-chemical po-
tentials there is a crossover between these two states of matter, i.e. no
real phase transition. One also infers from lattice calculations that the
order parameters of both considered symmetries drastically change at
the very same temperature. These �ndings concern the case of vanish-
ing chemical potential. For large chemical potentials one might resort to
e�ective models. There is no general proof (and indeed, in models one
can construct counterexamples), but most models seem to predict a �rst
order transition. In particular, these are models which focus on the chiral
symmetry aspect of the transition (cf. e.g. Sec. 4.5). On the other hand,
if one studies the decon�nement transition using Wilson line degrees of
freedom (cf. Sec. 4.4) one also �nds that the transition at �nite temper-
ature, but vanishing chemical potential, is a crossover for realistic quark
masses. Only for much higher quark masses one �nds a �rst order tran-
sition (cf. Fig. 3.19). However, the presence of a chemical potential now
weakens this �rst order transition. This would suggest that decreasing
the quark mass or increasing the chemical potential both work against
a �rst order phase transition. It should be stressed, however, that it is
not clear whether the decon�nement and the chiral restoration transition
also coincide at non-vanishing chemical potential.
If there is a crossover at low and a true phase transition at high chemical
potentials, then there must be a critical point, where the �rst order tran-
sition line starts. At this particular point the transition is of second order
which leads to large correlation lengths and allows for large �uctuations.
Unfortunately, it is very di�cult to perform reliable lattice calculations
at �nite chemical potentials. Recently, calculational techniques have been
developed to scan deeper into this region using lattice QCD. However,
at present, predictions for the location of the critical point vary strongly,
and even the existence of the critical point is not fully settled.
From the experimental side, it clearly would be a very spectacular result
to �nd an indication for the critical point. Here, �uctuations seem to be
the most promising tool. From the theoretical point of view, �uctuations
are intimately connected to the (charge and baryon number) susceptibil-
ities. The latter diverge at the critical point leading to large �uctuations.
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The determination of susceptibilities from lattice QCD is also under cur-
rent investigation. So far, however, one also has to rely on models to get
a qualitative and semi-quantitative picture of the critical point and the
susceptibilities connected to it. In that context there is an interesting
�nding from the renormalization group approach (cf. Sec. 4.7): If one
improves on a quark model mean �eld result using the renormalization
group method, it turns out that the critical region appreciably shrinks
� as compared to the pure mean �eld result. The critical region is the
area around the critical point where the susceptibilities are still sizable.
This �nding seems to indicate that it might be di�cult to actually detect
the critical point. On the other hand, these considerations concern ther-
mal equilibrium. As has been shown in Sec. 4.6, susceptibilities can also
diverge in the region of spinodal instabilities which accompany a �rst or-
der transition. Indeed, in an o�-equilibrium situation � which typically
would appear, if the state of matter traversed a �rst oder phase tran-
sition � the instability region is accessible. Therefore an experimental
veri�cation of huge �uctuations might point towards a �rst order phase
transition and not directly towards a critical point. On the other hand,
this makes it more likely that such a phenomenon is observed at all. In
addition, the theoretical �nding of lattice QCD that there is a crossover at
low chemical potentials together with an experimental �nding of a true
phase transition at large net baryon densities would also indicate that
there is a critical point in between. Of course, an experimental indication
of a �rst order phase transition would be as spectacular as the discovery
of a critical point.
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Spectral properties of hadronic excitations are direct probes of the strongly
interacting medium as created in energetic collisions of heavy nuclei. In this
chapter we discuss the pertinent theoretical background, recent developments
and perspectives for using electromagnetic radiation, as well as strange and
charm hadrons, to infer microscopic properties of QCD matter. In the elec-
tromagnetic emission sector, our focus is on thermal dileptons and the in-
medium modi�cations of the light vector mesons. We outline their potential
for characterizing the QCD phase transition by establishing connections of the
electromagnetic correlation function to order parameters of chiral symmetry
restoration. Complementary information can be obtained from hadronic de-
cays of resonances probing the more dilute stage of a heavy-ion collision. We
then turn to in-medium properties of strange and charm quarks and hadrons,
which includes charm-quark di�usion in the QGP as well as spectral func-
tions of K and D mesons in hadronic matter. While these quantities are not
directly accessible in experiment, a careful study of their production system-
atics in terms of total abundance, chemistry and collective �ow patterns will
lead to key insights into the relevant interactions in high-density matter. Fi-
nally, we discuss medium e�etcs on charmonia in both the QGP and hadronic
matter, and how these could manifest themselves in observables.



Chapter 1

Introduction

The vacuum of strong interactions is of a rather complex nature giving rise
to several fundamental phenomena, most notably the con�nement of quarks
and the generation of (the major part of) hadronic masses. The nontrivial
vacuum structure is associated with the formation of quark and gluon con-
densates, which are intimately related to the spontaneous breaking of chiral
symmetry and the breaking of scale invariance of Quantum Chromodynamics
(QCD). The condensates are, however, not directly observable, and therefore
information has to be obtained from excitations of the ground state. At zero
temperature and density, the physical excitations are colorless hadrons, whose
spin and �avor structure provide a rich laboratory for spectroscopy.

At su�ciently high temperature (T ) and/or baryon density, %B (or baryon
chemical potential, µB), asymptotic freedom of QCD predicts the existence of
new phases of matter, in particular the Quark-Gluon Plasma (QGP) at high
T and the Color-Superconductor (CSC) at high µB and low T . It is expected
that the bulk excitation of the QCD vacuum (thermal or density) induces
a �melting� of the condensate structures, accompanied by the restoration of
chiral symmetry and decon�nement of color charges. At �nite temperature
(and vanishing µB) this transition is fairly well established by lattice QCD
(lQCD) computations, with a (pseudo-) critical temperature of Tc = 180 ±
20 MeV. While this is presumably not a phase transition in the strict sense,
lQCD clearly reveals a rapid change in the thermodynamic properties of
the system (most notably energy density) over a rather small interval in
temperature. The properties of the equation of state and their possible signals
in heavy-ion reactions are discussed in detail in Parts I and IV of this book.

The phase transformation, in turn, implies dramatic changes in the un-
derlying microscopic properties of the strongly interacting medium. Naively,
this is realized by a conversion of the degrees of freedom, i.e., from hadrons
to quarks and gluons, as roughly re�ected in the (degeneracy) coe�cient of
the equation of state. However, this notion is far from providing an under-
standing of the mechanisms inducing decon�nement and chiral symmmetry
restoration in the medium. More precisely, the microscopic matter properties
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are characterized by density and temperature dependent changes in hadronic
spectral functions1. While medium modi�cations of hadrons in strongly inter-
acting matter are an interesting and important subject in itself, connections
to the underlying condensate structure(s) are essential to meet the challenge
of conducting fundamental studies of the QCD phase diagram. Indeed, (ap-
proximate) chiral symmetry alone predicts that (the spectral functions of)
chiral partners (i.e. hadronic multiplets that transform into each other under
chiral transformations) become (nearly) degenerate in the symmetric phase.
The degeneracy of π and σ channels, ρ and a1, or N and N∗(1535), obvi-
ously implies major changes of the pertinent spectral functions toward the
chiral transition. To detect such modi�cations in heavy-ion experiments, one
needs access to the hot and dense phases of the �reball, leading to the no-
tion of �penetrating probes�. In general, the latter encompass electromagnetic
(photons and dileptons), heavy-quark and high transverse-momentum observ-
ables. In the present Part, we will focus on the former two due to their poten-
tial of characterizing the matter at relatively soft energy/momentum scales,
∼ T,ΛQCD, 4πfπ (fπ=92 MeV: pion decay constant). The modes representing
the prevalent degrees of freedom and encoding phase transition properties are
expected to operate at these scales. Our goal is to provide a comprehensive
presentation of theoretical tools and approaches (with emphasis on recent de-
velopments) which are currently available to convert experimental data into
meaningful information on spectral and phase-transition properties of QCD
matter.

The inherently non-perturbative nature of this problem renders a direct
solution from �rst principles di�cult. While lattice QCD is well suited to
compute the equation of state, its formulation in euclidean space-time makes
the evaluation of spectral functions much more demanding. It is for this rea-
son that e�ective hadronic (and quark) models are an indispensable tool to
provide quantitative predictions that can be tested in experiment. No less
important, hadronic models can serve as the main bridge between �rst prin-
ciples and experiment, if the following program can be carried out: (a) The
interaction Lagrangian is constructed based on essential symmetry principles
(chiral, gauge). (b) The Lagrangian parameters (masses, coupling constants
etc.) are constrained by a wide range of empirical information in the vacuum
(decay widths, scattering data). (c) The in-medium spectral functions (as
calculated, e.g., within �nite-T �eld theory) are checked against lattice QCD
predictions for euclidean correlation functions, susceptibilites, and even order
parameters (using, e.g., sum rules). (d) The in-medium spectral functions are
applied to and tested against varying matter environments (ground-state nu-

1 Note that the (gauge-invariant) concept of a hadronic spectral function is equally valid
in the hadronic and QGP phases.
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clei or the medium in heavy-ion collisions). Throughout the discussion in this
Part of the book, we will take recourse to these criteria as guiding principles2.

Concerning electromagnetic probes (Chap. 2), dilepton invariant-mass
spectra in heavy-ion collisions o�er the unique opportunity to directly moni-
tor the in-medium electromagnetic spectral function. In the vacuum, and at
low masses (Mll ≤ 1 GeV), the latter is essentially saturated by the light
vector mesons V = ρ, ω, φ (via exclusive decays V → l+l−, l = e, µ), giving
rise to the vector dominance model (VDM). To the extent that this holds
up in the medium, dilepton spectra directly probe the in-medium V spectral
functions (experiments support this notion). As a further bene�t, it turns
out that the dominant contribution to the experimental spectra in low-mass
regime (LMR) originates from the hot and dense hadronic phase (not from
the QGP). A key issue is thus a reliable calculation of the vector-meson prop-
erties in the medium. Low-mass thermal dilepton emission is dominated by
the ρ meson, which has received most of the attention in this context. How-
ever, ω and φ contributions are more localized in invariant mass, and are
being studied rather intensely in production reactions o� nuclei, which pro-
vides important complementary information on their in-medium properties.
Some of the core questions may be summarized as follows [1]:
(1) Do ρ, ω and φ mesons behave alike in di�erent regimes of the phase dia-
gram?
(2) Do hadronic many-body e�ects account for a realistic evaluation of
medium modi�cations in hadronic matter? What role do intrinsic T - and
µB-dependencies of the parameters of the e�ective Lagrangian play?
(3) How do vector-meson spectral functions change in di�erent regimes of the
phase diagram (i.e., baryon- vs. meson-driven modi�cations)?
(4) What is the impact of medium-modi�ed hadronic spectral functions on
the EoS and its chemical composition?
(5) What are the connections between vector spectral functions and (chiral)
order parameters (quark and gluon condensates, fπ, susceptibilities, ...), and
how can they be exploited?
(6) What is the fate of the vector dominance model in the medium?
Item (5) is pivotal for extracting signatures of chiral symmetry restoration
from dilepton spectra. We will outline a scheme in which hadronic model
calculations of in-medium vector and axialvector spectral functions can be
exploited to (a) compute the temperature and density dependence of chiral
order parameters (using chiral and QCD sum rules), and (b) perform detailed
comparisons to dilepton spectra (vs. collision energy, centrality, mass and 3-
momentum). This provides a direct link between experiment and chiral order
parameters, especially if the latter can be quanti�ed by �rst principle, un-
quenched lattice QCD computations below Tc. The study of in-medium spec-
tral functions might be further supplemented with �hadronic spectroscopy�

2 The missing link in realizing point (d) is a realistic space-time evolution of a heavy-ion
collision, as well as a reliable assessment of non-thermal sources. These issues are discussed
in Parts III and IV of this compendium.
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via strong decay of short-lived resonances, e.g., ρ→ ππ or∆→ πN (Chap. 3).
While the detectable decays will mostly arise from dilute matter close to ther-
mal freeze-out of the �reball, the bene�t is that channels other than the vector
one are, in principle, accessible.

The heavy-quark complex divides into open-charm (Chap. 5) and charmo-
nium (Chap. 6) properties (bottom production is not feasible at the energies
envisaged at FAIR). An important feature here is that the charm-quark mass
is large enough for cc̄ production to be restricted to initial (hard) N -N col-
lisions. This implies that c-quarks do not �change their identity� during the
�reball evolution, and therefore changes in their momentum distribution as
they traverse the �reball can serve as quantitative measures of their inter-
actions in the medium, even at low pT ; the relatively large mass further
increases their value as a probe of transport properties of the medium, since
more (or stronger) interactions are required to thermalize c-quarks compared
to light partons (once thermalized, light partons have lost their virtue as a
probe).

A similar situation applies to charmonia (J/ψ, χc, ψ′): after primordial
production, their survival critically depends on their (inelastic) interaction
rate within the hot and dense medium, while regeneration (via c-c̄ coales-
cence) is presumably irrelevant at CBM energies. In particular, Debye screen-
ing is expected to reduce binding energies of charmonia, eventually leading
to their dissolution, or at least an increase in the dissociation rate. Charmo-
nia have the additional bene�t that they appear well suited for lattice QCD
studies: both (Euclidean) correlation functions and (static) c-c̄ free energies
have recently been computed with good precision; e�ective quark models can
thus be used to check the notion of in-medium potential approaches, as well
as to improve on phenomenological applications in heavy-ion reactions. Some
of the important question in the heavy-�avor context include:
(1) What are the prevalent c-quark interactions around and above Tc, and
what is the charm di�usion constant in the medium?
(2) Do c̄ quarks behave di�erently from c quarks in baryon-rich matter?
(3) What are the charmonium spectral functions in hot and dense matter, and
what is their sensitivity to open-charm properties (threshold e�ects, spectral
functions)?
(4) Are charmonium spectral properties related to decon�nement, and if so,
how?

We will also address the role of strange hadrons (Chap. 4). The current
strange-quark mass is intermediate between those of light (q=u, d) and charm
quarks, but the physics questions pertaining to the strange sector probably
more closely relate to the light sector. Indeed, subthreshold kaon production
in intermediate-energy heavy-ion reactions has been intensely studied to in-
fer spectral properties of kaons in hot/dense matter with possible relations
to chiral symmetry restoration. At ultrarelativistic energies, this question
merges into the one of chemical strangeness equilibration, one of the early
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suggestions as a QGP signature (due to a much reduced mass threshold as a
consequence of the s-quark shedding o� its constituent mass). Again, as for
the electromagnetic (vector meson) and charmonium complex, the issue of
reliable calculations of hadronic medium e�ects is essential to (i) quantify the
impact of dilute stages in the reaction, and (ii) establish relations between
�hadronic� e�ects and quark/gluon condensates.

An important aspect that we will return to throughout this Part is the sig-
ni�cance of high baryon density e�ects, which is one of the major objectives
of the CBM experiment. In a larger context, this connects to the physics of
(the interior) of neutron (quark) stars, even though those objects are com-
paratively cold (possibly up to tens of MeV following a core collapse in a
supernova explosion). While the increasing particle and entropy production
in heavy-ion reactions neccessarily implies an increase of temperature with
collision energy, one might entertain the possibility of precursor phenomena
of colorsuperconductivity in the transient (early) stages (provided the crit-
ical temperatures are large, say ∼100 MeV). We will brie�y allude to such
possibilities (Chap. 7).

The present Part on �In-Medium Excitations� is organized as follows:
Chap. 2 is devoted to electromagnetic probes, starting with a brief overview
of the current phenomenological state-of-a�airs (Sec. 2.1), followed by intro-
ducing the electromagnetic correlation function (Sec. 2.2), its connection to
condensates and order parameters as provided by chiral and QCD sum rules
(Sec. 2.3), hadronic model calculations of light vector-meson spectral func-
tions (ρ, ω, φ) in hot and/or dense matter (Sec. 2.4), pertinent thermal dilep-
ton (Sec. 2.5) and photon (Sec. 2.6) emission rates. Chap. 3 discusses possibil-
ities for obtaining supplementary information on hadronic spectral functions
via spectroscopy of strongly decaying meson (Sec. 3.1) and baryon (Sec. 3.2)
resonances. Chap. 4 addresses medium modi�cations of strange hadrons, i.e.,
anti-/kaons (Sec. 4.1) and strange baryons (Sec. 4.2). Chap. 5 concerns our
current understanding of open charm in the medium, starting with Sec. 5.1
on perturbative QCD calculations of open-charm production cross sections
close to the kinematic threshold and the speci�c problems and uncertainties
invovled. Sec. 5.2 elaborates on the problem of c-quark interactions and dif-
fusion in the QGP, with emphasis on nonperturbative approaches, followed
by Sec. 5.3 on the chemistry of charmed hadrons within the thermal model,
Sec. 5.4 on QCD sum rules for D-mesons, and Sec. 5.5 on hadronic model cal-
culations of charmed hadrons in hot/dense hadronic matter. Chap. 6 contains
our discussion of charmonia in medium; it is organized into Sec. 6.1 on char-
monium equilibrium properties as inferred from lattice QCD and potential
models and Sec. 6.3 on kinetic/transport approaches to describe the space-
time evolution of charmonium yields and transverse-momentum spectra in
heavy-ion collisions. Chap. 7 brie�y discusses excitations of the colorsuper-
conducting phases in the QCD phase diagram (Sec. 7.1), with emphasis on
meson correlation functions (Sec. 7.2) and precritical phenomena above the
critical temperature (Sec. 7.3). Finally, Chap. 8 contains an executive-type
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summary, where we recall what we deem are the most important conclusions
from this Part along with consequences for observables in the CBM context.



Chapter 2

Electromagnetic probes and light vector
mesons

The virtue of electromagnetic (EM) radiation as a probe of strongly inter-
acting matter in heavy-ion collisions resides in the fact that once the (real or
virtual) photon is produced, it escapes the medium essentially undistorted,
since its mean free path is much larger than the typical system size. While the
production of real photons is suppressed relative to hadrons by one power of
the electromagnetic coupling constant, αem = 1/137, dilepton emission (i.e.,
virtual photons with subsequent decay γ∗ → l+l− with l=e or µ) is further
suppressed by an additional power of αem. However, dileptons carry invalu-
able extra information in terms of their invariant mass (which they inherit
from their parent particle), which renders them the prime observable to search
for in-medium modi�cations of hadrons. The latter are restricted to vector
mesons, which are the only ones that directly couple to the e.m. current.
It turns out that only the light vector mesons ρ, ω and φ are expected to
contribute with a signi�cant fraction of in-medium decays to the �nally ob-
served dilepton spectrum. E.g., for the J/ψ, its vacuum lifetime of about
τψ=2000 fm/c implies that the observed signal will overwhelmingly contain
decays after the �reball freeze-out, with a ratio of ∼ τψ/τFB ≈100 (assum-
ing a �reball lifetime of τFB ≈20 fm/c). In this Section we therefore focus
on the medium modi�cations of the light vector mesons in connection with
e.m. thermal emission rates, primarily dileptons but with a short digression to
photon spectra. In Sec. 2.2, we introduce the e.m. current current correlation
function which is the key quantity �guring into both dilepton and photon
production rates. We discuss its main features in the vacuum along with
model independent evaluations of medium e�ects in low-density expansion
schemes. In Sec. 2.3 we discuss how (model-independent) QCD and chiral
sum rules provide us with: (i) constraints on models of vector-meson spectral
functions; (ii) links between correlation functions and chiral order parame-
ters. In Sec. 2.4 we turn to a detailed discussion of hadronic approaches to
assess the properties of ρ, ω and φ mesons in hot and/or dense matter, includ-
ing up-to-date information from experiment. In Secs. 2.5 and 2.6 a survey of
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thermal dilepton and photon production rates is given including temperature
and density regimes appropriate for heavy-ion collisions at CBM.

2.1 Brief overview of experimental status and
interpretation

Measurements of electromagnetic (EM) probes in heavy-ion collisions have
thus far consistently provided exciting data with vigorous subsequent theo-
retical activity, interpretations and insights.

At relativistic bombarding energies at the BEVALAC (Elab ' 1-5 AGeV),
the DLS collaboration performed a systematic measurement of low-mass
(M ≤ 1 GeV) dilepton spectra in various combinations of light and medium
heavy nuclei (from p-p to Ca-Ca) [2, 3]. A large (up to 6-fold) enhancement
over �nal state decays (� hadronic cocktail�) has been observed in 12C+12C
and 40Ca+40Ca systems at Elab'1 AGeV, which to date cannot be satisfac-
torily explained theoretical models [4�7]1. A clari�cation of the situation in
this energy regime is expected by upcoming precision data from the HADES
experiment [8], and �rst results have con�rmed the DLS data [9, 10].

At ultrarelativisitic lab energies at the CERN-SPS, Elab=158-200 AGeV
for lead and sulfur projectiles, respectively, low-mass dilepton spectra have
been measured by the HELIOS-3 [11], NA50 [12] and CERES/NA45 [13, 14]
collaborations. The CERES dielectron data consistently exhibit a substantial
enhancement over the hadronic cocktail as well, of about a factor of 3, while
the excess in the NA50 and HELIOS-3 dimuon data is much smaller (this
has been attributed to the rather high cut on transverse pair momentum,
qt ≥ 1GeV, in the latter two experiments; indeed, the CERES enhancement
is concentrated at low qt). Various theoretical models can explain the SPS
data reasonably well provided that substantial medium e�ects on primarily
the ρ-meson spectral function are included in the description, cf. Refs. [15�
19] for reviews. However, a de�nite discrimination between, e.g., a strong
broadening of the ρ with essentially no mass shift (�meltin�) and a �dropping-
mass� scenario could not be achieved [20].2 With baryon-induced medium
e�ects playing a major role in both approaches, and in view of the large DLS
enhancement, the question arises how the excess radiation develops with col-
lision energy. Maximal baryon densities are expected below maximal SPS
energy [22]. Indeed, a CERES run with 40 AGeV projectiles resulted in a

1 Recent developments point at the importance of nucleon-nucleon Bremsstrahlung for
explaining (part of) the discrepancy
2 Recent dimuon data from the NA60 experiment [21] in In(158 AGeV)+In collisions have
overcome the hampering high-qt cut of its NA50 predecessor, and in this way one can take
full advantage of much improved statistics and mass resolution over previous dielectron
results. This allows for major advances in the theoretical interpretation as will be discussed
in more detail below.
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substantially larger enhancement factor, but with limited statistical signif-
icance [23]. Thus, two natural questions arise in this context: (i) Is there
a regime of maximal dilepton enhancement which is possibly connected to
maximal baryon densities achieved in the collisions (as expected from current
theory)? (ii) Somewhat more speculatively, is there a connection between a
maximal excess and the putative critical endpoint in the QCD phase diagram
(in this case, prolonged �reball lifetimes could further stipulate the e�ects,
including an increase of the total yield)?

As emphasized below, (low-mass) dilepton production is intimately re-
lated to the emission of real photons, as these quantities represent di�erent
kinematic realizations of the same underlying emission function, i.e., the EM
current correlation function. Thus, a simultaneous investigation of photon
observables is very desirable. The WA98 collaboration has measured direct
photons (i.e., photons that are not due to �nal-state hadron decays but di-
rectly from the source, including primordial N -N collisions and thermal ra-
diation) [24, 25] which provides valuable complementary information on tem-
perature, lifetime, the relevant microscopic mechanism of photon production
as well as consistency checks with dilepton observables (both in terms of the
EM correlator and source properties). When combining photon and dilepton
measurements at the SPS, the observed excess radiation in (semi-) central
Pb-Au/Pb can essentially be explained by a common thermal source with
initial temperature T0 ' 210± 30 MeV and a lifetime of around 10-14 fm/c.
The baryonic medium e�ects required to account for the low-mass dilep-
ton excess are prevalent in the photon transverse-momentum spectra in the
qt'0.2-1 GeV regime [26].

To conclude these introductory notes, one may state that the current sit-
uation rather distinctly calls for accurate measurements of EM probes in the
beam energy regime of 10-50 AGeV (the regime accessible with FAIR). Ex-
cept for a short CERES run at 40 AGeV, no such measurements have been
performed to date. Dilepton experiments in this regime are also planned at
collider machines, within a systematic energy scan down to

√
s = 6 AGeV

(corresponding to Elab ' 20 AGeV) as part of the (near-) future RHIC pro-
gram [27], as well as at the Nuclotron facility in Dubna [28].3

3 This should be viewed as a great opportunity rather than a drawback, as experimental
redundancy and competition have proved to be very fruitful in the RHIC campaign to
date.
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2.2 Emissivity of strongly interacting matter

2.2.1 Electromagnetic correlation function and thermal
emission rates

The general framework for calculating thermal electromagnetic (EM) emis-
sion rates from a strongly interacting medium in thermal equilibrium is pro-
vided by the (retarded) EM current-current correlation function. The latter
is de�ned as the thermal expectation value of the retarded (hadronic) EM
current operator

Πµν
em(q0, q) = −i

∫
d4x eiq·x Θ(x0) 〈〈[jµ(x), jν(0)]〉〉 , (2.1)

where 〈〈· · · 〉〉 denotes the ensemble average encoding the dependence on tem-
perature T and chemical potential µB , and q0 and q are the photon energy
and magnitude of its 3-momentum, respectively. To lowest order in the EM
coupling, αem, (to which we will restrict ourselves here) Πµν

em corresponds to
the retarded photon self-energy. Its imaginary part, ImΠem (which we will
refer to as EM spectral function), directly determines thermal photon (γ)
and dilepton (l+l−) rates according to [29]

q0
dNγ
d4xd3q

= −αem

π2
fB(q · u;T ) ImΠem(q0 = q;µB , T ) , (2.2)

dNll
d4xd4q

= − α2
em

M2π3
L(M2) fB(q · u;T ) ImΠem(M, q;µB , T ) , (2.3)

where M2 = q20 − q2 is the photon's invariant mass squared, fB the Jüttner
function (which recovers the Bose distribution function in the local rest frame
of matter), and L(M2) a lepton phase space factor involving the mass, ml, of
the outgoing leptons. The medium's four-veleocity is denoted by uµ = γ(1,β),
and Πem = 1

3Π
µν
em gµν . While the dilepton rate involves an average of longi-

tudinal and transverse polarizations, Πem = 1
3 (ΠL

em + 2ΠT
em), only the trans-

verse part contributes to real photons. We emphasize again that dilepton and
photon rates are governed by the same underlying spectral function, albeit in
di�erent kinematic regimes (timelike vs. lightlike, respectively). To leading
order in the strong coupling constant, αs, the photon rate is O(αs) while
the dilepton rate is O(α0

s). Thus, each process that contributes to photon
production will also produce dileptons (the reverse statement excludes O(α0

s)
annihilation reactions such as qq̄ → e+e− or π+π− → e+e−). Thus model
calculations for dilepton production can and should be tested in photon pro-
duction (and vice versa). This not only provides consistency constraints on
the EM spectral functions, but, when applied to experimental spectra in
heavy-ion reactions, also on the underlying space-time (temperature-density)
evolution.
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2.2.2 Electromagnetic spectral function in vacuum

In the vacuum, ImΠem can be measured in e+e− annihilation as it is directly
proportional to the corresponding cross section into hadronic �nal states,

σ(e+e− → hadrons) = σ(e+e− → µ+µ−)
(−12π)

s
ImΠvac

em (s) , (2.4)

where σ(e+e− → µ+µ−) = 4πα2/3s (Lorentz invariance implies that Πvac
em =

Πem(T = 0, µB = 0) depends on s ≡ M2 only and that longitudinal and
transverse parts are identical; both features are broken in the medium). The
intimate relation between dilepton production, eq. (2.3), and e+e− annihila-
tion, eq. (2.4), is of course a consequence of time-reversal invariance of the
strong and electromagnetic interactions. e+e− annihilation is a well-known
cross section which has been measured over more than thirty years with in-
creasing accuracy, cf. the upper panel of Fig. 2.1. In the low-mass region,
M . 1.1GeV, the EM spectral function is dominated by the low-mass vec-
tor mesons ρ, ω and φ (cf. the lower panel in Fig. 2.1), giving rise to the
vector-dominance model (VDM). At higher masses, M ≥ 1.5GeV,one enters
a perturbative regime where the annihilation occurs at short distance imply-
ing that the strength of the total cross section is essentially given by a qq̄
�nal state with negligible impact of the subsequent hadronization,

σ(e+e−→ hadrons) = Nc
4πα2

3s

∑
q

e2q

(
1 + αs

π + 1.411
(
αs
π

)2− 12.8
(
αs
π

)3+ · · ·
)

(2.5)

with Nc = 3 the number of colors and eq the charge of the active quark �avors
(in units of the electron charge). Nonperturbative e�ects (resonance forma-
tion) become important again in the vicinity of the heavy-quark thresholds
(charm and bottom). However, for thermal dilepton emission in heavy-ion
reactions only the mass region below the charmonium resonances is of impor-
tance [32] (above, the contributions from primordial Drell-Yan annihilation
and/or �nal-state charm and bottom decays dominate the invariant-mass
spectrum). Thus, the following decomposition of the EM spectral function
emerges:

ImΠvac
em (M) =


∑

V=ρ,ω,φ

(
m2
V

gV

)2

ImDvac
V (M) , M < Mdual,

−M2

12π (1 + αs(M)
π + . . . ) Nc

∑
q=u,d,s

(eq)2 , M > Mdual ,

(2.6)

with Mdual ' 1.5 − 2GeV, and ImDV (M) denoting the imaginary parts
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Fig. 2.1 Upper panel: data compilation [30] of the ratio R=σ(e+e− →
hadrons)/σ(e+e− → µ+µ−) for energy regimes covering the light-�avor (top), charm
(middle) and bottom (bottom) sectors. Dashed and dotted lines depict the leading-order and
3-loop pQCD results, respectively, describing the nonresonant part of the ratio fairly well.
Lower panel: Magni�cation of the vacuum isovector-axialvector (top), isovector-vector
(middle), and EM spectral functions (bottom) in the regime relevant for thermal dilep-
ton emission. Figure taken from Ref. [31]
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of the vector-meson propagators (spectral functions). Without any medium
modi�cations, dilepton experiments would measure the spectral shape of the
(time-reversed) e+e− → hadrons cross section, folded with the temperature
evolution of the system. Indeed, for high masses M > Mdual, where the vac-
uum spectrum is rather structureless and medium e�ects are expected to be
small, this can be exploited to perform a measurement of the (highest) tem-
perature of the system (much like for photons) [32]. At low masses, however,
the key issue is to search for medium modi�cations in the (nonperturbative)
resonance spectrum in order to probe the spectral properties of the matter
in connection with possible phase changes.

The low-mass strength of the correlator is largely dominated by the isovec-
tor ρ0 meson, with a relative strength of 10:1:2 for ρ : ω : φ, as encoded in the
VDM couplings (or electromagnetic decay widths, ΓV→ee). Therefore, most
of the e�orts in evaluating medium e�ects in dilepton rates to date have
focused on the ρ. We will discuss these in detail in Sec. 2.4. In the follow-
ing Subsection we brie�y review model-independent approaches in terms of
low-density expansions coupled with current algebra.

2.2.3 Low-density expansions and chiral mixing

The leading temperature dependence of the isovector part of the EM correla-
tor (ρ channel) has been �rst elaborated in Ref. [33]. Using chiral reduction
formulae to evaluate the matrix elements of the isovector-vector (V ) correla-
tor between thermal one-pion states, the results naturally involve its chiral
partner, the isovector-axialvector correlator (A), i.e., the a1 channel. In the
chiral (mπ=0) and soft-pion limit (i.e., neglecting the thermal motion of the
heat-bath pions in the arguments of the correlators), one �nds the so-called
chiral mixing formula,

ΠV,A(q) = (1− ε) Π0
V,A(q) + ε Π0

A,V (q) (2.7)

with the mixing parameter ε = T 2/6f2
π . Thus, to leading order in T , the

axial-/vector correlator does neither experience a broadening nor a mass shift,
but a mere admixture of its chiral partner. Recalling the spectral densities
of the free V and A correlators in the right upper two panels of Fig. 2.1,
an immediate prediction of the chiral mixing would be an enhancement of
the dilepton production rate in the region between the ρ and the duality
thresholdi, Mdual. Such an e�ect might have been observed in the recent
NA60 data [34], cf. the discussion in Refs. [35, 36]. In cold nuclear matter,
chiral mixing has been worked out in Refs. [37, 38], while more advanced
studies at �nite temperature can be found in Refs. [39, 40]
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Fig. 2.2 Experimental data of the isovector-vector (IJP = 11−, left panel) and isovector-
axialvector (IJP = 11+, right panel) spectral functions via hadronic decays of τ leptons
(produced in

√
s=91 GeV e+e− annihilation at LEP) into even and odd numbers of

pions/kaons, respectively. The lines indicate theoretical calculations using pQCD.

An implementation of the mixing theorem into the dilepton rate based on
experimental input for the EM spectral function has been given Ref. [31],
yielding

dNll
d4xd4q

=
4α2fB

(2π)2

{
ρem − (ε− ε2

2
) (ρV − ρA)

}
. (2.8)

The inclusive EM spectral function, ρem = −ImΠem/(πs), as well as pertinent
vector and axialvector spectral functions (corresponding to even- and odd-
numbered pion states) are compiled in the lower panel of Fig. 2.1. Updated
measurements with much improved precision and a more detailed decompo-
sition of the hadronic �nal states have been performed through hadronic τ
decays by the ALEPH [41] and OPAL [42] collaborations at LEP, cf. Fig. 2.2.

A more elaborate application of the virial expansion, coupled with chiral
reduction techniques, has been carried out in Ref. [43], including contributions
from a nucleonic medium [44, 45]. The calculations have been performed
including the proper kinematics beyond the soft-pion and the chiral limit,
which entails a reduction of the medium e�ects compared to the simple mixing
formula, eq. (2.7). However, the more elaborate treatment of medium e�ects,
in particular those induced by nucleons (both resonant and nonresonant)
leads to an appreciable increase of low-mass enhancement in the dilepton
rate. While the resonance peaks are somewhat quenched, their width is not
a�ected owing to the nature of the low-density expansion.
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2.3 Sum rules

The generic idea of sum rules (SR's) in the QCD context is to establish
a relation between (energy-) integrals (�sums�) over hadronic spectral func-
tions and the nonperturbative ground-state structure encoded in expectation
values of pertinent correlators. The latter are then expanded in a series of
more elementary quark and gluon condensates (plus perturbative terms to
account for the high-energy behavior) and, therefore, provide a link between
spectral properties and (chiral) order parameters. While it has been real-
ized that SR's do not provide de�nite predictions for masses and widths of
hadrons, they nevertheless constitute powerful constraints on model spectral
functions, especially when applied at �nite baryon density and temperature,
where the condensates are expected to change appreciably. Ideally, the in-
medium condensates are evaluated in lattice QCD, but in practice one often
takes recourse to low-%B/-T expansions. In the following, we will distinguish
and discuss two classes of SRs: QCD Sum Rules (QCDSRs) [46] (Sec. 2.3.1)
and Chiral Sum Rules (CSRs) [47] (Sec. 2.3.2).

2.3.1 QCD sum rules

In this subsection, we �rst recall the general setup of the QCD sum rule
approach, followed by a discussion of its main input, i.e., quark and gluon
condensates and their modi�cations in matter. We then focus on applications
to vector mesons, in particular ρ and ω.

2.3.1.1 General setup

QCDSRs have been devised by Shifman, Vainshtein and Zakharov [46] as a
nonperturbative method to evaluate empirical properties of hadronic current
correlation functions in QCD, generically written via expectation values of
the type

ΠX(q) =
∫
d4x eiqx〈Ω|T jX(x)jX(0)|Ω〉, (2.9)

where |Ω〉 denotes the ground state of the system (either in vacuum or at
�nite temperature/density) and X the (hadronic) quantum numbers of the
current under consideration (at T > 0, the time-ordered correlator should
be replaced by the retarded one). Exploiting analyticity one can formulate a
(suitably subtracted) dispersion relation,4

4 The notion �sum rule� is actually related to the dispersion integral, not the sum on the
r.h.s. of eq. (2.11). The spirit of the SR is as usual: the integral over excitation strength
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Π(Q2)
Q2

=
Π(0)
Q2

−Π ′(0) +Q2 1
π

∫ ∞

0

ds
ImΠ(s)
s2(s+Q2)

, (2.10)

where Q2 ≡ −q2 > 0 denotes a spacelike 4-momentum q, and Π(0) and Π ′(0)
are subtraction constants. The basic idea of the QCDSR approach is to eval-
uate both sides of eq. (2.10) using di�erent techniques thereby establishing
a link between empirical information (spectral functions) and ground-state
properties (condensates). For su�ciently large momenta, the left-hand-side
(l.h.s.) of eq. (2.10) can be expanded in inverse powers of Q2 according to
Wilson's operator-product expansion (OPE),

Π(Q2)
Q2

= −c0 log
Q2

µ2
+

∞∑
j=1

cj
Q2j

, (2.11)

where the coe�cients cj are composed of perturbatively calculable (Wilson)
coe�cients and Q2-independent expectation values of matrix elements of
quark and gluon �eld operators, the so-called condensates. The latter encode
all the nonperturbative physics and represent a series of power corrections to
the perturbative coe�cient c0. The right-hand-side (r.h.s.) of eq. (2.10) in-
volves timelike spectral functions which can either be taken directly from ex-
periment (as, e.g., in eq. (2.4), where ImΠem ∝ σe+e−→hadrons) or calculated
in a hadronic model approach (as is typically the case for in-medium appli-
cations). To improve the convergence of the dispersion integral one usually
applies a so-called Borel transformation [49] which converts the Q2 variable
into the Borel massM; the sum rule then takes the form

Π(0)− 1
π

∫ ∞

0

ds
ImΠ(s)

s
e−s/M

2
= c0M2 +

∞∑
j=1

cj
(j − 1)!M2j

. (2.12)

For a reliable evaluation of the sum rule a reasonably large range in M
needs to be established over which the result is stable, i.e. independent of
M within a �Borel window�. Besides the spectral function, a key ingredi-
ent are the coe�cients cj , especially their quark- and gluon-condensate de-
pendence. In practice, the OPE is truncated after a few terms keeping the
lowest-dimension condensates including the chiral condensate 〈〈q̄q〉〉, 4-quark
condensates 〈〈q̄Γ qq̄Γ ′q〉〉 (with Γ , Γ ′ Dirac-color-�avor matrices), the gluon
condensate 〈〈αsπ G

2〉〉 (signifying the breaking of scale invariance), and mixed

(r.h.s.) is related to a model independent quantity (l.h.s). For instance, the famous Thomas-
Reiche-Kuhn SR for dipole strength of a nucleus with Z protons and N neutrons readsP
β

R
dEβσabs = 2π2~

Mc
NZ
A

(1+V), where V accounts for exchange forces among nucleons,
and the l.h.s. is the absorption cross section integrated over all E1 transitions from the
ground state to excited states labelled by β, cf., e.g., Ref. [48].
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quark-gluon condensates, e.g., 〈〈q̄gsσµνGµνq〉〉. The condensates therefore
represent order parameters of di�erent symmetry breakings.

Historically, QCDSRs have been �rst applied to the vacuum meson spec-
trum [50], in particular light vector mesons, and subsequently extended to
baryons [51]. The �rst in-medium application was conducted at �nite temper-
ature in Ref. [52], and for a cold nuclear medium in Ref. [53], both focusing
on the changes in the pole masses of vector mesons. More recent applica-
tions including medium e�ects on the widths in the vector-meson spectral
functions can be found in Refs. [54�58].

2.3.1.2 In-medium condensates

When applying QCD sum rules to in-medium correlators, the key role on
the OPE side is attached to the temperature and density dependence of the
condensates. Ideally, these would be taken from lattice QCD calculations,
but currently the latter are not easily applied to both higher dimension con-
densates as well as �nite baryon (or quark) chemical potential. Therefore,
one usually takes recourse to low-temperature and -density expansions. For
a given (quark-/gluon-) operator O, the leading terms are given in the dilute
gas approximation for non-interacting pions and nucleons as

〈〈O〉〉 = 〈O〉0 +
%N

2mN
〈N |O|N〉+ T 2

8
〈π|O|π〉+ · · · , (2.13)

where 〈O〉0 denotes the vacuum expectation value. The (scalar) pion density
has been expressed in terms of the temperature T in (2.13) which is valid for
massless pions. While the pion matrix elements 〈π|O|π〉 can be evaluated in
a model-independent way using soft pion theorems (in analogy to the low-
density expansions discussed in Sect. 2.2.3), �rst principle information on
the nucleon matrix elements 〈N |O|N〉 is more di�cult to obtain and often
substituted by empirical information (cf. also Ref. [59] for an alternative
approach). For analyses going beyond the leading terms see, e.g., Refs. [60�
62]. For �nite density the leading terms for the chiral condensate and for the
gluon condensate are given model independently by the Hellmann-Feynman
theorem and by the trace anomaly, respectively [63, 64]. Numerically, these
leading terms can be estimated as

〈〈q̄q〉〉 ' 〈q̄q〉0 (1− 0.33
%N
%0

), (2.14)

〈〈αs
π
G2〉〉 ' 〈αs

π
G2〉0 (1− 0.077

%N
%0

) . (2.15)

Temperature e�ects in the gluon condensate are presumably small below
T ' 100MeV, but signi�cant for the quark condensate (cf. eq. (2.16) be-
low). Following Ref. [65], both condensates are displayed in Fig. 2.3, where
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Fig. 2.3 Density and temperature dependence of the chiral condensate (left panel) and
the gluon condensate (right panel) normalized to their vacuum values [65]. The calculation
is based on a low-temperature and low-density expansion and therefore only qualitative for
larger values of T and %N (=n).

especially the strong density dependence of the chiral condensate 〈〈q̄q〉〉 is
noteworthy.

The leading terms for the quark condensate in eq. (2.13) can also be for-
mulated in terms of the hadronic �σ� terms and the pertinent scalar densities,
%sh, as [66, 67]

〈〈q̄q〉〉
〈q̄q〉0

' 1−
∑
h

Σh%
s
h

f2
πm

2
π

' 1− T 2

8f2
π

− 0.33
%N
%0

, (2.16)

where the last expression holds only for massless pions (and with a ∼20%
uncertainty on the density coe�cient induced by the nucleon σ-term, ΣN =
45± 15MeV).

The rather poorly known higher order condensates and their density de-
pendence constitute some of the current limitations of the QCDSR approach
(as well as practical problems with a unique de�nition of the Borel window).
We also recall that sum rules do not directly determine the properties of a
speci�c hadronic state (such as its mass or width), but a weighted integral
over the spectral function, i.e., a strength distribution.

2.3.1.3 QCD sum rules for vector mesons in medium

In the following we will concentrate on light vector-meson currents, jX = jµV ,
which in quark basis decomposes into isospin-0 (ω) and isospin-1 (ρ) channels
according to
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jωµ =
1
6
(
ūγµu+ d̄γµd

)
, (2.17)

jρµ =
1
2
(
ūγµu− d̄γµd

)
. (2.18)

We will restrict ourselves to mesons at rest in the thermal rest frame, i.e., q =
0, which implies degeneracy of transverse and longitudinal components, and
therefore it is su�cient to consider ΠV = gµνΠ

µν
V /3. The explicit form of the

coe�cients cj up to order αs, up to mass dimension 6 for scalar condensates
and up to twist 2 for non-scalar condensates, can be found, e.g. in Ref. [68].
Note that for vector mesons the Landau damping corresponds to subtraction
constants like ImΠ(0) which are related to the forward scattering amplitude
in the Thomson limit [69]. The quark currents of the ρ and ω mesons only
di�er by the relative sign of the two contributions. Correspondingly, the sum
rule for the ρ meson is very similar to that of the ω meson, except for some
sign changes in the four-quark condensates. If one uses factorization for the
four-quark condensates even this di�erence vanishes (this explains, e.g., the
near degeneracy of ρ and ω mesons in vacuum; even though their widths
di�er by a factor of almost 20; the ρ width appears to be still narrow enough
to not a�ect the dispersion integral appreciably). In medium further terms
arise which have di�erent signs. It is, however, the di�erent Landau damping
term causing the main di�erence of ρ and ω in a medium.

Two further approximations are commonly applied, especially in earlier
works. First, the spectral function is decomposed into a resonance part with
a single state characterized by the pole position and its residue, and a per-
turbative continuum part, represented by the ansatz

1
π

ImΠV (s) = FV δ(s−m2
V ) +

1
π

ImΠcont
V (s)Θ(s− sth) (2.19)

(sth: continuum threshold). Upon replacing ImΠcont
V (s) by the corresponding

expression in the perturbative part, c0, of the OPE, the sum rule eq. (2.12)
turns into a relation for the pole mass mV and its residue FV . This procedure
is called �narrow (zero) width approximation�. However, the ansatz eq. (2.19)
may no longer be justi�ed if large widths and/or multiple structures arise
in the spectral function (as borne out of hadronic many-body calculations
discussed in Sec. 2.4), and consequently has been improved upon. Second,
the higher order condensates are used within an factorization assumption
which also has given rise to concerns.

2.3.1.4 Survey of approaches

A compilation of QCD sum rule applications to in-medium vector mesons
is given in Tab. 2.1. The main di�erences between the approaches lie in the
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hadron range hadronic model OPE side κ values

Dey [33] ρ, a1 T 6= 0 zero width, V-A mix none

Hatsuda [53] ρ, ω, φ %N 6= 0 zero-width d ≤ 6 factor.

Hatsuda [70] ρ, ω, a1 T 6= 0 zero-width d ≤ 6 current alg.

Asakawa [54] ρ %N 6= 0 VDM d ≤ 6 factor.

Eletsky [71] ρ, a1 T 6= 0 zero-width d ≤ 6 current alg.

Hatsuda [72] ρ, ω %N 6= 0 zero-width d ≤ 6 factor.

Jin [73] ρ, ω, φ %N 6= 0 zero-width d ≤ 6 factor.

Koike [74] ρ, ω, φ %N 6= 0 zero-width d ≤ 6 factor.

Klingl [55] ρ, ω, φ %N 6= 0 chiral SU(3) VDM d ≤ 6 admitted

Lee [75] ρ, ω, φ %N 6= 0 q 6= 0 d ≤ 6 factor.

Leupold [56] ρ %N 6= 0 Breit-Wigner d ≤ 6 admitted

Leupold [76] ρ %N 6= 0 q 6= 0 d ≤ 6 admitted

Hofmann [77] ρ T 6= 0 zero-width d ≤ 6 dim. scal.

Marco [78] ρ, a1 T 6= 0 V-A mix d ≤ 4
Zschocke [57] ρ, ω, φ T, %N 6= 0 zero-width d ≤ 6 admitted

Zschocke [79] ρ, ω %N 6= 0 in-med. propag. d ≤ 6 admitted

Thomas [80] ω %N 6= 0 normal. moment d ≤ 8 adjusted

Ruppert [58] ρ %N 6= 0 Breit-Wigner d ≤ 6 adjusted

Steinmüller [81] ω %N 6= 0 Breit-Wigner, res.-hole d ≤ 6 admitted

Table 2.1 Examples of in-medium QCD sum rules applications to light vector (and
axial-vector) mesons (only �rst authors are quoted). �κ values� concern the evaluation of
four-quark condensates, �zero-width�, �Breit-Wigner� and �res.-hole� concern the modeling
of the low-energy spectral functions, �V-A mix� denotes mixing of vector and axial-vector
spectra, �factor.� indicates factorization of four-quark condensates, �current alg.� indicates
the evaluation of four-quark condensates with respect to soft pions, �VDM� denotes vector
dominance models.

treatment of (i) the hadronic spectral function (e.g. zero-width approxima-
tion vs. detailed hadronic models), (ii) the Landau damping term, and, (iii)
approximations to the condensates on the OPE side (truncation of the expan-
sion at a given mass-dimension d, factorization of higher-order condensates).
In the following, we discuss separately the cases of ρ and ω mesons, as well
as their relation.

2.3.1.5 ρ meson

A generic feature of QCDSR's for the ρ is that the in-medium reduction of
the condensates typically requires a softening of the hadronic spectral den-
sity. In early works [53, 70], based on the narrow width approximation (and
for nuclear densities on the factorization of the 4-quark condensates), it was
thus predicted that the ρ meson mass drops with increasing temperature and
density. In Ref. [54] e�ects of the ∆(1232)-nucleon�hole polarization on the
pion were included in the ρ spectral function, but its mass was still found
to drop. In Ref. [55] a more elaborate treatment of the �nite-density e�ects
on the pion cloud of the ρ was carried out, and the QCDSR was found to
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Fig. 2.4 QCD sum rule constraints on ρ meson mass and width as inferred from Breit-
Wigner parameterizations of its spectral function [56] (left panel: vacuum, right panel: cold
nuclear matter at saturation density). �Allowed� regions of mass and width are indicated
by the bands between solid and dashed curves, corresponding to maximal deviations be-
tween the l.h.s and r.h.s. of the SR of 0.2% and 1%, respectively. The diamond depicts the
corresponding vacuum parameters. The upper, middle and lower panels illustrate the un-
certainty induced by the parameter κ used in the factorization of the 4-quark condensates,
〈〈q̄Γ qq̄Γ ′q〉〉 → 〈〈(q̄q)2〉〉 → κ〈〈q̄q〉〉2.

be satis�ed without invoking additional mass shifts. In Ref. [56] a more gen-
eral analysis was performed based on Breit-Wigner parametrizations with
variable width and mass. It was found that the sum rules only constrain a
correlation of the resonance parameters, i.e., the softening dictated by the
reduced condensates can be saturated by either a reduction in mass or an
increase in width, or a combination of both, see Fig. 2.4. This clearly illus-
trates the point that QCDSR's are not able to predict spectral shapes, but
rather provide constraints.

2.3.1.6 ω meson

Similar to the ρ meson, the narrow width approximation for the ω (which,
after all, may be better justi�ed) leads to the prediction [53] that its mass
drops with increasing nuclear density. However, at �nite temperature the
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ω mass seems to stay essentially constant [70]. According to Ref. [55] the
dropping mass at �nite nuclear densities persists when �nite-density e�ects
on the pion cloud are incorporated in the ω spectral function, although this
�nding has been challenged in later, more elaborate, calculations [81�83].

Let us be more speci�c and focus on density e�ects. The integral in
eq. (2.12) can be decomposed into a low-lying resonance part, namely∫ sω
0
dsImΠω(s, %N )s−1e−s/M

2
, and a continuum part,∫ ∞

sω

dsImΠω(s, %N )s−1e−s/M
2
≡ −πM2c0e

−sω/M2
, (2.20)

both depending on the continuum threshold sω. The quantity

m2
ω(%N ,M2, sω) ≡

∫ sω
0
ds ImΠω(s, %N ) e−s/M

2∫ sω
0
ds ImΠω(s, %N ) s−1e−s/M2 (2.21)

is a normalized moment which characetrizes the center of gravity of the
weighted spectral function, ImΠω(s, %N ) e−s/M

2
/s, in the interval s = 0 · · · sω.

Clearly, when additional strength of ImΠω at lower values of s is caused by
in-medium e�ects (as, e.g., suggested by recent experiments [84, 85]), the
above de�ned value of mω is diminished. Truncating eq. (2.12) at j = 4,
eq. (2.21) for the ω meson can be arranged as

m2
ω(%N ,M2, sω) =

c0M2
[
1−

(
1 + sω

M2

)
e−sω/M

2
]
− c2

M2 − c3
M4 − c4

2M6

c0
(
1− e−sω/M2

)
+ c1

M2 + c2
M4 + c3

2M6 + c4
6M8 − Πω(0,%N )

M2

.

(2.22)

Following Refs. [57, 68], the sum rule is handled as usual by determining the
sliding Borel window requiring that (1) the sum of the c3,4 terms in eq. (2.12)
does not contribute more than 10% to the r.h.s., (2) the continuum part
de�ned above does not exceed 50% of the integral on the l.h.s. of (2.12) to
ensure su�cient sensitivity to the resonance part, (3) the continuum threshold
satis�es maximum �atness of m2

ω(%N ,M2, sω) within the Borel window, (4)
a sensible value of m2

ω follows as average with respect toM2.
It turns out that the chiral condensate enters the SR for the light vec-

tor mesons only in the renormalization invariant combination mq〈〈q̄q〉〉. Nu-
merically, this term is negligible, i.e. this order parameter of chiral symme-
try breaking does practically not in�uence the SR for ρ and ω mesons.5 In

5 Another connection to an order parameter of chiral symmetry breaking, namely to the
pion decay constant fπ , is suggested in Ref. [86] based on the hypothesis of identifying
the continuum threshold with the chiral gap, i.e., sρ ≡ 4πfπ . In a hierarchy of moments
of the spectral integrals, the lowest moments avoid higher-order condensates. E.g., for the
in-medium ρ spectral function of Ref. [55], the moment corresponding to the in-medium ρ
mass (in cold nuclear matter) resembles Brown-Scaling, while for the ρ spectral function
of Refs. [87, 88] the pertinent moment exhibits little density dependence.
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Fig. 2.5 The mass parameter m2
ω de�ned in eq. (2.21) and averaged within the Borel

window as a function of the baryon density (n ≡ %N ) for κN=4 and c4=0 (solid curve).
m2
ω coincides with the ω pole mass squared only in zero-width approximation; in general

it is a normalized moment of ImΠω to be calculated from data or models. The sum rule
eq. (2.22) is evaluated as described in the text with appropriately adjusted κ0. Inclusion

of c
(0)
4 =O(±10−3) GeV8 requires a readjustment of κ0 in the range 1 · · · 5 to m

(0)2
ω . A

simultaneous change of κN of ∼20% is needed to recover the same density dependence as

given by the solid curve at small values of %N . The e�ect of a c
(1)
4 term is exhibited using

c
(1)
4 = ±10−5n−1

0 GeV8: dashed curves, c
(1)
4 = ±5 · 10−5n−1

0 GeV8: dotted curves; the
upper (lower) curves are for negative (positive) signs.

contrast, the 4-quark condensates have a strong impact. As pointed out in
Ref. [80], from the experimental data in Ref. [85] one can deduce that a
certain combination of 4-quark condensates must undergo a strong density
dependence, see Fig. 2.5. This is in line with arguments based on a large-
Nc expansion according to which the 4-quark condensates have often been
factorized into squares of the chiral condensate. The occasionally quoted de-
pendence on the chiral condensate is in fact a dependence on various 4-quark
condensates.

As an example, let us brie�y sketch the procedure adopted in Ref. [80].
The 4-quark condensates that enter in the ω sum rule are

〈〈ūγµλAud̄γµλAd〉〉 = −κ1
4

9π2

Q2
0

f2
π

〈〈q̄q〉〉2 (2.23)

〈〈ūγ5γ
µλAud̄γ5γµλAd〉〉 = κ2

4
9π2

Q2
0

f2
π

〈〈q̄q〉〉2 , (2.24)

〈〈q̄γµλAqq̄γµλAq〉〉 = −16
9
κ3〈〈q̄q〉〉2, (2.25)

〈〈q̄γ5γ
µλAqq̄γ5γµλAq〉〉 =

16
9
κ4〈〈q̄q〉〉2 , (2.26)

where Q0 is a cuto� related to the ρ-ω mass splitting. All expressions go
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Fig. 2.6 The pion form factor exhibiting ρ-ω mixing. Data are from Ref. [89] and the
curves from a QCD sum rule evaluation [68].

beyond the ground state saturation (factorization approximation) which is
recovered for κ1,2 = 0 and κ3,4 = 1. Following Ref. [80] we proceed as fol-
lows: expand κΩ in density, i.e., κΩ = κ

(0)
Ω + κ

(1)
Ω %N , use the known sigma

term σN in 〈〈q̄q〉〉 = 〈q̄q〉0 + ξ%N with ξ = σN/(2mq), linearize the re-
sulting expressions, add up all contributions with their corresponding pre-
factors to get a common factor κ0 = 9

28π2
−Q2

0
f2
π

( 2
9κ

(0)
1 − κ

(0)
2 ) − 2

7κ
(0)
3 + 9

7κ
(0)
4

for the vacuum contribution, − 112
81 παsκ0〈q̄q〉20, and a common factor κN =

κ0+ 〈q̄q〉0
2ξ

(
9

28π2
−Q2

0
f2
π

( 2
9κ

(1)
1 − κ

(1)
2 )− 2

7κ
(1)
3 + 9

7κ
(1)
4

)
for the density dependent

medium contribution of the above four-quark condensates. κ0 �gures into the
vacuum sum rule and has to be adjusted properly together with other quan-
tities to recover the empirical vacuum ω mass, while κN is discussed further
in connection with Fig. 2.5; due to the mixing of density dependencies of κΩ
and 〈〈q̄q〉〉 even an accurate knowledge of κ0 does not �x κN .

Given the above empirical constraints on the 4-quark condensates the in-
medium behavior of the OPE side is largely determined also for the ρ meson.
However, the Landau damping term for the ρmeson is by a factor 1/9 smaller,
which implies that the softening of the ρ spectral function is much more
pronounced (in agreement with previous analyses [53]). In addition, the ω
decay to π+π− (with a small branching ratio of BR = 2.21±0.3% [30]) gives
rise to ρ-ω mixing as seen experimentally in the deformation of the pion
form factor, cf. Fig. 2.6. In fact, this interference might play an important
role in the interpretation of medium e�ects in the ρ-ω region in situations
were the ω contribution is large, e.g., in proton-induced production o� nuclei,
p+A→ e+e−X [84, 90].
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2.3.2 Chiral sum rules and axialvector spectral function

The closest connection between the (in-medium) vector-isovector spectral
function (which can be probed by dilepton obsrervables) and chiral restora-
tion is probably given by Weinberg sum rules which have been derived prior
to QCD based on current algebra [47]. As a brief reminder, we recall that
the QCD Lagrangian is, up to order O(mq), invariant under chiral rota-
tions R(αL,R) ≡ exp[−iαL,R · τ γ±] of the (light) quark �elds, where τ are
the standard Pauli matrices in isospin space and γ± = 1/2(1 ± γ5) are the
left-/right-handed projection operators (qL,R = γ∓ q). The ground state of
QCD, however, is characterized by a complicated (quark- and gluon-) con-
densate structure (the Nambu Goldstone phase, as opposed to the �trivial�
Wigner-Weyl phase). Most notably, the scalar quark condensate, 〈0|q̄q|0〉 =
〈0|q̄LqR + q̄RqL|0〉, exhibits a maximal violation of chiral symmetry, and
is intimately related to the generation of constituent quark masses, m∗

q '
−G〈0|q̄q|0〉 ' 0.35 − 0.4 GeV, and thus of more than 95% of the visible
mass in the Universe. Neither condensates nor the quark mass are directly
accessible in experiment. However, observable consequences of the sponta-
neous breaking of chiral symmetry can be found in the physical excitations
of the ground state, i.e., in the (low-lying) hadron spectrum. The (almost)
massless pions are believed to be the Goldstone bosons of the unbroken di-
rections of the chiral group, i.e., pions emerge as a chiral rotation of the
scalar-isoscalar σ (the condensate channel). More generally, the hadron spec-
trum is characterized by non-degenerate chiral partners (hadronic multiplets
transforming into each other under chiral rotations), split in mass by typically
∆M = 0.5 GeV, e.g., π(140)-σ(400-1200), ρ(770)-a1(1260) and N -N∗(1535),
see also Secs. 3.2.1 and 4.1.5.

Weinberg sum rules precisely quantify the relation between chiral or-
der parameters (e.g., quark condensates or the pion �pole strength� (de-
cay constant), fπ) and di�erences of (moments of) vector-isovector (�ρ�) and
axialvector-isovector (�a1�) spectral functions. As such, they are more directly
related to chiral symmetry and its spontaneous breaking than QCD sum rules,
and thus are ideally suited to connect (the apporach) to chiral restoration
(vanishing of order parameters) to in-medium vector spectral functions (and
eventually to dilepton observables). In vacuum they read6

6 The form of the sum rules as written above applies to the chiral limit (vanishing cur-
rent light-quark and pion masses). Corrections to the second Weinberg Sum Rule (WSR),
Eq. (2.29), have been discussed, e.g., in Refs. [91�93], while the �rst WSR, Eq. (2.28),
seems not to be a�ected.
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−
∞∫
0

ds

πs2
[ImΠvac

V (s)− ImΠvac
A (s)] = f2

π

〈r2π〉
3
− FA, (2.27)

−
∞∫
0

ds

πs
[ImΠvac

V (s)− ImΠvac
A (s)] = f2

π , (2.28)

−
∞∫
0

ds

π
[ImΠvac

V (s)− ImΠvac
A (s)] = 0, (2.29)

−
∞∫
0

s
ds

π
[ImΠvac

V (s)− ImΠvac
A (s)] = −2παs〈〈O4〉〉. (2.30)

Eqs. (2.28) and (2.29) are the famous sum rules derived by Weinberg [47]
based on chiral Ward identities (i.e., conserved vector and axialvector cur-
rents in the chiral limit) and the assumption of free �elds at high momenta
(in the language of QCD, these would correspond to the perturbative limit
where V and A correlators degenerate); fπ=92MeV is the pion decay con-
stant. In Eq. (2.27) [94], 〈r2π〉 denotes the pion charge radius squared, and
FA the pion axialvector form factor. In eq. (2.30), which was obtained well
after the invention of QCD [95], 〈〈O4〉〉 denotes a combination of 4-quark
condensates; e.g., in the factorization (or ground state) approximation it is
given by (16/9)〈〈q̄q〉〉2. The direct connection of the chiral sum rules to the
vector correlator renders them particularly valuable in the context of dilep-
ton production. The assessment of in-medium e�ects requires their extension
to �nite temperature which has been elaborated in Ref. [95]. Due to loss of
Lorentz-invariance, the original vacuum results become energy sum rules at
�xed 3-momentum and split into longitudinal (L) and transverse (T ) com-
ponents of the correlators,

−
∞∫
0

dq20
π(q20 − q2)

[
ImΠL

V (q0, q)− ImΠL
A(q0, q)

]
= 0, (2.31)

−
∞∫
0

dq20
π

[
ImΠL,T

V (q0, q)− ImΠL,T
A (q0, q)

]
= 0, (2.32)

−
∞∫
0

q20
dq20
π

[
ImΠL,T

V (q0, q)− ImΠL,T
A (q0, q)

]
= −2παs〈〈O4〉〉. (2.33)

The transverse and longitudinal components of the spectral functions are
given in terms of standard projection operators,
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Fig. 2.7 Left panel: vector and axialvector spectral functions as measured in hadronic
τ decays [41] with model �ts using vacuum ρ and a1 spectral functions plus perturbative
continua [96]; right panel: schematic scenarios for chiral symmetry restoration in matter.

Πµν
V = ΠT

V,AP
µν
T +ΠL

V,AP
µν
L , (2.34)

and we have absorbed the pionic piece of the (longitudinal) axialvector corre-
lator (which in the vacuum reads ImΠµν

π = f2
πq

2δ(q2)PµνL ) into the de�nition
of the in-medium spectral function, ImΠL

A(q0, q). This is motivated by the
expectation that the pion itself will be subject to medium e�ects and thus
its spectral function will no longer be represented by a δ-function.

The chiral sum rules clearly emphasize the necessity of incorporating the
axialvector channel into the discussion of medium e�ects in dilepton pro-
duction if �rm conclusions about the nature of chiral restoration are to be
drawn. In the vacuum, both V and A correlators have been measured with
excellent precision up to M ' 1.5 GeV in τ -lepton decays at LEP by both
the ALEPH [41] and OPAL [42] experiments, cf. left panel of Fig. 2.7. These
data alone provide a rich testing ground for low-energy (�strong�) QCD. In
particular, they very nicely illustrate spontaneous chiral symmetry breaking
in the (nonstrange) I = J = 1 multiplet.

Chiral symmetry restoration at Tc requires that the V and A spectral
functions become degenerate (up to corrections in the current up- and down-
quark masses), which obviously requires a dramatic reshaping of either of
the spectral functions, or (more likely) both. How this happens is one of the
major objectives using dilepton measurements in heavy-ion collisions, and it
will also illuminate the nature of mass generation as the strongly interacting
matter of a �reball cools down below Tc. A direct experimental approach
would be the simultaneous measurement of the axialvector spectral function
(in addition to dileptons for the vector spectral function); in Ref. [97] it has
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been suggested to measure π±γ invariant mass spectra, as triggered by re-
cent successes of measuring π+π− invariant mass spectra in Au-Au collisions
at RHIC, with interesting results [98]. Nonetheless, the rather broad struc-
tures in the A channel, together with the large expected background, render
a practical realization rather challenging (as a �rst step, and a proof of prin-
ciple, such a measurement should be performed in more elementary systems,
e.g., with pion beams at HADES; here, even 3-pion invariant mass spectra
have been raised as a feasible option). The πγ spectra have the additional
disadvantage compared to dileptons that the emitted pion undergoes �nal-
state absorption which will bias the emission of undistorted pairs toward the
later (less hot and dense) stages of a heavy-ion collisions (however, it has
one pion-absorption factor less than ππ spectra). The uncertainties in the
experimental approach to extract the A spectral function mandate the theo-
retical tools to be sharpened to deduce chiral symmetry restoration from the
dilepton spectra alone. We envisage the following 3-step strategy [27]:

(1) Calculate vector (V ) and axialvector (A) spectral functions as a func-
tion of invariant mass, 3-momentum, temperature and density (including
phenomenological and theoretical constraints) in a chiral model (which
gives, of course, a realistic description of vacuum data).

(2) Insert the results into Weinberg sum rules to caclulate the temperature
dependence of pion decay constant and 4-quark condensate, and com-
pare to results from lattice QCD (note that fπ(T ) and 〈〈(q̄q)2〉〉(T ) are
presumably more easily evaluated in LQCD than spectral functions; how-
ever, at �nite densities LQCD results for these quantities may not become
available in the near future).

(3) Perform detailed comparisons of the in-medium e�ects on the vector cor-
relator with dilepton data (centrality, excitation function, mass and qt-
spectra); this requires additional input from realistic model for the expan-
sion dynamics (e.g. hydrodynamical and transport simulations), which,
however, are/can be thoroughly tested against the large body of hadronic
observables.

Consistency between (2) and (3) will provide rather direct evidence for chi-
ral restoration (note that (2) involves several energy-moments of the V -A
spectral fucntions and various chiral order parameters).

2.4 Vector mesons in medium: hadronic models

As elaborated above, dilepton production in the low-mass region is governed
by the spectral functions of light vector meson, ρ, ω and φ. Since the ρ meson
dominates the overall yield, many analyses have been performed to address
its in-medium properties, cf. [15�19] for rather recent reviews. Consequently,
our main emphasis will be on the ρ meson. With increasingly accurate infor-
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mation from experiment, however, both in reactions on cold nuclei [84, 85, 99]
and in heavy-ion collisions [21], in-medium properties of ω and φ mesons are
becoming accessible, especially since their contributions are rather localized
in invariant mass. In addition to being interesting in their own right, it is ob-
viously desirable to provide a uni�ed theoretical description of the in-medium
properties of light vector mesons.

Calculations of in-medium vector-meson properties have also been con-
ducted in quark-based approaches, e.g., chiral quark models with Nambu-
Jona-Lasinio [100, 101] or instanton-induced interactions [102]. In these ap-
proaches the medium e�ects are mainly induced by modi�cations of the
quark-antiquark interaction within the meson, as well as condensate-driven
changes of the constituent quark mass. Generically, it turns out that the mod-
i�cations of the ρ meson mass are rather moderate (width e�ects are di�cult
to assess if quark con�nement is not accounted for). However, as we will see
below, the interactions of the vector mesons with surrounding hadrons in
the heat bath are very important, typically leading to a substantial increase
in the vector meson's width. In this section, we therefore focus on hadronic
model calculations, attempting a systematic discussion by confronting a se-
lection of representative results of di�erent approaches to extract common
(robust) features. An initial overview of the considered approaches and some
of their main features are compiled in Tab. 2.2. Predictions and/or constraints
from QCD sum rules and lattice QCD are discussed separately in Secs. 2.3
and 2.5.1, respectively. We will classify the hadronic approaches for each of
the three light vector mesons according to the di�erent input assumptions
and calculational techniques (e.g., perturbative evaluation of loops vs. self-
consistent schemes). Concerning input assumptions, we distinguish between
approaches where the underlying parameters of the e�ective Lagrangian are
kept constant (�hadronic many-body theory�) vs. those where the bare pa-
rameters are subjected to so-called �intrinsic� temperature and/or density
dependencies, as e.g. in the works of Brown and Rho [116] or the more re-
cent renormalzation-group (RG) approach by Harada and Yamawaki [18]. To
further facilitate the comparison, we will organize the discussion according
to the type of medium: cold nuclear matter, hot meson gas and (combined)
hot hadronic matter. For the CBM experiment, baryon e�ects are expected
to dominate, but with anticipated temperatures well in excess of 100 MeV,
thermal e�ects need to be addressed as well.

2.4.1 ρ meson

In this subsection we discuss medium modi�cations of the ρ propogator as
obtained by hadronic many-body theory in cold nuclear matter (induced by
a renormalization of its pion cloud (2.4.1.1) and by direct ρ-N resonance in-
teractions (2.4.1.2)), in a hot meson gas (2.4.1.3), as well as in hot hadronic
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Vertex
Author(s) Medium E�ects Method Correc-

tions

Asakawa [54] �nite %N , 3-momentum q=0 perturbative
Chanfray [103] pisobar π∆N−1 yes
Hermmann [104]

Chanfray [105] �nite %N and T , q=0 perturbative
pisobars π[N,∆]N−1 yes

Friman [106] �nite %N , q 6=0 perturbative
rhosobars ρ[N(1720), ∆(1905)]N−1 no

Rapp [87] �nite %B and T perturbative
π[N,∆]N−1, π[N,∆]∆−1 (q=0) yes
ρ[N,∆,N(1720), ∆(1905)]N−1

+ conjugate (q 6=0) no

Klingl [55] �nite %N and T , q=0 perturbative
π[N,∆]N−1 yes

Peters [107] �nite %N , q 6=0 selfconsistent
ρ[N(1520, 1650, 1720), mass feedback
∆(1620, 1700, 1905)]N−1 no

Rapp [88, 108] �nite %B and T perturbative
Urban [109] π[N,∆]N−1 + conjugate (q 6=0); yes

ρ[N,N(1440, 1520, 1720, 2000),
∆,∆(1620, 1700, 1905)]N−1,
ρ[Λ(1520, 1690, 1820, 1890),

Σ(1670, 1915)]Y −1 + conj (q 6=0); no
ρπ[ω, h1, a1, π′, a2, ω(1420, 1650)],

ρK[K∗,K1], ρρf1 (q 6=0) no

van Hees [110] �nite T selfconsistent Ps-1
ρππ

Post [111] �nite %N modi�ed low
ρ[N(1520, 1650, 1720), density approx.

∆,∆(1620, 1700, 1905)]N−1 (q 6=0) no

Cabrera [112] �nite %N perturbative
π[N,∆]N−1 yes
ρN(1520)N−1 no

Riek [113] �nite %N and T selfconsistent in Ps-1
πρω + πN∆ two subsystems

Ruppert [114] �nite T selfconsistent Ps-1
πρ Ps-2

Santini [115] �nite %N selfconsistent
ρ[N(1440, 1520, 1535, 1650, 1680, 1720), no
∆,∆(1620, 1700, 1905, 1950)]N−1

Table 2.2 Survey of approaches to calculate light vector-meson spectral functions in a
hot and/or dense hadronic medium. For details, see text.

matter (2.4.1.4). We also present a renormalization group approach to eval-
uate ρ properties at �nite temeprature and density within a Hidden Local
Symmetry model based on the �vector manifestation� of chiral symmetry.
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Fig. 2.8 Isovector-vector spectral function (ρ channel), divided by energy squared, (left
panel) and pertinent real part of the ρ-meson propagator (right panel) in cold nuclear
matter (%N = %0) when dressing the pion cloud with ∆N−1 and NN−1 using hard
formfactors, ΛπNN,∆ '1GeV [55]. A substantial broadening is accompanied by a small
(if any) mass shift.

The latter, in particular, addresses medium e�ects on the bare parameters in
the e�ective hadronic Lagrangian.

2.4.1.1 Cold nuclear matter I: pion cloud

Early investigations of ρ properties in nuclear matter have focussed on
medium e�ects on its pion cloud via the rather well-know renormaliza-
tion of the pion propagators via delta-nucleon�hole (∆N−1) [54, 103, 104]
and nucleon-nucleon�hole (NN−1) [55, 105, 112] excitations, as obtained
in nuclear many-body theory. The generic result, obtained for vanishing 3-
momentum of the ρ in the nuclear matter rest frame, is a substantial broad-
ening of the ρ spectral function accompanied by a slight upward mass-shift
of the peak position. A collective ∆N−1 mode induces additional stength (or
even a peak structure) around M = 0.4 − 0.5 GeV, while NN−1 modes are
found to be instrumental in shifting additional strength to low mass includ-
ing below the 2π threshold. Quantitatively, these e�ects depend on the cuto�
parameter of the πNN and πN∆ vertex formfactor. With ΛπNN = ΛπN∆=1-
1.2GeV, as required in one-pion exhcange potentials to �t N -N scattering,
the ρ broadening at nuclear saturation density amounts to a total width of
∼400MeV [55, 87, 105], see, e.g., Fig. 2.8.

The calculations have been generalized to �nite 3-momentum in Ref. [117],
which is not only necessary for quantitative applications to dilepton and pho-
ton experiments, but also enables an important consistency check against nu-
clear photoabsorption data [118]. One �nds that much softer πNN and πN∆
formfactor cuto�s are required (ΛπNN '0.3-0.5 GeV) than implemented in
the earlier works [54, 55, 103�105], and consequently the medium e�ects due
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Fig. 2.9 ρ-meson spectral functions in cold nuclear matter when dressing the pion cloud
with∆N−1 and NN−1. In the left panel, the corresponding loops have been evaluated with
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while the right panel shows a selfconsistent calculation with iterated imaginary parts of
the selfenergies [113]. Both calculations indicate signi�cantly reduced widths compared to
Fig. 2.8 due to softer πNN, πN∆ formfactors.

to the dressing of the pion cloud are reduced (analogous conclusions have
been drawn from the analysis of πN → ρN scattering data, although here
the experimental procedure of accounting for �nite-width e�ects on the �nal-
state ρ mesons has not been fully clari�ed yet), cf. Fig. 2.9.

All the above calculations are not self-consistent in the sense that the in-
termediate nucleon and ∆ propagators are not dressed with in-medium pions
(and vice versa; the calculations of Ref. [117], however, have been constrained
to photo-absoption data on nucleons and nuclei [118], where the description
of the latter requires in-medium widths for baryons; selfconsistent e�ects are
thus implicit in a phenomenological way). The selfconsistent problem has re-
cently been addressed within a φ-derivable approach in Ref. [113], where also
the πρω coupling has been included. A major problem in this context is to
maintain the 4-dimensional transversality of the ρ selfenergy, qµΣµν

ρ = 0, as
required by the conservation of the vector current (or gauge invariance). In
the �perturbative� implementation of the in-medium pion propagators, this
can be kept track of by appropriate vertex corrections, but these no longer
su�ce if fully dressed propagators are implemented. Therefore, several projec-
tor techniques have been suggested to maintain 4-dimensional transversality
of the ρ self-energy. Since the results can be quite sensitive to the applied
procedure, we will discuss in the following the inherent problems in some
detail.

If one goes beyond perturbation theory the Dyson resumation generally
violates Ward identities on the correlator level. Thus the polarization tensor
(or selfenergy) may contain four-longitudinal components Σµν

l (q), which may
lead to the propagation of unphysical degrees of freedom and therefore have
to be removed. In principle, this de�ciency can be cured by corresponding
vertex corrections. Without further approximations, however, this leads to a
presently intractable scheme of Bethe-Salpeter equations including t-channel
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exchanges required by crossing symmetry. To date, two schemes have been
proposed [110, 114] to deal with this problem (cf. also Refs. [119, 120]).
Both schemes lead to somewhat di�erent predictions for the spectral function
of the ρ meson at �nite temperature (as presented in [114]). In order to
understand possible reasons for these di�erences we have to compare the
schemes for reconstructing the four-transversality; both calculations used the
φ functional so that one can exclude e�ects from other parts of the models.
The idea of the scheme introduced by van Hees and Knoll (denoted by Ps-1 in
Tab. 2.2) is to obtain a much better approximation of the spatial components
using a Dyson scheme that one can expect for the time component. This
is due to the fact that such a tensor has e�ectively two relaxation times.
The spatial correlations will always have a �nite relaxation time and can
therefore be better approximated in a Dyson scheme where due to the �nite
damping of the propagators in the loops one can only have �nite relaxation
times in the �nal result. On the contrary, the time components have in�nite
relaxation time due the conservation law which can never be reached within a
simple Dyson resummation. So the idea is to take only information from the
spatial part and then to reconstruct the time components such as to ful�ll the
requirements of four transversality. However the construction of the tensor
according this description is still beset with problems since the longitudinal
part has a kinematical singularity at zero energy which arti�cially enhances
the strength in the spectral function. In contrast to this, the approach by
Ruppert and Renk (denoted by Ps-2 in Tab. 2.2) employs the Rξ gauge with
ξ → ∞, where the longitudinal components decouple from the system and
one ends up with only the transversal structure of the tensor,

Σµν(q) = Σµν
L (q) +Σµν

T (q). (2.35)

This however also su�ers from an artifact. The problem is that calculated
tensor is actually not four transversal on the light cone meaning:

qµqν Σ
µν(q2 = 0) ∼ N . (2.36)

On the other hand, the longitudinal projector Σµν
L (q) has a singularity at

the light cone which requires this trace to vanish. This leads to a selfenergy
tensor that has a quadratic singularity at the light cone and accumulates even
more strength than with the linear singularity in the van Hees-Knoll scheme.
In the selfconsistent calculation this turns out to be a quite unfortunate
situation because the arti�cial strength at the light cone o�ers the pion a
new but completely unphysical decay mode which renders the pion broad
and in turn, due to the selfconsistency, also enhances the width of the ρ
meson. In the scheme by van Hees and Knoll the situation is a bit better
because the artifacts are located in a region where the in�uence on the ρ
selfenergy is not so large.
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In the right panel of Fig. 2.9 we show a selfconsistent calculation of
the rho spectral function based on an in-medium pion cloud according to
Ref. [113], using the van Hess-Knoll projector scheme. The πN∆ vertex has
been constrained by πN scattering phase shifts using a Gaussian ansatz for
the formfactor resulting in a rather soft cuto� Λ=440MeV, quite reminiscent
to Refs. [117, 118]. The resulting spectral functions exhibit somewhat smaller
medium e�ects compared to the ones in the left panel [117, 118]; e.g., the
slight mass shift in the latter is absent in the self-consistent calculations since
the in-medium real parts have not been included in the iteration procedure.
Whether the smaller width is due to the self-consistency, due to the lack of
in-medium real parts, due to the di�erent modeling of the in-medium pions
or due to another reason, remains to be investigated.

2.4.1.2 Cold nuclear matter II: ρ-N resonances

In addition to medium e�ects in the pion cloud, it has been realized that the
ρ meson can be modi�ed due to direct coupling to nucleons via resonance
excitations (ρBN−1-�rhosobars�, in analogy to π∆N−1 �pisobars�) [87, 106,
107, 111]. An indication of the importance of a given baryon resonance, B,
follows from its decay branching into ρ-N �nal states. In non-relativistic
approximation, these excitations can be classi�ed via S- and P -wave ρ-N
interaction Lagrangians,

LS−waveρBN =
fρBN
mρ

Ψ †B (q0 s · ρa − ρ0
a s · q) ta ΨN + h.c. , (2.37)

LP−waveρBN =
fρBN
mρ

Ψ †B (s× q) · ρa ta ΨN + h.c. . (2.38)

The summation over a is in isospin space with isospin matrices t = τ , T de-
pending on whether the resonance B carries I=1/2 or 3/2, respectively. Anal-
ogously, the various vector/scalar products act in spin-momentum space with
spin operators s = σ,S corresponding to J=1/2- or J=3/2-resonances. P -
wave interactions have �rst been suggested in Ref. [106], where the JP = 3/2+

N(1720) and JP = 5/2+ ∆(1905) were identi�ed as important states. For ρ-
N S-wave scattering, N(1520) and ∆(1700) are important [107], which both
are located below the naive ρ-N threshold. This renders the experimental
determination of the coupling constants rather challenging [121�123]. While
the decay branchings can be used for �rst estimates, a more quantitative
description requires comprehensive �ts to πN → ρN scattering data [111],
or photoabsorption spectra on nucleons and nuclei [45, 118], cf. Fig. 2.10 for
two examples.

In addition to providing a more reliable (combined) determination of the
coupling strengths it also enables, to a certain extent, a better handle on
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3-momentum dependencies which are not only governed by the interaction
Lagrangians but also encoded in hadronic formfactors.

With the e�ective vertices �xed in this way, one proceeds to calculate
the corresponding ρ selfenergy, either to leading order in the density (T -%
approximation) [45, 55, 106, 111], or using Lindhard functions which allow
for modi�cations of the intermediate baryon propagators [107, 112, 118]. The
consistent use of (relativistic) kinematics in both formfactors and vertices to
evaluate the coupling strengths has been emphasized in Ref. [111].

Fig. 2.11 illustrates several calculations for ρ spectral functions in cold
nuclear matter. The upper left panel shows a coupled-channel resonance-
model where baryon and meson selfenergies have been calculated selfconsis-
tently [125]. The coupling parameters, taken from �ts to ρ-N amplitudes, are
based on comprehensive analyses of πN → ππN scattering data [121, 126].
As in the case of the pion cloud e�ects, the implementation of selfconsistency
was found to have a moderate impact on the in-medium ρ spectral function.
The variation due to di�erent data sets in constraining the interaction pa-
rameters is somewhat larger, but still very moderate as seen from the �gure:
the largest uncertainty resides in the ρ-N coupling to the N(1520) (causing
the peak at q2 ' 0.3GeV2), while the location and width of the ρ peak varies
much less.

The upper right panel of Fig. 2.11 corresponds to a relativistic coupled-
channel approach using ρ-N point vertices to dynamically generate the rele-
vant S-wave resonance. The amplitudes are then constrained by an extensive
set of πN and γN scattering data (cf. right panel of Fig. 2.10), and the result-
ing amplitudes are implemented to leading order in density (T -% approxima-
tion) into ρ and ω propagators. In this approach, the medium modi�cations
of the ρ are signi�cantly less pronounced due to a reduced coupling to the
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Fig. 2.11 Comparison of ρ-meson spectral functions in cold nuclear matter within the
hadronic many-body approaches of Ref. [125] (upper left panel) [82] (upper right panel)
[88, 109] (lower left panel) and [112] (lower right panel).

N(1520) (as emerging from the best overall �t), as well as the neglect of ρ-N
P -wave interactions.

In the lower left panel, the ρ spectral function includes medium e�ects due
to both the pion cloud and (S- and P -wave) rhosobars (with non-relativistic
form factors) [117]; the interaction Lagrangians have been comprehensively
constrained by photoabsorption cross sections on nucleons and nuclei [118]
(cf. left panel of Fig. 2.10), as well as total πN → ρN cross sections. The
resulting medium e�ects are quite comparable to the selfconsistent results
of Post et al. [125]; the most notable di�erence is the absence of a peak
structure around M ' 0.55GeV, although a pronounced shoulder is still
visible. This is due to the implementation of an empirical in-medium width
of ∼250MeV (at %N = %0) for the N(1520) resonance deduced from the
photo-nuclear data (similarly for other baryon resonances). Also note that
the density e�ects build up rather quickly for moderate densities (as low as
%N = 0.5%0) and show less variation at higher densities. This is compatible
with the empirical �nding in photoabsorption that the modi�cations have an
early onset for small nuclear mass number (as low as A=4, i.e. 4He), with
rather little additional e�ects even for 238U . Since the spectral shape does
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not follow a simple Breit-Wigner form, one should de�ne the centroid mass
via the lowest energy (-squared) moment of the spectral function,

(m∗
ρ)

2 =

∞∫
0

q0dq0
π

q20 [−2ImDρ(q0, q = 0)] . (2.39)

For the spectral function of Ref. [117] one obtains m∗
ρ ' 0.83GeV at normal

nuclear density. Together with an approximate full-width at half maximum
of Γρ ' 0.42GeV, one �nds remarkable agreement with the constraints set
by QCD sum rules in Ref. [56], recall the middle right panel in Fig. 2.4.

Finally the lower right panel shows a calculation of Cabrera et al. [112],
where pion cloud modi�cations are supplemented with the leading S-wave
rhosobar excitation, N(1520)N−1. Again, in agreement with all other cal-
culations above, one �nds a substantial broadening accompanied by a slight
upward mass shift and extra rhosobar-strength around M ' 0.5 GeV (obvi-
ously the medium e�ects will be stronger if a more complete set of ρ-BN−1

excitations is included).
To summarize this section, it seems fair to conclude that reasonable agree-

ment (on the 30% level) is established between spectral function calculations
once a comprehensive and complete inclusion of empirical constraints. Di�er-
ences in whether the medium e�ects are solely ascribed to rhosobar excita-
tions, point interactions, or evaluated in combination with pion cloud e�ects,
seem to be the reason for current discrepancies. Another open issue in this
context is the relation of the ρ-baryon coupling to chiral symmetry which
must be answered before de�nite conclusion on the nature of (the approach
to) chiral symmetry restoration in cold nuclear matter can be drawn.

2.4.1.3 Hot meson gas

Investigations of the ρ properties in a hot pion gas have been initiated in the
early eighties and developed thereafter in various aspects. While in mean-�eld
theories one usually �nds a decrease of the ρ mass with increasing tempera-
ture (and density), due to the built-up of an attractive scalar �eld, it has been
realized early on that width e�ects may play an important role [127, 128]. An
explicit �nite-T �eld theoretic calculation, however, found rather moderate
e�ects induced by the Bose enhancement in the pion cloud of the ρ [129]. The
(selfconsistent) inclusion of a rather complete set of ππ interactions [130] did
not a�ect this conclusion substantially, see also Ref. [131] or an evaluation
within �nite-T chiral perturbation theory [132].

The selfconsistency problem has been revisited in Ref. [110], with special
attention to maintaining a 4-dimensionally transverse ρ-selfenergy; the tech-
nical aspects of that have been sketched in Sec. 2.4.1.1 above. With the van
Hees-Knoll prjector method, the broadening e�ects on the ρ are again mod-
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erate (at least at small ρ-meson 3-momenta), while the alternative method
employed in Ref. [114] induces stronger e�ects which, however, are proba-
bly spurious, as discussed above. General arguments based on the Goldstone
nature of pions suggest that their modi�cations in a pion gas should be small.

Much like in the baryon case, the ρmeson can directly interact with mesons
from the heat bath to form resonances (which usually dominate over nonres-
onant interactions). These have been investigated, e.g., in Refs. [108, 133], an
example of which is shown in Fig. 2.12. For a rough reference relative to the
cold nuclear matter case, we note that the thermal π+K+K̄+ρ density at
T=150MeV amounts to about normal nuclear matter density, %0=0.16 fm−3.
Comparing the ρ spectral function in mesonic matter at T=150MeV to the
one in cold nuclear matter at %N = %0 (lower left panel in Fig. 2.11) reveals
substantially stronger medium e�ects for the latter, especially in terms of the
enhancement below the free ρ mass.

2.4.1.4 Hot hadronic matter

In (ultra-) relativistic heavy-ion collisions at AGS energies (Elab '10AGeV)
and upward, the created (hadronic) medium conists of comparable concentra-
tions of mesons and baryons, and therefore realistic applications of spectral
functions should include medium e�ects of both type (even at RHIC energies,
with a proton-to-pion ration of about 1/10, the combined e�ects of baryons
and anti-baryons has been shown to be substantial [134]). However, rather
few calculations of ρ spectral functions have simultaneously accounted for
both baryon density and temperature. Two such calculations are compared
in Fig. 2.13. While the hadronic-many body calculation of Ref. [88] has been
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discussed above (cf. lower left panel in Fig. 2.11 and Fig. 2.12), the spectral
function of Ref. [133] has been constructed rather di�erently using empirical
ρ-N and ρ-π scattering amplitudes. The imaginary parts of the latter have
been saturated by resonances (plus a background Pomeron term) at low en-
ergies, and based on a Regge parametrization at high energies; the real parts
have been recovered by a dispersion integral. While there is qualitative agree-
ment between this approach and the hadronic many-body calculations, the
most signi�cant di�erence appears to be a stronger broadening and the extra
low-energy strength in the M '0.4 GeV region of the hadronic many-body
spectral function which is caused by o�-shell (�subthreshold�) ρ-N resonances
(most notably the N(1520)). The latter do not explicitly appear in the on-
shell scattering approach of Ref. [133] (but are subsumed in the Regge term).
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Furthermore, in the many-body framework, the level repulsion between the
resonace-hole loop and the elementary ρ peak causes the latter to shift up
in mass. In both approaches, the 3-momentum dependence of the ρ spectral
function is rather moderate.

To illustrate again the sensitivity to the modi�cations caused by the bary-
onic component of the medium, we compare in Fig. 2.14 the hadronic many-
body ρ-meson spectral function [88] for conditions expected at FAIR and
SPS for an �intermediate� (left panel) and a high temperature. An additional
factor of 1/M has been introduced to resemble the dilepton rate after trans-
formation from q0 to M (the Bose factor will further amplify the low-mass
region). The plots suggest that the largest sensitivity is residing in the mass
region below ∼0.4 GeV.

2.4.1.5 Renormalization group approach and vector manifestation
of chiral symmetry

In all approaches discussed thus far, the parameters in the (free) lagrangian
(masses, coupling constants and formfactor cuto�s) have been kept �xed in
the medium. Since hadrons are composite objects, the question arises whether
this is justi�ed. Recent work by Harada et al. [18] addresses this problem in
a renormalization group approach as will be elaborated in more detail in the
following.

The vector manifestation (VM) [135] was proposed as a novel pattern of
the Wigner realization of chiral symmetry in which the ρ meson becomes
massless degenerate with the pion at the chiral phase transition point. The
VM is formulated [18, 136, 137] in the e�ective �eld theory (EFT) based on
the hidden local symmetry (HLS) [138, 139]. The VM gives a theoretical de-
scription of the dropping ρ mass, which is protected by the existence of the
�xed point (VM �xed point) of the renormalization group equations (RGEs).
In the formulation of the VM, an essential role is played by the intrinsic
temperature/density e�ects of the parameters which are introduced through
the matching to QCD in the Wilsonian sense combined with the RGEs. The
intrinsic e�ect produces the violation of the VD near the chiral restoration
point.

Hidden Local Symmetry and Wilsonian Matching
The HLS Lagrangian is based on the Gglobal ×Hlocal symmetry, where G =
SU(Nf )L × SU(Nf )R is the chiral symmetry and H = SU(Nf )V is the
HLS. Within the HLS framework, it is possible to perform the systematic
derivative expansion including the vector mesons as the HLS gauge boson
in addition to the pseudoscalar mesons as the NG bosons [18, 140�142]. In
this chiral perturbation theory (ChPT) with the HLS, the Lagrangian with
lowest derivative terms is counted as O(p2), which in the chiral limit is given
by [138, 139]
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L(2) = Fπ
2tr
[
α̂⊥µα̂

µ
⊥
]
+ Fσ

2tr
[
α̂‖µα̂

µ
‖
]
− 1

2g2
tr
[
VµνV

µν
]
, (2.40)

where g is the HLS gauge coupling, Vµν is the �eld strength of Vµ and

α̂µ⊥,‖ =
1
2i
[
DµξR · ξ†R ∓D

µξL · ξ†L
]
. (2.41)

Here two variables ξL and ξR are parameterized as

ξL,R(x) = eiσ(x)/Fσe∓iπ(x)/Fπ , (2.42)

where π = πaTa denotes the pseudoscalar Nambu-Goldstone (NG) bosons
associated with the spontaneous symmetry breaking of Gglobal chiral symme-
try, and σ = σaTa denotes the NG bosons associated with the spontaneous
breaking of Hlocal. Fπ and Fσ are the decay constants of associated particles.

At the leading order of the chiral perturbation with HLS the Lagrangian
includes three parameters: the pion decay constant Fπ; the HLS gauge cou-
pling g; and a parameter a de�ned as a = F 2

σ/F
2
π . Using these three param-

eters, the ρ meson mass mρ, the ρ-γ mixing strength gρ, the ρ-π-π coupling
strength gρππ and the direct γ-π-π coupling strength gγππ are expressed as

m2
ρ = g2aF 2

π , gρ = gaF 2
π , gρππ =

a

2
g , gγππ = 1− a

2
. (2.43)

From these expression, one can easily see that the vector dominance (VD)
of the electromagnetic form factor of the pion, i.e. gγππ = 0, is satis�ed for
a = 2. We would like to stress that the VD at zero temperature and density is
accidentally satis�ed: The parameter a is 4/3 at the bare level and it becomes
2 in the low-energy region by including the quantum correction [143]. This
can be rephrased in the following way: the parameter a at the large Nc limit
is 4/3 and it becomes 2 when the 1/Nc corrections are included [144].

The Wilsonian matching is a novel manner to determine the parameters
of EFTs from the underlying QCD in the vacuum [18, 145]. It has been ap-
plied to study the chiral phase transition at a large number of �avor [18, 135]
and at �nite temperature/density [136, 137]. The matching in the Wilsonian
sense is based on the following idea: The bare Lagrangian of an EFT is de-
�ned at a suitable high energy scale Λ and the generating functional derived
from the bare Lagrangian leads to the same Green's function as that derived
from original QCD Lagrangian at Λ. The bare parameters of the EFT are
determined through the matching of the Green's functions. In other words,
one obtains the bare Lagrangian of the EFT after integrating out high energy
modes, i.e., quarks and gluons above Λ. The information of the high energy
modes is involved in the parameters of the EFT. Once the bare parameters
are determined through the matching, quantum corrections are incorporated
into the parameters through the RGEs.
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Extension to Hot/Dense Matter
Now we apply the above procedure to the study of hot/dense matter. As
noted, the bare parameters are determined by integrating out high frequency
modes above the matching scale. Thus when we integrate out those degrees
of freedom in hot/dense matter, the bare parameters are dependent on tem-
perature/density. We shall refer them as the intrinsic temperature/density
e�ects [136, 137]. The intrinsic dependences are nothing but the signature
that the hadron has an internal structure constructed from the quarks and
gluons. This is similar to the situation where the coupling constants among
hadrons are replaced with the momentum-dependent form factor in the high-
energy region. Thus the intrinsic temperature/density e�ect plays a more
important role in the higher temperature/density region, especially near the
phase transition point.

Vector Manifestation in Hot/Dense Matter
As emphasized above, the VM was proposed in Ref. [135] as a novel pattern
of the Wigner realization of chiral symmetry with a large number of massless
quark �avors, in which the vector meson becomes massless at the restoration
point and belongs to the same chiral multiplet as the pion, i.e., the massless
vector meson is the chiral partner of the pion. The studies of the VM in
hot/dense matter have been carried out in Refs. [136, 137, 146�150] and the
VM was also applied to construct an e�ective Lagrangian for the heavy-
light mesons which can describe the recent experimental observation on the
D(0+, 1+) mesons [151].

The most important ingredient to formulate the VM in hot/dense matter
is the intrinsic temperature/density dependence of the parameters of the HLS
Lagrangian [136, 137] introduced through the Wilsonian matching between
the HLS and QCD: The Wilsonian matching near the critical point Tc/µc
provides the following behavior for the bare parameters a and g:

g(Λ;T, µq) ∼ 〈q̄q〉 → 0 , a(Λ;T, µq)−1 ∼ 〈q̄q〉2 → 0 , for (T, µq)→ (Tc, µc) .
(2.44)

It was shown [18, 136, 137] that these conditions are protected by the �xed
point of the RGEs and never receives quantum corrections at the critical
point. Thus the parametric vector meson mass determined for the on-shell
vector meson also vanishes since it is proportional to the vanishing gauge
coupling constant. The vector meson massmρ de�ned as a pole position of the
full vector meson propagator has the hadronic corrections through thermal
loops, which are proportional to the gauge coupling constant [136, 137, 146].
Consequently the vector meson pole mass also goes to zero for (T, µq) →
(Tc, µc):

mρ(T, µq) ∼ 〈q̄q〉 → 0 . (2.45)
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We would like to stress that the VD is strongly violated near the critical point
associated with the dropping ρ in the VM in hot/dense matter [137, 146]:

a(T, µq)→ 1 , for (T, µq)→ (Tc, µc) . (2.46)

Temperature Dependence of Parameters
In the present framework, the physical quantities in the low-energy region
have two kinds of temperature/density dependences, one is the intrinsic e�ect
and another comes from the ordinary hadronic corrections included through
the thermal/dense loops. In the following analysis to determine both e�ects,
we study the system at �nite temperature and zero density [152].

We consider how the intrinsic temperature dependence of the bare pa-
rameters are introduced. With increasing temperature toward the critical
temperature, the di�erence of two current correlators approaches zero. In the
HLS side near the critical point, both bare g and a − 1 are proportional to
the quark condensate provided by the Wilsonian matching near Tc [136]:

g2(Λ;T ) ∝ 〈q̄q〉2T and a(Λ;T )− 1 ∝ 〈q̄q〉2T for T ' Tc . (2.47)

This implies that the bare parameters are thermally evolved following the
temperature dependence of the quark condensate, which is nothing but the
intrinsic temperature e�ect.

It should be stressed that the above matching conditions hold only in
the vicinity of Tc: Equation (2.47) is not valid any more far away from Tc
where ordinary hadronic corrections are dominant. For expressing a tempera-
ture above which the intrinsic e�ect becomes important, we shall introduce a
temperature Tflash, so-called �ash temperature [153, 154]. The VM and there-
fore the dropping ρ mass become transparent for T > Tflash

7. On the other
hand, we expect that the intrinsic e�ects are negligible in the low-temperature
region below Tflash: Only hadronic thermal corrections are considered for
T < Tflash. For making a numerical analysis including hadronic corrections
in addition to the intrinsic e�ects determined above, we take Tc = 170MeV
as a typical example and Tflash = 0.7Tc as proposed in Refs. [153, 154]. Here
we would like to remark that the BR scaling deals with the quantity directly
locked to the quark condensate and hence the scaling masses are achieved
exclusively by the intrinsic e�ect in the present framework.

Physical quantities are obtained by including the hadronic corrections gen-
erated through thermal loop diagrams at one loop. We show the tempera-
ture dependences of the ρ meson mass mρ(T ) de�ned at its rest frame and
the ρ-γ mixing strength in Fig. 2.15. Figure 2.15(a) shows that the vector
meson mass including only the hadronic correction little changes with tem-
perature and the hadronic correction gives a positive contribution to mρ,
δ(had) ' 5 MeV. In the temperature region above the �ash temperature,

7 As was stressed in Refs. [18, 155], the VM should be considered only as the limit. So we
include the temperature dependences of the parameters only for Tflash < T < Tc − ε.
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Fig. 2.15 Temperature dependences of (a) the vector meson mass mρ, (b) the ρ-γ mixing
strength gρ [152]. The solid curves denote the full (both intrinsic and hadronic) tempera-
ture dependences. The curves with the dashed lines include only the hadronic temperature
e�ects.

T/Tc > Tflash/Tc = 0.7, the ρ mass with the intrinsic e�ect rapidly drops
correspondingly to the rapid decreasing of the gauge coupling. In Fig. 2.15(b)
we can see that the hadronic e�ect gives a negative correction to the ρ-γ mix-
ing strength. Above the �ash temperature, the intrinsic e�ect causes the rapid
drop of the gauge coupling g, which further decreases the gρ toward zero.

Electromagnetic Formfactor
Using the in-medium parameters obtained in the previous section, the ther-
mal width of the ρmeson is calculated as shown in Fig. 2.16. Sincemρ slightly
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Fig. 2.16 Decay width of the ρ meson as a function of T/Tc [152]. The curve with the
dashed line includes only the hadronic temperature e�ects. The solid curve denotes the
full (both intrinsic and hadronic) temperature dependences.

increases with T as shown in Fig. 2.15(a) (dashed line) for T < Tflash, Γρ
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increases with T . This implies that the hadronic e�ect causes the broadening
of the ρ width. When the intrinsic e�ect is also included for T > Tflash,
gρππ as well as mρ decrease with T in the VM, and the width Γρ decrease as
Γρ ∼ g3 → 0.

Figure 2.17 shows the electromagnetic form factor F for several tempera-
tures. In Fig. 2.17 (a) there is no remarkable shift of the ρ meson mass but
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Fig. 2.17 Electromagnetic form factor of the pion as a function of the invariant mass√
s for several temperatures [152]. The curves in the upper panel (a) include only the

hadronic temperature e�ects and those in the lower panel (b) include both intrinsic and
hadronic temperature e�ects.

the width becomes broader with increasing temperature, which is consistent
with the previous study [131]. In Fig. 2.17 (b) the intrinsic temperature e�ect
are also included into all the parameters in the form factor. At the temper-
ature below Tflash, the hadronic e�ect dominates the form factor, so that
the curves for T = 0, 0.4Tc and 0.6Tc agree with the corresponding ones in
Fig. 2.17(a). At T = Tflash the intrinsic e�ect starts to contribute and thus
in the temperature region above Tflash the peak position of the form factor
moves asmρ(T )→ 0 with increasing temperature toward Tc. Associated with
this dropping ρ mass, the width becomes narrow, and the value of the form
factor at the peak grows up as ∼ g−2 [136].

As noted, the vector dominance (VD) is controlled by the parameter a in
the HLS theory. The VM leads to the strong violation of the VD (indicated
by � 6VD�) near the chiral symmetry restoration point, which can be traced
through the Wilsonian matching and the RG evolutions. We compared the
dilepton spectra predicted in the VM (including the e�ect of 6VD) with those
obtained by assuming the VD, i.e. taking gγππ = 0. Figure 2.18 shows the
temperature dependence of the ρ-γ mixing strength gρ with VD (dash-dotted
line) and 6VD (solid line). In the low-temperature region, T < Tflash, the
hadronic corrections tomρ and gρππ are small, so that the ρ-γ mixing strength
with VD, g(VD)

ρ , is almost stable against the temperature (see the dash-dotted
line). While gρ with 6VD gets a non-negligible hadronic correction in the
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Fig. 2.18 Temperature dependence of the ρ-γ mixing strength gρ for
√
s = mρ [152].

The dash-dotted curve corresponds to the case with the VD assumption. The solid one
includes the e�ect of the VD violation due to the VM.

HLS, which causes a decrease with temperature (see the solid line). Near
the critical temperature, T > Tflash, on the other hand, both mρ and gρππ
drop due to the VM and the above ratio also decreases since m2

ρ/gρππ ∝ g.

However compared to gρ with 6VD, the decreasing of g(VD)
ρ (dash-dotted line)

is much more gentle. This a�ects the pion form factor which exhibits a strong
suppression provided by decreasing gρ in the VM.

Our analysis can be applied to a study at �nite density. Especially to study
under the conditions for future GSI/FAIR would be an important issue. In
such a dense environment, the particle-hole con�gurations with the quantum
numbers of pions and ρ mesons are important, as discussed extensively above.
The violation of the VD has been also presented at �nite density in the HLS
theory [137]. Therefore the dilepton rate as well as the form factor will be
much a�ected by the intrinsic density e�ects and be reduced above the ��ash
density�.

2.4.1.6 Final remarks on the ρ meson

Hadronic many-body approaches largely coincide on a strong broadening of
the ρ spectral function in hot hadronic matter, possibly accompanied by a
slight upward mass shift. While quantitative agreement remains to be es-
tablished, empirical constraints on the e�ective Lagrangians from free scat-
tering data are mandatory for reliable predictions. The role of full selfcon-
sistency needs to be addressed in a more complete fashion. It has become
clear, though, that the medium e�ects induced by baryons are more impor-
tant than those induced by mesons at comparable densities, rendering the
maximal baryon densities envisaged in the CBM context a promising environ-
ment. An important open question concerns the medium dependence of the
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bare parameters in the e�ective Lagrangian. Intrinsic medium dependencies
(i.e., a dropping mass and coupling constants) are predicted by the vector
manifestation scenario in connection with a QCD sum-rule type matching
to (perturbative) QCD correlators. On the one hand, the many-body e�ects
included in these calculations are not yet complete (e.g., in the medium, addi-
tional low-energy degrees of freedom appear in form of resonance-hole loops),
and the notion of the ��ash� temperature needs to be clari�ed. On the other
hand, vector dominance is found to be violated, which is not accounted for
most of the many-body approaches. Clearly, further theoretical investigations
are necessary to progress on these issues.
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Fig. 2.20 ω-meson spectral function in cold nuclear matter implementing coupled channel
ω-N resonance interactions [83]. These results may be compared to the upper right panel
in Fig. 2.11.

2.4.2 ω meson

In the thermal dilepton rate the contribution of ω mesons is suppressed by a
about a factor 10 compared to the ρ and therefore has (until very recently)
received rather little attention. However, in photon- and proton-induced pro-
duction, the ω contribution is relatively less suppressed and has been subject
of recent experiments using nuclear targets [84, 85, 156], cf. Fig. 2.19. Even
in heavy-ion reactions, the new level of precision reached by NA60 dimuon
spectra in In-In collisions at SPS [34] has indicated the possibility to study
in-medium e�ects on the ω [35].
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2.4.2.1 Cold nuclear matter

Similar to the case of the ρ, early calculations of the in-medium ω spec-
tral function have focussed on dressing its pion cloud, cf. left panel of
Fig. 2.20 [157]; here an attractive ω-N amplitude (which was not directly
confronted with data) has been found to reduce the ω mass at normal nuclear
density to ∼600 MeV, together with a broadening by ∼80 MeV. Subsequently,
it has been realized that the ω should also couple to resonance-hole excia-
tions, which are, however, more di�cult to infer from experiment than for the
ρ. Indirect methods have been applied taking recourse to comprehensive cou-
pled channel analysis of πN and γN scattering data [82, 83], cf. upper right
panel in Fig. 2.11 and Fig. 2.20. These updated analyses lead to somewhat
smaller in-medium widths, Γ totω (%0) ' 40− 60 MeV with little (if any) mass
shift but signi�cant strengths in resonance-hole excitations atM ' 500 MeV.
In Ref. [82] the latter is mostly due to the N(1520)N−1 and N(1535)N−1,
while in Ref. [83] it is attributed to the N(1535)N−1 with smaller strength.
The discrepancy with the early calculations in Ref. [157] has recently been
scrutinized in Ref. [158] where it is argued that the heavy-baryon approxi-
mation employed in Ref. [157] does not apply and therefore does not produce
reliable results.

2.4.2.2 Hot meson gas

Finite-temperature calculations of the ω-meson width have been conducted,
e.g., in Ref. [159] in terms of elastic and inelastic collisions rates with pions; at
T = 150MeV, a broadening of∼ 30MeV, dominated by the (elastic) resonance
scattering ω + π → b1(1235), was found. In Ref. [160] a �nite-T calculation
of the ω → 3π width was carried out including Bose enhancement factors as
well as the ω+π → π+π channel. The latter exhibits a rather sharp increase
for T > 100MeV and is the dominant contribution to a ∼55MeV broadening
at T = 150MeV, see upper left panel of Fig. 2.21. This is roughly consistent
with the results of Refs. [133, 134] as well.

2.4.2.3 Hot and dense hadronic matter

When combining pion- and baryon-induced e�ects, the ω broadens further.
In the hadronic many-body framework, the inclusion of anti-/nucleons, even
under RHIC conditions, increases the ω width to 80-150MeV for T =150-
180MeV (upper right panel of Fig. 2.21) [134]. This is again quite consistent
with the empirical scattering-amplitude based approach of Refs. [133, 161]
(lower right panel of Fig. 2.21). The calculations for a selfconsistent πρω
system with dressed pions indicate that the pion and ρ broadening further
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Fig. 2.21 In-medium ω-meson spectral functions in: (i) a hot pion gas based on ω → 3π
and ωπ → 2π channels including Bose enhancement [160] (upper left panel), (ii) hot
hadronic matter appropriate for RHIC conditions, including ω → ρπ, 3π (with in-
medium ρ spectral function), ωπ → b1(1235), 2π and N(1520)N−1, N(1650)N−1 exci-
tations [134] (upper right panel), (iii) hot nuclear matter for a selfconsistent πρω system
including with NN−1 and ∆N−1 dressing of the pion clouds [113] (lower left panel); (iv)
hot hadronic matter using the approach of Ref. [133] based on empirical ωπ and (updated)
ωN scattering amplitudes [161] (lower right panel).

accelerate the ω melting close to the expected phase transition (lower left
panel of Fig. 2.21).

2.4.3 φ meson

Recent data on photon- [99] and proton-induced [162] φ production o� nuclei,
as well as in heavy-ion collisions [34], have revived the interest on medium
e�ects on the φ meson.

The expected lack of φ-N resonances renders a dressing of the kaon cloud as
the prime candidate for modi�cations in the nuclear medium. Hadronic many-
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body calculations with in-medium anti-kaons predict φ widths of around
20MeV at normal nuclear matter density [163], which, however, appear to
underestimate the observed φ absorption by about a factor of 2.

Calculations of collision rates in a meson gas at T = 150MeV indicate
a broadening by about 20MeV [164]. Including a moderate baryon compo-
nent at �ntie temperature does not increase this value by much [134]. Thus,
hadronic calculations suggest that the φ remains a well-de�ned resonance
structure even close to the expected critical temperature. This makes it a
good object for precision spectroscopy in heavy-ion reactions.

2.5 Thermal dilepton rates

In this section, we compile and discuss thermal dilepton production rates
as following from the hadronic approaches discussed above, complemented
by results from perturbative and lattice QCD above Tc, including a brief
digression to the recent NA60 dimuon data.

2.5.1 Lattice QCD

First principle results for thermal EM emission rates can be obtained from nu-
merical solutions of lattice-discretized QCD (lQCD). However, the extraction
of �nite-temperature spectral functions in the time-like regime is hampered
by the �nite extent of the (Euclidean) time component due to (anti-) pe-
riodic boundary conditions. The vector spectral function, which is directly
proportional to the thermal emission rate, is related to the Euclidean time
current-current correlation function via the integral representation

G(τ, T ) =
∫ ∞

0

dq0σ(q0, T )
cosh(q0(τ − 1/(2T )))

sinh(q0/(2T ))
. (2.48)

In lattice calculations there is only a �nite number of points in the (Eu-
clidean) time direction. The extraction of the spectral functions from the
Euclidean time correlation functions is usually performed using probabilistic
method, the so-called Maximum Entropy Method (MEM) [165]. Furthermore,
dynamical quark loops are currently too CPU-time intensive to be included
in spectral function computations. Not withstanding these limitations, the
left panel of Fig. 2.22 shows thermal dilepton rates from quenched lQCD for
2 temperatures above Tc [166], compared to expectations from pQCD, either
in the simplest O(α0

s) approximation (corresponding to naive qq̄ → e+e−

annihilation) or within the Hard-Thermal-Loop formalism [167]. While all
rates agree at large invariant mass, the lQCD rates exhibit up to a factor
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Fig. 2.22 Left panel: Thermal dilepton rates, dN/(d4qd4x), extracted from quenched
lattice QCD above the critical temperature [166] compared to calculations in perturbation
theory, either to leading order (O(α0

s)) qq̄ annihilation (solid line) or within the hard-
thermal-loop (HTL) framework [167]. All rates are calculated at a total pair momentum
of q=0, i.e., the dilepton energy ω = q0 equals its invariant mass, M . Right panel: the
ratio of the underlying vector correlation function computed in lattice QCD to the free
correlation function.

2 enhancement at intermediate mass (possibly re�ecting a broad resonance
structure) and, more notably, a sharp decrease in the low-mass region which
is in marked contrast to the pQCD rates.

The low-mass region is problematic both for perturbative approach and
the (nonperturbative) lattice approach. The HTL calculations of Ref. [167]
imply that the spectral function behaves like 1/q0 for q0 < gT . This behavior
has been con�rmed by recent analysis of Ref. [168], where it was also pointed
out that the previous calculations [167] are incomplete. The 1/q0-behavior
of the spectral functions would imply in�nite electric conductivity, however
its has been shown in Ref. [168] that at very small energies (q0 � g4T ) the
spectral functions can be approximated by a Lorentzian, i.e., for q0 � g4T
it is proportional to q0, while for q0 > g4T it behaves like 1/q0. The spectral
function integrated up to energy ∼ g4T gives the quark number susceptibil-
ity [168], χ(T ). Although the above considerations, strictly speaking, hold in
the weak coupling regime g � 1, the transport peak associated with electric
conductivity may be present also for realistic couplings (e.g., αs = 0.3, i.e.,
g = 1.94 ) [168]. This would pose a problem for lattice calculations of the
spectral functions as a narrow peak at q0 = 0 is di�cult to reconstruct us-
ing MEM. For this reason, lattice calculations have considered the sum over
all four (Lorentz) components of the spectral function [166]. For the tempo-
ral component of the vector correlation function, one has G00 = −Tχ(T ).
Therefore, if the weak coupling arguments apply, the contribution from the
transport peak drops out in this sum.

Although the reconstruction of the spectral functions using MEM is prob-
lematic the lattice data on Euclidean time correlators can be calculated reli-
ably and provide useful information about the spectral functions. The ratio
of the correlation function calculated on lattice to the free correlation func-
tion is shown in the right panel of Fig. 2.22, where the sum over all four
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components has been taken. As one can see from the �gure the calculations
performed on di�erent lattices agree well with each other, indicating that
lattice artifacts are under control and that the correlation function deviates
from the free one only by about 10%. This provides stringent constraints on
the spectral functions at low energies which cannot be reliably calculated in
perturbation theory (cf. Eq. (2.48)).

Attempts to calculate the spectral function at very low energies, q0 ' 0,
in lattice QCD have been presented in Refs. [169, 170] in terms of the electric
conductivity, de�ned by the time-like limit of the energy-derivative of the EM
correlator,

σel(T ) =
1
6
∂

∂q0
ρem

i
i(q0, q = 0;T )|q0=0 , (2.49)

with ρem
i
i = −8παem Im Πem. These studies indicated that the electric con-

ductivity at temperatures not too far from the transition temperature is
signi�cantly smaller than the prediction of perturbation theory. However,
because of the use of the so-called staggered fermion formulation, the num-
ber of data points of the correlation functions was quite small (between 7
and 12). It remains to be seen if these results can be con�rmed in lattice
calculations using larger number of data points.

It would be most interesting to confront model predictions from in-medium
hadronic approaches with lattice computatutations at the level of correlation
functions. Results for a hot pion gas based on unitarized chiral perturbation
theory have been obtained in Refs. [171, 172], where, in particular, the close
relation of the EM conductivity to (very) soft photon emission has been
emphasized (see also Ref. [173]).

2.5.2 Hadronic approaches

The in-medium vector-meson spectral functions discussed in Sec. 2.4 directly
�gure into the (low-mass) dilepton rates. The most common assumption to
do so is by employing the vector-dominance model which works well in the
vacuum (at least in the purely mesonic sector), recall Eq. (2.6). In the bary-
onic sector, modi�ed versions of VDM [174] are suitable to describe photo-
absorption reactions on the nucleon and on nuclei, i.e., up to at least nuclear
saturation density [118]. Thus it appears reasonable to assume VDM to hold
also in mesonic matter; however, its ultimate fate in the medium, especially
when approaching the phase transition, is not settled (cf., e.g., Sec. 2.5.3
below).

Rather than choosing a particular 3-momentum, it is more convenient (and
more closely related to mass spectra as observed in experiment) to display
the rates in momentum integrated form,
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Fig. 2.23 Upper left panel: 3-momentum integrated thermal hadronic dilepton rates
for the vacuum ρ spectral function (dotted line), within the many-body approach of
Refs. [88, 118] (dashed-dotted and solid line, the latter additionally including ρ inter-
actions with thermally excited baryons) and from the chiral virial expansion of Ref. [44]
(dashed line); right panel: comparison of hadronic many-body calculations (solid line) [88]
to QGP emission for either free qq̄ annihilation (dashed line) or hard-thermal loop im-
proved rates [167] (dashed-dotted line); lower left panel: dilepton rates at high baryon
density and low temperature, comparing in medium hadronic emission (red solid line) [88]
with that from a color-superconductor (CSC) using e�ective hadonic theory on the CSC
ground state (purple solide line) [175]. Free QGP and hadron gas rates are shown as a
reference (dashed lines).

dRll
dM2

=
∫
d3q

2q0
dRll
d4q

. (2.50)

In the left panel of Fig. 2.23 in-medium hadronic many-body emission rates
in the isovector (ρ) channel are confronted with results of the chiral virial ex-
pansion. Below the free ρ mass, both approaches predict a large enhancement
over the free emission rates (based on the vacuum EM correlator); the agree-
ment becomes even closer if resonance-hole contributions are implemented in
the virial expansion [45]. However, at the free ρ mass, the hadronic many-
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body calculations lead to a substantial suppression (broadening) of the peak
due to the resummation of selfenergy insertions in the ρ propagator, which is
not present in the virial expansion. This di�erence remains evident when con-
voluting the rates over (central) In-In collisions at SPS energies [35, 176] and
comparing to NA60 data, cf. Fig. 2.24. The latter apparently favor the broad-
ening (peak suppression) in the many-body calculations, which, in fact, give a
very good description of the data. Since in the underlying time evolutions, the
initial phases are around (and beyond) the expected phase boundary to the
QGP, it is of interest to compare the (bottom-up and top-down) extapolation
of hadronic and QGP rates close to Tc, as done in the right panel of Fig. 2.23.
The general trend in these comparisons is that whereas the free emission rates
in QGP and hadron gas are very di�erent from each other, the in-medium
rates in both phase show a remarkable tendency of approaching each other
when extrapolated into the expected phase transition region. A deeper under-
standing of this feature (or whether it is just a coincidence) is currently lack-
ing. Note, however, that the requirement of having a non-vanishing photon
emission rate implies a divergence of the dilepton rates toward M = 0, and
in this sense is a generic feature of many-body calculations. Furthermore, the
broadening of excitations is also a quite general phenomenon; the nontrivial
behavior here is that the ρ meson broadening is so pronounced that it leads to
a complete melting of the resonance structure, as seems to be required by the
NA60 data. Another intriguing consequence of a degeneracy of the top-down
and bottom-up extrapolated pQCD and hadronic many-body calculations,
respectively, is that it indirectly implies chiral symmetry restoration, since,
in pQCD, vector and axialvector channels are automatically degenerate.

We �nally compare in-medium hadronic rates at rather low temperatures
but high baryon density to calculations within a color-superconductor in the
so-called Color-Flavor-Locked (CFL) phase (lower left panel of Fig. 2.23).
The latter is characterized by a broken chiral symmetry that allows the for-
mulation of a chiral e�ective theory with vector mesons implemented via a
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Fig. 2.25 Electromagnetic form factor of the pion (left) and dilepton production rate
(right) as a function of the invariant mass

√
s for various temperatures [152]. The solid

lines include the e�ects of the violation of the VD. The dashed-dotted lines correspond
to the analysis assuming the VD. In the dashed curves in the right-hand �gures, the
parameters at zero temperature were used.

Hidden Local Symmetry, much like in the normal vacuum. The correspond-
ing in-medium dilepton rates again show a surprising agreement with the
hadronic-many body calculations [88]. It seems that for M > 1 GeV the rate
is fairly robust and insensitive to the microscopic matter state.

2.5.3 RG approach: vector manifestation

Within the vector manifestation (VM) scenario of the Hidden Local Sym-
metry (HLS) framework, dilepton rates have been evaluated in Ref. [152].
Following the approach outlined in Sec. 2.4.1.5, Fig. 2.25 shows the form
factor and the dilepton production rate integrated over three-momentum,
Eq. (2.50), in which the results with VD and 6VD are compared. It can be
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easily seen that the 6VD gives a reduction compared to the case with keeping
the VD. The features of the form factor as well as the dilepton production
rate coming from two-pion annihilation shown in Fig 2.25 are summarized
below for each temperature:

Below Tflash = 0.7Tc : The form factor is slightly suppressed with increas-
ing temperature. An extent of the suppression in case with 6VD is greater
than that with VD. This is due to decreasing of the ρ-γ mixing strength
gρ at �nite temperature (see Fig. 2.18). At T < Tf , gρ mainly decreases
by hadronic corrections. In association with decreasing gρ, one sees a re-
duction of the dilepton rate with 6VD.

Above Tflash = 0.7Tc : Since the intrinsic temperature e�ects are turned
on, a shift of the ρ meson mass to lower-mass region can be seen. gρ is
further reduced by the intrinsic e�ects and much more rapidly decreases
than g(VD)

ρ . Thus the form factor, which becomes narrower with increas-
ing temperature due to the dropping mρ, exhibits an obvious discrepancy
between the cases with VD and 6VD. The production rate based on the VM
(i.e., the case with 6VD) is suppressed compared to that with the VD. One
observes that the suppression is more transparent for larger temperature:
The suppression factor is ∼ 1.8 in (c) and ∼ 3.3 in (e).
As one can see in (c), the peak value of the rate predicted by the VM in
the temperature region slightly above the �ash temperature is even smaller
than the one obtained by the vacuum parameters, and the shapes of them
are quite similar to each other. This indicates that it might be di�cult to
measure the signal of the dropping ρ experimentally, if this temperature
region is dominant in the evolution of the �reball. In the case shown in
(d), on the other hand, the rate by VM is enhanced by a factor of about
two compared with the one by the vacuum ρ. The enhancement becomes
prominent near the critical temperature as seen in (e). These imply that
we may have a chance to discriminate the dropping ρ from the vacuum ρ.

2.6 Thermal photon rates

In this section we will address two aspects of real photon observables in
heavy-ion collision. The �rst are the traditional single-photon transverse-
momentum spectra which have been suggested long ago to give information
on the (highest) temperatures of the system, as well as modi�cations of the
spectral strength. We will in particular elaborate on connections to dilep-
tons. The second aspect is the more speculative one of di-photon production;
pertinent invariant-mass spectra have never been measured in heavy-ion col-
lisions, but the exciting possibility of inferring medium modi�cations of the
σ-meson (with its close connection to chiral symmetry restoration) warrants
at least an exploratory study of this observable.
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Fig. 2.26 Left panel: thermal hadronic photon rates following from the in-medium ρ
spectral function of Ref. [88]; right panel: additional mesonic sources for thermal photons
corresponding to non-resonant πρ→ πγ reactions (dashed lines) and scatterings involving
K and K∗ mesons [26].

2.6.1 Direct single photons

The production of thermal photons from strongly interacting matter is a vast
subject that cannot be done justice to here; for recent reviews see Refs. [16,
177�179]. We will focus on emission from hadronic matter, as this is expected
to be the dominant direct photon source at CBM 8, and in particular on
connections to dileptons.

As emphasized earlier in Sec. 2.2.1, thermal production rates of dilep-
tons and photons are intimately related since they are governed by the same
function (EM current correlator), albeit in di�erent kinematic regimes, recall
Eqs. (2.2) and (2.3). Any calculation of dilepton rates to nontrivial order
in αs encodes real photon production. For hadronic production rates this
connection has been exploited in Ref. [26] in an attempt to establish con-
sistency between low-mass dilepton [23, 34, 180] and direct photon [24, 25]
measurements in heavy-ion reactions at CERN-SPS energies.

In the left panel of Fig. 2.26 [26] results are shown for photon rates when
the isovector EM correlator (ρ spectral function) of the hadronic many-body
approach of Ref. [88] is carried to the light-like limit (q0 = q); temperature
(T = 150MeV) and chemical potential (µB = 340MeV) roughly correspond
to bombarding energies in the SPS energy regime. The decomposition into
various channels, and especially into baryon- and meson-induced processes,
shows that for SPS energies the baryonic part of the medium is the prevalent
photon source for energies q0 ' 0.2-1GeV. This re�ects that baryon e�ects are

8 We adopt the nomenclature de�ned in Ref. [178]; �direct� photons are to be distinguished
from �decay photons�: the former encompass emission from initial hard pQCD scatering
and pre-equilibrium phases, as well as thermal radiation, while the latter are from decays
after freezeout, mostly from π0 and η mesons (commonly referred to as �cocktail� in the
dilepton context).
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Fig. 2.27 Left panel: expanding �reball calculations for thermal photon spectra supple-
mented with primordial pQCD yields including an estimate of the Cronin e�ect [26], com-
pared to direct photon spectra in central Pb-Pb collisions at SPS [24]. The underlying
hadronic emission rates correspond to the ones displayed in the right panel of Fig. 2.26.
Right panel: the same calculation (solid line) compared to low-momentum WA98 data [25]
in the same reaction; the addition of improved Bremsstrahlungs rates from ππ and πK
scattering (upper dotted line) [173] signi�cantly reduces the discrepancy with the data.

the main source of medium e�ects in low-mass dilepton production. Above
q0 ' 1GeV, meson-resonance formation makes up the major part of the
strength in the lightlike ρ spectral function. However, the latter does not re-
produce photon sources corresponding to t-channel meson exchange (π, ω, a1)
in the πρ→ πγ reaction. An evaluation of these reactions within the Massive-
Yang-Mills approach, taking special care of formfactor e�ects and extended
to strangeness-bearing channels, indicates that t-channel exchanges become
competitive above q0 '1GeV, and dominant above ∼2.5GeV, cf. right panel
of Fig. 2.26. At temperatures above T = 150MeV, or baryon chemical poten-
tials below µB = 340MeV (as shown in the �gure), the mesonic reactions take
over at lower energies [26]. Thus, in the CBM energy regime, direct photons
of energies up to ' 1GeV would provide a valuable cross check on model inter-
pretations of low-mass dilepton observables. At the SPS, this check has been
performed [26] by applying the pertinent photon rates to WA98 data [24],
employing the same �reball model for the space-time evolution as underly-
ing, e.g., the left panel in Fig. 2.24. The theoretical spectra agree with the
data, cf. left panel of Fig. 2.27. Unfortunately, the subtraction method of the
(large) background from decay photons limits the experimental direct pho-
ton signal to transverse momenta above qt > 1.5GeV, where the (Cronin-
enhanced) primordial pQCD contribution becomes the leading source (the
QGP contribution is moderate throughout). More recently, using two-photon
interferometry methods, the WA98 collaboration extracted a direct photon
signal for small qt ' 0.1 − 0.3GeV [25]. Even though the uncertainty is
appreciable, the theoretical predictions of Ref. [26] fall short of the yield.
Subsequent inclusion of ππ → ππγ Bremsstrahlung, while adding ∼30% to
the yield at qt = 0.2GeV, could not resolve this discrepancy [32, 181, 182].
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In Ref. [173] a more precise evaluation of the Bremsstrahlung's contribution,
going beyond the soft-photon approximation and including �nal-state Bose
enhancement factors in the multi-dimensional phase space integrals, lead to
a 60-70% enhancement over the previous Bremsstrahlungs rate (plus another
20% contribution from πK → πKγ Bremsstrahlung), reducing the discrep-
ancy with the low-qt data, cf. right panel of Fig. 2.27 (the suppression of the
yield due to Landau-Pomeranchuk-Migdal interference has not been included
but was estimated to be a factor of ∼0.8 at qt = 0.2GeV). Also note that
the Bremsstrahlungs spectrum has a signi�cantly steeper slope than the pre-
viously calculated photon sources, thus not compromising the compatibility
with the WA98 data (and upper limits) at larger momentum.

It is highly desirable to clarify the situation of the possibly very large
enhancement at (very) low photon momenta. In particular, a reasonably ac-
curate measurement of low-qt photons within CBM would be valuable, pro-
viding additional clues on the origin of the WA98 enhancement, e.g., whether
the source is of baryonic or mesonic origin.

2.6.2 Diphotons and in-medium �σ�

According to a suggestion by Hatsuda and Kunihiro [183] the light sigma-
meson σ(600) can serve as an indicator for the chiral phase transition. In the
vacuum, the σ(600) is a very broad resonance in the ππ scattering amplitude
with a width Γσ = 600 − 1000 MeV [30] due to σ → ππ. According to the
standard representation, the σ and the π are chiral partners so that at the
chiral restoration transition their masses become degenerate. Consequently,
the channel σ → ππ shuts o� already at temperatures and chemical potentials
where the condition mσ = 2mπ is reached, and the σ width could become
relatively small until at the decon�nement transition the channel for decays
in quark-antiquark states opens. Experimental signatures might be expected
in the channel σ → γγ, where a resonance structure or at least a shoulder
should be observable at the two-pion threshold, Mγγ ∼ 2mπ ∼ 300 MeV.

2.6.2.1 Estimates for the σ → 2γ production rate

In Ref. [184], an estimate of diphoton production via ππ → γγ annihilation
has been conducted within a Nambu-Jona-Lasinio (NJL) model. In the vac-
uum, the pion exchange Born diagram dominates this process, but when ap-
proaching the critical temperature, quark-exchange substructure e�ects lead
to a substantial enhancement of the pertinent cross section, which develops
a rather pronounced maximum structure in the T -µ phase diagram as shown
in the left panel of Fig. 2.28. The pertinent diphoton production rate is dis-
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Fig. 2.28 Diphotons from �sigma� decays within a schematic NJL calculation neglect-
ing pion width e�ects [184]. Left panel: regions of maximal cross section for the process
σ → γγ in the phase diagram of quark chemical potential vs. temperature; right panel: cor-
responding thermal production rate of photon pairs vs. their invariant mass for di�erent
temperatures at µB/3 = µ = 80 MeV.

played in the right panel of Fig. 2.28 for di�erent temperatures at �xed quark
chemical potential [184].

The optimal conditions for observing a soft-σ induced enhancement in
heavy-ion reactions occur if the latter can reach into the realm of a �rst
order transition and create a mixed phase with extended lifetime. In this case
one can hope for the formation of an extended region of matter at constant
temperature thus generating a diphoton mass spectrum which resembles the
emission rate at �xed temperature.

A schematic study of the width e�ect on the 2γ production rate, dNγγ/d4xdM ,
is summarized in Fig. 2.29. For de�niteness, the mass of the pion is taken at
its vacuum value, mπ =140MeV, and the mass of σ as mσ = 2mπ. Witin
the NJL model the quark mass then follows mq =

√
3mπ/2. We assume that

the ratio m/fπ ≈ 4 does not change in the range of temperatures we are
interested in. Remaining details are also taken from the NJL model. As the
temperature of the phase transition is not well known and will probably vary
with µB , we choose a range from 120 to 160 MeV. The σ-meson spectral func-
tion is assumed to be narrow (with a width parameter of 10MeV), as well
in its vacuum form. To estimate the maximum e�ect, additional broadening
of the mesons' spectral functions in a hot/dense medium is neglected. It ap-
pears that for σ widths above 10MeV, it will be very hard to discriminate the
threshold enhancement against an expected large combinatorial background
of both decay and direct photons. Such widths, are, however, easily generated
if realistic in-medium spectral functions of pions are accounted for both in
nuclear and/or hot meson matter, see, e.g., Refs. [185, 186]. Thus, the fea-
sibility of detecting a �σ� signal in the dipohoton spectrum appears rather
questionable.
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Fig. 2.29 Diphoton production rate per 4-volume and invariant mass at the critical tem-
perature for a �rst order chiral transition produced in a nucleus-nucleus collision. The
width of σ is 10 MeV (left) and at its vacuum value (right).

2.6.2.2 Other anomalous channels: ρ → γγ, σ → e+e−

The medium-induced breaking of Lorentz symmetry for ground state matter
can facilitate processes that are forbidden in free space. Typical examples
are the mixing of scalar and vector mesons such as σ-ω, ρ-a0 and φ-f0(980).
The role of the σ-γ transition in the enhancement of e+e− production due
to the (in vacuum forbidden) decay σ → e+e− near the two-pion threshold
was discussed by Weldon [187]. (According to the vector dominance model, all
electromagnetic interactions of mesons should be mediated by vector mesons:
a scalar transforms to a vector which then transforms to a photon.) The e�ect
of σ-ω and ρ-a0 mixing on the pion-pion annihilation in dilepton production
was investigated in Ref. [188], where it was shown that additional peaks
appear in the dilepton spectrum in su�ciently dense baryonic matter. On the
other hand, the scalar-vector mixing can trigger two-photon decays of vector
mesons, where a vector meson �rst transforms to a neutral scalar meson
which then produces two correlated photons. In the case of ρ-a0 mixing, an
additional (resonant) ampli�cation can occur because of the degeneration of
the ρ and a0 meson masses under particular conditions in dense matter [189].
Moreover, the enhancement in two-photon or dilepton production from the
processes with σ-ω, ρ-a0 and φ-f0 mixing can be observed in a wide range
of temperature and baryon density [190]. Earlier estimates of �anomalous�
dilepton production from qq̄ annihilation in decon�ned quark matter have
been performed in [191]. The pertinent results for scalar-vector mixing have
been used by the authors of Ref.[189].

The process is represented by the diagram drawn in Fig. 2.30. First, a
quark loop mediates vector-scalar mixing, followed by an intermediate scalar
resonance and completed by the triangular quark loop describing a decay
of the scalar meson to photons. For rough estimates we will assume that
the ρ-meson mass is constant in the hadron phase, while the σ-meson mass



2.6 Thermal photon rates 401

Fig. 2.30 Feynman diagram for the ρ(ω, φ) → γγ decay. The crossed diagram is not
shown.
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Fig. 2.31 Two-photon decay width of ρ-meson as a function of µ and |p| for T = 20
MeV (left panel) and 120 MeV (right panel).

drops signi�cantly with growing temperature and chemical potential, until
it becomes almost degenerate with the pion mass cloe to chiral symmetry
restoration. The same is expected for the a0-meson.

Since the decay ρ→ γγ involves the a0-meson the corresponding amplitude
is proportional to the a0 propagator,

Da0 =
1

M2
a0
−M2

ρ − iΓa0(Mρ)Ma0

, (2.51)

which is of the Breit-Wigner form; Ma0 and Mρ are masses of a0 and ρ,
respectively, while Γa0 is the width of a0 (it depends on the mass of the
decaying particle, Mρ). Here, it must be pointed out that due to the degen-
eration of a0 and ρ masses at a certain temperature and chemical potential,
an additional enhancement can arise from Da0 . This enhancement is similar
to that in the process ππ → γγ [184, 192] and ππ → ππ [193]. Numerical
estimates for the width of the process ρ → γγ at various values of chemical
potential and 3-momentum p of the ρ-meson are given in Fig. 2.31 for two
temperatures, 20 and 120 MeV.

One can perform similar calculations for the decays ω → γγ and φ→ γγ.
The characteristic order of magnitude for rate of such processes is a few keV.
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Fig. 2.32 The diagram that describes dilepton decays of the scalar meson in medium via
scalar-vector mixing.
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Fig. 2.33 Decay rate for σ → e+e− at T = 20 MeV (left panel) and 120 MeV (right
panel).

The maximal e�ect is reached near the phase transition and for momenta
near the maximum in the momentum distribution for the decaying particle.

A peculiarity of the decay ρ→ γγ is that the a0-meson mass is larger than
the ρ-meson mass in vacuum, but may drop signi�cantly when approaching
the transition to the phase with restored chiral symmetry. One can envisage
that under particular conditions the masses of a0 and ρ become degenerate,
which is followed by a resonant ampli�cation of the decay ρ → γγ and no-
ticeable enhancement near the ρ-meson mass in the two-photon spectrum.
As for the σ-ω mixing, their mass di�erence is expected to grow with µ, and,
as a consequence, no resonant phenomenon occurs in this decay. Therefore,
the number of two-photon events related to decays of vector mesons will be
dominated by ρ→ γγ rather than ω → γγ.

The direct decay of the σ-meson to dileptons is also forbidden in vacuum
and is allowed in dense medium due to σ-ω mixing. After the transition of σ to
ω, the latter transforms to a photon (according to VDM) which then produces
an electron and a positron (see the diagram in Fig. 2.32). Numerically, the
decay σ → e+e− rate reaches about 1.5 keV at T ∼ 20 MeV, Fig. 2.33. One
can estimate the decays a0 → e+e− and f0(980)→ e+e− in the same manner.

Both the two-photon decays of vector mesons and dilepton decays of scalar
mesons have common peculiarities: they are forbidden in the vacuum and
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open up only in the medium. The e�ect is maximized near the phase tran-
sition and is more pronounced for smaller temperature and larger chemical
potential. However, for practical purposes the decays widths seem to be rather
small unless anomalously small total widths or particular resonance degener-
ation phenomena occur.





Chapter 3

Hadronic resonance spectroscopy

The use of dilepton invariant-mass spectra to obtain direct spectral infor-
mation on hadronic properties in medium is limited to mesons in the vector
channel. In addition, the measured spectra (after background and �cocktail�
subtraction) are composed of a superposition of spectral functions at vary-
ing temperatures and densities (which, of course, provides unique access to
the hot and dense phases). The situation changes for invariant-mass spectra
of strongly decaying resonances: due to �nal-state absorption, undistorted
emission is mostly emanating from temperatures and densities at the late
stages of a heavy-ion collision, but a large variety of hadronic states is, in
principle, available with comparatively high rates (not being penalized by
α2). The drawbacks are, of course, severe: one is only probing low densi-
ties/temperatures, the system is about to break up rendering the notion of
equilibrium questionable, and the backgrounds are large. Nevertheless, an
appreciable number of resonances and associated spectral modi�cations have
been studied in both hadronic and heavy-ion collisions (even e+e− annihila-
tion), e.g., ∆→ πN at BEVALAC, SIS [194, 195] and RHIC [196], φ→ KK
at AGS [197], SPS [198] and RHIC [199], strange baryon resonances [200] and
ρ → ππ, K∗ → Kπ at RHIC [98, 201]. We emphasize again the importance
of assessing the in-medium a1(1260) spectral function, possibly via π±γ spec-
tra [97], which would constitute a major milestone towards establishing the
connection to its chiral partner, the ρ meson, which is the key contributor to
low-mass dileptons.

In the following we discuss selected examples for resonances in the light-
quark sector where previous measurements have provided promising results.
The method also applies to strange and possibly charmed resonances, whose
medium e�ects are addressed in Chaps. 4 and 5.

405
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3.1 Meson resonances

The most promiment resonance in the ππ channel is the (P -wave) vector-
isovecotor ρ(770) meson. Measurements of π+π− invariant-mass spectra in√
sNN = 200GeV p-p and peripheral Au-Au collisions by the STAR col-

laboration at RHIC have found rather large downward mass shifts of the
ρ resonance peak by about -40MeV and -70MeV, respectively, cf. Fig. 3.1.
The e�ect is most pronounced at low transverse momenta, and has trig-
gered a number of theoretical works to investigate its origin [97, 202�206].
In Ref. [202], contributions to the ρ mass were estimated from the real part
of resonant scattering amplitudes on pions and nucleons in the heat bath.
The net e�ect under the expected thermal freezeout conditions at RHIC was
rather moderate; using a rate equation framework for the spectra, an addi-
tional attractive mass shift of about -50MeV was inferred. Since the contri-
butions from resonances can be both attractive and repulsive, they tend to
cancel each other. The main e�ect was, in fact, from a scalar mean �eld which
has been identi�ed with a �dropping mass�. A rate-equation approach was also
employed in Refs. [97, 203]. The former study [203] con�rmed the need for an
attractive mass shift of the ρ of at least -50 MeV in Au-Au, on top of thermal
phase space e�ects [207]. In the latter study [97], an in-medium spectral func-
tion as calculated from hadronic many-body theory was implemented (which
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is consistent with dilepton measurements at the CERN-SPS [35, 88]). Under
conditions resembling thermal freezeout in Au-Au at RHIC, a factor of ∼2
broadening renders the spectral shape more susceptible for modulations due
to thermal phase space. Bose-Einstein enhancement on the outgoing pions, as
well as an underlying (falling) �background� from scalar π+π− correlations
combines to a total mass shift of -30 MeV relative to conditions expected
in p-p collisions, in line with experiment. However, the -40 MeV shift in p-p
collisions is not reproduced (in Ref. [208], e.g., this e�ect has been largely
attributed to an interference between direct ρ decays and rescattered pions).

In Ref. [204], the single-freezeout model has been applied to ππ spectra.
This approach assumes a sudden decoupling at a thermal freezeout temper-
ature that coincides with chemical freezeout at Tch ' 165 MeV. In such a
setting, resonant correlations can be implemented using a virial expansion via
vacuum (two-body) scattering phase shifts, or, more precisely, their deriva-
tives [205, 209, 210]. This, in particular, implies, that the contribution of
broad resonances is suppressed (while in the rate-equation approach, this is
compensated by the increase in emission rate). Again, if the width of the
ρ is not modi�ed, a thermal mass shift of -50 MeV has been inferred to be
compatible with the STAR ππ data.

More information can be obtained from the number of detected ρ0 mesons.
For p-p and peripheral Au-Au collisions, the measured ρ0/π− ratios are
0.183±0.027 and 0.169±0.037, respectively (dominated by systematic er-
rors) [98]. Both values tend to be larger than predictions from thermal mod-
els at chemical freezeout, yielding ∼0.11±0.02 [97, 211], which is the more
surprising as ρ0 → π+π− is expected to be emitted at thermal freezeout,
where the thermal ρ0/π− ratio is further reduced, to about 0.06-0.08 [97].
The emission of 2 generations of ρ0 → π+π− in a rate-equation picture could
be a possibility to resolve the discrepancies [97], even in p-p collisions [208]1.
Additional information on the question of rescattering and possible modi�ca-
tions in line shapes due to phase space e�ects may be obtained from tranpsort
simulations [213].

Further indications for modi�cations in π-π invariant mass spectra can be
found from the pair-pT spectra, cf. Fig. 3.2 [98]. One recognizes a signi�-
cant change in shape, from power-law in p-p to exponential in Au-Au, which
corroborates that the emission environment in heavy-ion collisions is quite
di�erent, indicative for the �nal stages of a thermalized medium.
ππ invariant mass spectra contain, in principle, information on isoscalar

channels as well. In p-p collisions, one �nds a clear signal of the f0(980) (and
possibly of the tensor f2(1270)) meson, see upper left panel of Fig. 3.1. The
f0(980) is also visible in the Au-Au spectra. The low-lying �σ(500)� (listed as
f0(600) in recent editions of the review of particle physics [30]) is more di�-
cult to identify, mainly due to its broad structure. Pion- and photon-induced

1 Evidence for ππ rescattering in peripheral In-In has recently been reported in dimuon
spectra by NA60 [34]; the secondary production is concentrated at low pT [212] and may
be quite consistent with the analysis of Ref. [208] at RHIC energy.
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two-pion production experiments o� nuclei, π(γ)A → ππA, have found in-
triguing evidence for medium e�ects in terms of a substantial enhancement
of strength close to the two-pion threshold [214�216]. Whether this is due to
nuclear many-body e�ects [185, 217] or a �genuine� dropping σ mass [218],
and in how far it is related to partial chiral symmetry restoration, is not clear
at present. In Refs. [219, 220] �nal-state interactions of the individual outgo-
ing pions were found to largely account for the observed enhancement. The
�nal-state interactions in the nuclear medium are based on the same physics
as the nuclear many-body e�ects evaluated in Refs. [185, 217], and there-
fore both e�ects do not mutually exclude each other (on the contrary, both
should be included). It would be very interesting to investigate the invariant-
mass region close to the two-pion theshold in heavy-ion reactions [97, 202],
preferrably at high baryon density where the predicted medium e�ects are
large [130, 221].

3.2 Baryon resonances

Before turning to the baryon spectroscopy in hadronic models with appli-
cations to heavy-ion collisions, let us make a few general remarks including
aspects of chiral symmetry and QCD sum rules.

The excitation spectrum in the baryon sector is characterized by an ex-
traordinary richness: the nucleon can be excited in both isospin and spin
quantum numbers, while each IJP state itself maybe considered as a base
for building another tower of (mass) excitations. E.g., quark models on vari-
ous levels of sophistication have been employed to compute these excitation
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spectra, resulting in a large number of states, not all of which have been ex-
perimentally identi�ed. This constitutes the well-known �missing resonance
problem�; part of this problem are the often rather large decay widths of
several hundred MeV. The situation becomes even more complicated in hot
and dense hadronic matter where one generally expects further broadening.2

In-medium properties of baryon resonances are also important to evaluate
medium e�ects in the meson sector. As discussed in the previous section, the
medium modi�cations of the light vector mesons ρ and ω (including their pion
cloud) are largely driven by the coupling to the baryonic component of the
matter. These interactions, in turn, are often dominated by resonant meson-
nucleon scattering, rendering a quantitative (selfconsistent) determination of
the medium modi�cations of the intermediate baryon resonance mandatory
(e.g., whether it is dynamically generated or a genuine state).

3.2.1 Chiral symmetry of baryons

As in the meson sector, a key issue concerns how (the approach toward)
chiral symmetry restoration manifests itself in the in-medium spectrum of
baryons. In a �rst step, one has to identify the chiral structure of the baryon
spectrum in the vacuum, i.e., the chiral partners, e.g., N -N(1535) and ∆-
(N(1520),∆(1700)), see, e.g., Refs. [222�226]. Since chiral symmetry break-
ing is a low-energy phenomenon, its e�ects should cease at su�ciently large
excitation energies. In particular, Glozman [223, 227] advanced the view that
chiral symmetry, in the sense of degeneracy of chiral partners, is restored
for high-lying baryon resonances, cf. Fig. 3.3. In Refs. [224, 225] chiral rep-
resentations for baryons have been elaborated within a linear sigma model,
arriving at a quartet scheme where N∗

+, N
∗
−, ∆

∗
+ and ∆∗

− with given spin
form a chiral multiplet. Empirical mass orderings and pion decay branchings
seem to support this identi�cation.

3.2.2 Baryon masses and QCD condensates

In a chiral expansion, the nucleon mass in the vacuum takes the form [228]

MN = M
(0)
N +A1m

2
π +A2m

3
π +A3m

4
π log(mπ/MN ) +A4m

4
π + · · · (3.1)

2 This applies, for instance, for the so-called second resonance group (including
N(1440)P11, N(1520)D13, N(1535)S11) as observed in photo-absorption or electro-
excitation of mesons on the nucleon; even for light nuclear targets (A ≥ 4), these reso-
nances are strongly broadened converging to an essentially structureless �universal curve�,
independent of atomic mass number (upon scaling by A), recall left panel of Fig. 2.10.
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Fig. 3.3 Parity partners for nucleons of various spins. According to Ref. [223], a degen-
eracy of parity partners sets in at masses above ∼1.7 GeV (similarly for ∆ states).

Note that, in the chiral limit (mπ = mu,d = 0), the nucleon mass is still
fairly heavy, M (0)

N = 770 MeV.3 the nucleon remains fairly heavy; explicit
symmetry breaking shifts the nucleon mass by 20% upwards. This might be
contrasted with the celebrated Io�e formula (cf. [229])

MN = − 8π2

M2
〈q̄q〉, (3.2)

which ascribes the nucleon mass entirely to the formation of the chiral conden-
sate (M' 1 GeV is the so-called Borel mass). One should, however, keep in
mind that the Io�e formula is a somewhat simplistic approximation to rather
complex QCD sum rules for the nucleon, where, similar to the meson case,
a variety of quark and gluon condensates (including quark-gluon and higher-
order quark condensates, in particular, 4-quark ones) play an important role
(or, in the medium, moments of parton distributions). Nevertheless, the Io�e
formula is very suggestive to expose the relation of in-medium properties
and QCD vacuum properties as encoded in the chiral condensate. A recent
analysis [230] con�rms that, within the conventional sum rule approach, a
freezing of all QCD parameters other than the chiral condensate leads to
an in-medium nucleon that decreases linearly with 〈q̄q〉 to leading order in
density.

The QCD sum rule approach to baryon masses is as for mesons: de�ne a
phenomenological current with suitable interpolating �elds (which is subject
of ongoing trials [51, 231, 232]), perform the Operator Product Expansion
(here the condensates come into play) and equate it to the moments of the
baryon spectral function. The latter step is hampered in a similar way as
for mesons: baryon and anti-baryons mix (or need to be disentangled), and
only integrals over spectral functions are subject of the sum rules. Even the

3 Instead of quark mass one often refers to the pion mass, cf. Ref. [228] for the de�nition
of the Ai and further details.
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baryon N Λ Σ±,0 Ξ−,0

shift [MeV] -154 -152 -18 0

Table 3.1 Shift of mass parameters of baryon octet ground states following from lowest-
order chiral perturbation theory in isospin-symmetric nuclear matter [240].

usual decomposition into a ground-state (g.s.) pole + continuum faces prob-
lems [233].

The pioneering works [234] found a sizeable in�uence of the poorly known
four-quark condensates. Revisiting such approaches evidence that three di�er-
ent combinations of four-quark condensates determine the in-medium spectral
properties of the nucleon [235]. However, a stable result is the large (order of
a few hundred MeV) and nearly compensating scalar and vector self-energy
contributions, analog to advanced Brueckner calculations [236].

The extension to other baryons is essentially straightforward. In Ref. [237]
the ∆ has been anayzed within the QCD sum rule approach. In Ref. [238]
coupled positive and negative parity �avor-octet baryons have been studied
in vacuum, in particular with the assignments of Λ(1670) and Σ(1620) as
chiral partners of g.s. Λ and Σ; the Λ(1405) is conjectured as �avor singlet or
exotic state. In Ref. [239] considers the mass spectrum in the baryon decuplet
sector has been considered, again focussing on the vacuum case.

An alternative, model-independent, approach to assess in-medium changes
in baryon masses is provided by chiral perturbation theory, as has been car-
ried out in Ref. [240] for nuclear matter to leading order in density; the
resulting mass shifts are summarized in Tab. 3.1.

Finally, let us brie�y discuss e�ective hadronic model approaches. Here,
the model parameters are typically �xed in the vacuum by reproducing a
large set of scattering data. This allows for a more complete account of the
interactions in the vacuum, and thus more realistic applications to in-medium
properties, at least for small and moderate densities. In a unitary coupled-
channel approach the Giessen group [125] has computed in-medium spectral
functions of the low-lying baryons, see Fig. 3.4. Note that the π, η and ρ
mesons are accounted for within the same framework, thus representing a
step towards a consistent treatment of hadronic complexity.

3.2.3 Baryon resonance decays in heavy-ion collisions

The most prominent baryon resonance, ∆(1232), predominantly couples to
the P -wave πN channel, much like the ρ to the ππ channel. Its properties in
cold nuclear matter have been extensively studied in both photon and hadron-
induced reactions on nucleons and nuclei, indicating a moderate broadening
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Fig. 3.4 Baryon spectral functions from Ref. [125]. Top row: Width (left panel) and
spectral function (right panel) of ∆(1232)P33 at momentum 0.4 GeV/c; middle row:
N(1520)D13 for momenta 0 (left panel) and 0.8 GeV/c (right panel); bottom row: partial
widths (left panel) and spectral function (right panel) of N(1535)S11 at momentum of 0.8
GeV/c. Dotted curves are for vacuum, while solid and dashed curves are for two coupling
parameters in nuclear matter.

(presumably stabilized by Fermi blocking of the nucleon) and possibly a small
mass shift, see, e.g., Refs. [241�244].
π±-p invariant mass spectra in heavy-ion collisions have been measured at

BEVALAC/SIS [194, 195] as well as at RHIC energies [201]. In the former,
i.e., for bombarding energies of 1-2 AGeV, signi�cant reductions in the ∆
peak position of -50 MeV to -100 MeV have been reported. Thermal phase
space at typical freezeout temperatures of Tfo ' 70 MeV seems insu�cient
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Fig. 3.5 Left panel: mass and width of the ∆(1232) as extracted from πp invariant mass
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multiplicity) [201]. Right panel: hadronic many-body calculations of the in-medium ∆
spectral function under RHIC conditions, including both a renormalization of the πN
cloud and direct ∆+ π → B∗ interactions (B∗: baryon resonances) [244].

to account for these results, while transport simulations [245, 246] are in
reasonable agreement with data without invoking a reduced in-medium ∆
mass.

In
√
sNN = 200 GeV Au-Au collisions at RHIC, both mass and width of

the ∆ were found to increase with increasing collision centrality by about
20 − 30 MeV and ∼ 40 MeV, respectively, from the values measured in p-p
collisions, cf. left panel of Fig. 3.5. This is in rough agreement with the ∆
spectral function calculated in Ref. [244], which includes both the medium
modi�cations of the π-N cloud and direct ∆ + π → B∗ resonance scatter-
ing. These calculation further imply that the ∆ resonance essentially melts
when approaching the expected phase boundary, both under RHIC and CBM
conditions.

A reliable calculation of in-medium spectral functions of baryon resonances
requires as input in-medium π and N spectral functions. The former has
been discussed in some detail in the previous Section. The nucleon mass is
expected to be reduced in cold nuclear matter due to the scalar mean �eld,
while at �nite temperatures a substantial collisional broadening has been
predicted [244, 247] This raises the interesting question how the N spectral
function develops toward chiral symmetry restoration, in particular how it
degenerates with its chiral partner, the N∗(1535). An ambitious goal would
therefore be to measure N∗(1535) decays, e.g., in the Nη channel. In Secs. 4.2
and 5.5.4 we will brie�y return to baryon spectroscopy including strangeness
and charm.





Chapter 4

Strangeness

The strange quark is signi�cantly heavier than the light up and down quarks,
with a current mass parameter of ms ≈ O(ΛQCD). However, it is still small
compared to the typical hadronic scale of 1 GeV and thus rather considered
as (and treated in analogy to) a light quark than a heavy quark (the charm-,
bottom- and top-quark masses are (well) above 1 GeV). The quantum num-
ber �strangeness�, S, is conserved in strong interaction processes, implying
associated strangeness production in such processes. Strangeness-changing
weak interactions couple strange quarks or hadrons to other �avor sectors.
The quark structure of hadrons with strange quark constituents can be read
o� from Fig. 5.1 in the zero-charm planes.

Historically, an important motivation for considering strangeness as a
probe of hot and dense matter was the suggestion by Müller and Rafel-
ski [248] that enhanced strangeness production could be an indicator for
creating decon�ned matter in ultrarelativistic heavy-ion collisions. Indeed, at
SPS energies and above, chemical equilibration of strangeness production has
been identi�ed as a key di�erence in the hadro-chemistry of (central) A-A
compared to p-p collisions [211, 249]. At lower energies, in particular around
the strangeness production threshold, kaon production has been widely uti-
lized to study modi�cations of kaon masses (or, more generally, their spectral
functions) in hot hadronic matter. Sec. 4.1 will discuss this topic which com-
prises the main part of this chapter. Less attention has been paid thus far to
in-medium modi�cations of strange baryons, which will be brie�y addressed
in Sec. 4.2.

415
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4.1 Kaons in dense matter

The natural starting point to study the interaction of pseudoscalar mesons
and baryons at low energies is the chiral Lagrangian. Kaplan and Nelson were
the �rst to apply the chiral Lagrangian to the properties of kaons in nuclear
matter at the mean �eld level [250, 251]. The chiral Lagrangian has been
applied extensively to derive the in-medium properties of kaons [252�265].
Applications of various approaches to heavy-ion collisions can be found in
[266].

We �rst discuss the chiral Lagrangian used at the mean-�eld level and then
turn to its more realistic coupled-channel applications. The leading order
terms that are relevant for a mean �eld evaluation of the kaon self energy are

L = N̄(iγµ∂µ−mN )N+∂µK̄∂µK−(m2
K−

ΣKN
f2

N̄N)K̄K− 3i
8f2

N̄γµNK̄
↔
∂ µ K ,

(4.1)

where the parameter f ' fπ ' fK may be identi�ed with the pion or kaon de-
cay constant at leading order. It contains a vector interaction, the Weinberg-
Tomozawa term, which is repulsive for kaons and attractive for antikaons due
to G-parity. It constitutes the leading order term. The attractive scalar inter-
action, the Kaplan-Nelson term, is equal for kaons and antikaons and enters
at subleading order. The strength of the Kaplan-Nelson term is controlled by
the magnitude of the kaon-nucleon sigma term ΣKN.

In contrast to the pion-nucleon-sigma term which is experimentally well
determined from pion-nucleon scattering (ΣπN ' 45 MeV), the kaon-nucleon-
sigma term is poorly known. It is related to the strangeness content of
the nucleon. Quenched lattice QCD simulations suggest values between 300-
450 MeV [252, 267, 268]. However, at present there is no unquenched three-
�avor QCD lattice simulation available that is extrapolated to the continuum
limit and down to physical quark masses. Thus a reliable value for the kaon-
nucleon sigma term is not yet available. While heavy-baryon Chiral Perturb-
taion Theory (ChPT) [269] predicts the range ΣKN = 380 ± 40 MeV (I=1)
a chiral quark model calculation �nds ΣKN = 386 MeV [270]. Signi�cantly
smaller values, compatible with zero, have been obtained in a recent self-
consistent one-loop computation that for the �rst time considered the e�ect
of intermediate states of a Goldstone boson and a baryon octet or baryon
decuplet based on the chiral Lagrangian [271]. Thus the current theoretical
range for ΣKN extends from ∼0 up to 450 MeV.
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4.1.1 Mean �eld dynamics

For estimates of kaon mass shifts in nuclear matter and kaon dynamics in
heavy ion reactions the above Lagrangian (4.1) was frequently applied in the
mean �eld ansatz. Already in the early 1990's corresponding calculations were
carried out in the Nambu-Jona-Lasinio (NJL) model [272]. The in-medium
Klein-Gordon equation for the kaons follows from eq. (4.1) via the Euler-
Lagrange equations[

∂µ∂
µ ± 3i

4f2
jµ∂

µ +
(
m2

K −
ΣKN

f2
ρs

)]
φK±(x) = 0 . (4.2)

Here jµ = 〈N̄γµN〉 is the nucleon four-vector current and ρs = 〈N̄N〉 the
scalar baryon density. With the vector potential

Vµ =
3

8f2
jµ (4.3)

and an e�ective kaon mass m∗
K de�ned as [273]

m∗
K =

√
m2

K −
ΣKN

f2
ρs + VµV µ (4.4)

the Klein-Gordon Eq. (4.2) can be written as[
(∂µ ± iVµ)2 +m∗2

K

]
φK±(x) = 0 . (4.5)

Thus the vector �eld is introduced by minimal coupling into the Klein-Gordon
equation with opposite signs for K+ and K− while the e�ective mass m∗

K

is equal for both. The space-like components of the vector potential vanish
in nuclear matter at rest. They, however, come into play when heavy-ion
collisions are considered. One has to transform between di�erent reference
frames, the center-of-mass frame of the colliding nuclei and the frame where a
kaon is created. Like in electrodynamics the spatial components of the vector
�eld give rise to a Lorentz force [273]. The in-medium dispersion relation can
also be expressed in terms of an optical potential,

0 = k2
µ −m2

K − 2mKUopt . (4.6)
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4.1.2 E�ects non-linear in density

To lowest order in density the energy or mass shift of a meson, ∆E, is deter-
mined by the scattering length of the considered meson and the nucleon. In
the case of kaons one has

∆E2
K(k = 0) = ∆m2

K = −π
(

1 +
mK

mN

)(
a
(I=0)
KN + 3 a(I=1)

KN

)
%N +O

(
k4
F

)
,(4.7)

where the correction terms start at order k4
F (kF : Fermi momentum of nu-

clear matter. The empirical values of the isospin I=0 and I=1 K+-nucleon
scattering lengths are a(I=0)

K+N ' 0.02 fm and a(I=1)
K+N ' −0.32 fm [274] which

leads to a repulsive mass shift of about 28 MeV at nuclear saturation density
(kF ' 265 MeV). Higher order corrections in the density expansion of eq. (4.7)
were found to be small for K+. The k4

F correction was found to increase the
repulsive K+-mass shift by about 20% [261] compared to expression (4.7).
This suggest taht the density expansion is applicable in the K+ sector. The
empirical scattering lengths can now be compared to the tree level Weinberg-
Tomozawa interaction which yields a(I=0)

K+N = 0 fm and a
(I=1)
K+N ' −0.585 fm

[256]. Thus current algebra and the corresponding e�ective KN Lagrangian,
eq. (4.1), are in rough qualitative agreement with the constraints from low
energy K+ nucleon scattering. The large vector repulsion, eq. (4.3), may be
compensated by an attractive scalar Kaplan-Nelson potential.

Next we turn to the antikaon. Again one can use the low density the-
orem to estimate the medium e�ects to leading order in density. Utilizinf
eq. (4.7), the empirical scattering lengths, a(I=0)

K−N ' (−1.70 + i 0.68) fm

and a
(I=1)
K−N ' (0.37 + i 0.60) fm [274, 275], lead to a repulsive mass shift

of 23 MeV and a width of ΓK− ' 147 MeV at saturation density. In contrast
to the K+, the next order correction to the density expansion of eq. (4.7)
is large, resulting in a total repulsive mass shift of 55 MeV and a width of
ΓK− ' 195 MeV [261]. First of all, this questions the convergence of a density
expansion for the K−-mode. Moreover, the leading terms suggest a repulsive
K− potential. Finally, the empirical K−N scattering lengths are in disagree-
ment with the Weinberg-Tomozawa term which predicts an attractive mass
shift. These facts imply that perturbation theory is not applicable in the
K− sector. The reason lies in the existence of a resonance, the Λ(1405) close
the K−p threshold which makes the K−p interaction repulsive at threshold.
The presence of resonances generally requires a non-perturbative treatment
of two-body scattering processes. We will return to this issue below.

It has been suggested by Brown and Rho [257] to model non-linear terms
in the density by using a medium dependent parameter f ' fπ. Assuming the
Gell-Mann-Oakes-Renner relation to be approximatively valid in the medium,
one obtains the following relation for the in-medium pion decay constant f∗π
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f∗2π
f2
π

=
m2
π

m∗2
π

〈Ω | q̄q | Ω〉
〈q̄q〉

. (4.8)

According to ChPT [276] and π-mesonic atoms [277], S-wave interactions
induce only a small change of the pion mass with nuclear density. Using the
empirical values of m∗

π(%0)/mπ ≈ 1.05, one obtains

f∗2π (ρ0)/f2
π ≈ 0.6 (4.9)

at nuclear saturation density, %0 ' 0.16 fm−3. A dropping pion decay constant
enhances both the vector repulsion and the scalar attraction. Such a dropping
of the pion decay constant seems to be supported by the potentials extracted
from pionic atoms [278, 279]. At the mean �eld level these results can be
incorporated by replacing f2 7→ f∗2π only in the vector potential, eq. (4.3).

Fig. 4.1 shows the in-medium energy shift of K+ and K− and the in-
medium mass de�ned by eq. (4.4) in nuclear matter. The label MFT corre-
sponds to the Lagrangian (4.1) with a value of ΣKN = 350 MeV which has
originally been used by Li and Ko [280, 281]. MFT+corr. denotes the mean
�eld model proposed by Brown et al. [257] including the above mentioned
higher order corrections with a value of ΣKN = 450 MeV. The MFT and
MFT+corr. curves shwon in Fig. 4.1 are obtained by eq. (4.4) with the cor-
responding values for ΣKN , with the additional replacement of f2 by f∗2π in
the vector �eld, eq. (4.3), in the MFT+corr. case. The empirical energy shifts
are shown as well in Fig. 4.1. For the K+ the value is obtained by eq. (4.7)
from the empirical K+N scattering length. The K− band corresponds to the
e�ective isospin averaged K−N scattering length of āK−N = 0.62 ± 0.5 fm
suggested by kaonic atom data [282].

Similar results have been obtained with slightly modi�ed versions of
the e�ective chiral Lagrangian [262], in the quark-meson-coupling (QMC)
model [283] shown in Fig. 4.1 and in relativistic mean �eld calculations where
kaons are coupled to static σ, ω, ρ and δ meson background �elds [284].

In this context it is worth mentioning that the philosophy underlying KN
mean �eld models is similar to that of e�ective relativistic nucleon-meson
Lagrangians of Quantum Hadro Dynamics for nucleons [285, 286]. Both are
designed to describe in-medium properties, in the latter case nuclear matter
and �nite nuclei. The models do not pretend to give a description of free
scattering data.

4.1.3 Coupled channel dynamics

A unitary approximation to the two-body scattering amplitude T is obtained
by solving the Lippmann-Schwinger equation, or its relativistic counterpart,the
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Bethe-Salpeter equation. For kaon-nucleon scattering the Bethe-Salpeter
equation reads schematically

TKN→KN = VKN→KN +
∑
MB

VKN→MB ·GMB · TMB→KN (4.10)

where GMB = −iDM ·SB is the two-particle propagator given by the meson
and baryon propagators

DM (k) =
1

k2 −m2
M + iε

, SB(p) =
1

6 p−mB + iε
, (4.11)

respectively. The Bethe-Salpeter integral equation (4.10) iterates the KN in-
teraction kernel V to in�nite order. It is a coupled-channel equation since
it contains not only kaon and nucleon degrees of freedom but involves the
complete baryon (B = N,Λ,Σ,Ξ) and pseudoscalar meson (M = π,K, η)
octet of the chiral Lagrangian. The integral equation (4.10) involves a sum
over all possible intermediate states MB. A solution requires the consider-
ation of additional but analogous equations for the amplitudes TMB→M ′B′ .
The coupling to Ξ's and η's can be neglected. The Λ, Σ and π degrees of
freedom are, however, essential for KN scattering.

While a perturbative expansion for the TπN→πN amplitude proved quite
successful [287] close to threshold a corresponding attempt fails in the
strangeness sector. As already pointed out above the leading order Weinberg-
Tomozawa term is in striking con�ict with the empirical K−p scattering
lengths. In applications of the chiral SU(3) Lagrangian it is advantageous
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Fig. 4.2 Real (left) and imaginary (right) part of the isospin zero S-wave K−-nucleon
scattering amplitude from the iterated Weinberg-Tomozawa interaction in a coupled chan-
nel calculation. Figure taken from Ref. [264].

to change the strategy and expand the interaction kernel V , rather than
directly the scattering amplitude. This kernel is then iterated to all orders
in the Bethe-Salpeter equation and scattering amplitudes are obtained that
comply with coupled-channel unitarity. The leading order in the expansion of
the KN interaction represents current algebra, i.e. the Weinberg-Tomozawa
term which is of chiral order Q (denoting a small momentum or energy scale).
Fig. 4.2 shows the real and imaginary part of the isospin zero S-wave K−-
nucleon scattering amplitude from the iterated Weinberg-Tomozawa interac-
tion in the coupled-channel calculation from Ref. [264]. It is nicely demon-
strated that using the physical kaon mass the Λ(1405) resonance is dynami-
cally generated as a pole in the K−-proton scattering amplitude. A decrease
of the K− mass leads to a disappearance of the Λ(1405) which will be crucial
for the discussion of in-medium e�ects.

Expanding V beyond current algebra the corresponding coe�cients have
to be �xed by KN scattering data. Coupled-channel calculations for S-wave
scattering with the interaction kernel truncated at chiral order Q2 were �rst
carried out by Kaiser et al. [256]. Lutz and Kolomeitsev [263] took into ac-
count P -wave andD-wave contributions in a coupled-channel calculation that
considered Q2 and Q3 counter terms. In this work a simultaneous descrip-
tion of the available low-energy pion-, kaon- and antikaon-nucleon scattering
data has been achieved for the �rst time. The resulting dynamics was used
to study antikaon propagation in nuclear matter in [264, 265] based on a
fully self-consistent and covariant many-body approach. Based on the Jülich
meson-exchange potential [288] Tolos et al. [289, 290] performed G-Matrix
calculations, which relied on a quasi-particle ansatz for the antikaon spectral
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distribution. As pointed out in [265] the higher partial-wave contributions of
the Jülich meson-exchange potential [288] were have not been tested against
available K−p di�erential cross section data. Two phenomenological works
by Oset et al. [291, 292] were based on the leading order chiral Lagrangian.
A partially self-consistent approximation that relied on an angle-average as-
sumption was suggested. The possible e�ects of an in-medium change of pion
properties were emphasized.

After �xing the model parameters from free NK scattering one is now
able to systematically incorporate medium e�ects and thus to determine in-
medium scattering amplitudes, mass shifts and spectral functions. Medium
modi�cations of the Bethe-Salpeter-equation (4.10) are the following:

• Pauli-blocking of intermediate nucleon states: The Pauli principle is of
course not active for hyperons and suppresses NK excitations compared
to Y π excitations.

• Self-consistency: This means a self-consistent dressing of the K− prop-
agator

DK−(k) 7→ D∗
K−(k) =

1
k2 −m2

K −ΠK− + iε
(4.12)

by the in-medium kaon self-energy ΠK− . Since K− mesons receive a sub-
stantial width in the medium ΠK− is generally complex

ReΠK−(k) = 2E(k)ReUopt(E,k) , ImΠK−(k) = −E(k)ΓK−(E,k)(4.13)

• Dressing of the nucleon propagator: At �nite nuclear density the
nucleon propagator is dressed by the nucleon self-energy ΣN due to the
interaction with the surrounding nucleons

S∗N (p) =
1

6 p−mN +ΣN + iε
. (4.14)

Nucleons are still good quasi-particles and thus ΣN = ΣS + γµΣ
µ
V is real.

Scalar and vector contributions of ΣN can e.g. be taken from the Walecka
model of nuclear matter [285]. The same holds for the other baryons of the
baryon octet where self-energy contributions can, e.g., be estimated from
simple counting of non-strange quarks, e.g., ΣΛ = 2/3ΣN .

• Dressing of the pion propagator: Analogous to the kaons the interme-
diate pion propagator Dπ 7→ D∗

π is dressed by a pion self-energy Ππ due
to ∆-hole or N -hole excitations in the nuclear medium.

The e�ect of Pauli blocking was �rst pointed out by Koch [293] and later on
studied in detail by Waas, Kaiser, Rho and Weise [259, 260]. Pauli blocking
e�ects were found to play a dominant role since the attractive K−N inter-
action is reduced at �nite densities. This acts e�ectively as a repulsive force
which shifts the Λ(1405) resonance above the K−p threshold and leads to a
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dissolution of this resonance at densities above 2-3 %0. Since the existence of
the Λ(1405) was, on the other hand, the origin of the repulsive K−N scat-
tering length at threshold, a shift or a dissolution of this resonance causes an
in-medium K− potential which may be now close to the tree-level result pre-
dicted by the attractive Weinberg-Tomozawa term. However, self-consistency,
i.e. the dressing of the K− propagator by the attractive potential counteracts
the Pauli e�ect. As pointed out by Lutz [261] a decreasing K− mass results
in a negative shift of the Λ(1405) and compensates the positive Pauli shift
to a large extent. The position of the Λ(1405) pole stays fairly constant in
Ref. [291, 292] but in more sophisticated studies [264, 265] is even pushed
down to lower mass. In both cases the resonance is substantially broadened
and dissolves at high densities (as can be anticipated from the schematic
calculation shown in Fig. 4.2.)

The in�uence of dressing of nucleon and hyperon propagator due to short-
range NN and NY correlations has been investigated in Ref. [294] at the
one-loop level with particular emphasis on the role of P -wave channels. The
dressing of nucleon and hyperon propagators is generally included in such
type of calculations but the e�ects are of minor importance if implemented
in a non-relativistic framework. Contrasting results were obtained recently
by Lutz and Korpa [265], who for the �rst time set up a self-consistent and
covariant many-body approach for the nuclear antikaon dynamics that in-
corporated the e�ect of scalar and vector mean �elds for the nucleon. The
actual computation presented in [265] uses the chiral dynamics as developed
in [263], which considers S-, P - and D-wave channels. Though at nuclear sat-
uration density the results of such a scheme con�rm almost quantitatively the
previous study [264], at larger nuclear densities signi�cant di�erences arise.

In Fig. 4.3 the antikaon spectral distributions from Ref. [265] are shown
at twice nuclear saturation density. A striking e�ect is revealed. At small an-
tikaon energies the spectral distributions develop signi�cant strength in a nar-
row peak at around 70 MeV or 110 MeV, depending on the choice of the mean
�elds. The peak remains narrow and pronounced for �nite antikaon momenta
0 < |q | < 200 MeV. This is in contrast to the antikaon spectral distribution
at saturation density. The corresponding structure has very little weight and
is dissolved much more quickly as the antikaon starts to move through the
bulk matter. The peak re�ects the coupling of the antikaon to a Λ(1115)
nucleon-hole state. The soft antikaon mode is located at 70(110) MeV, even
though the Λ(1115) e�ective mass is reduced by 25(23) MeV below its free-
space limit at the considered density of 2 %0. In the low-density limit the soft
mode has energy mΛ −mN ' 175 MeV, a value signi�cantly larger than the
peak positions at 70(110) MeV in Fig. 4.3. This illustrates that the Λ(1115)
nucleon-hole state becomes highly collective. The peak positions at q = 0 fol-
low quite accurately the di�erence of the Λ(1115) quasi-particle energy and
the nucleon hole-energy at maximum momentum, |p | = kF = 340 MeV. The
complicated antikaon nuclear dynamics appears to collect maximum strength
at the Fermi surface. It is speculated in [265] that this may lead to the forma-
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Fig. 4.3 Antikaon spectral distribution as a function of energy ω and momentum q at
twice nuclear saturation density. The thin and thick lines show the results with and without
angle-average approximation. Two large-mean �eld scenarios are shown.

tion of exotic nuclear systems with strangeness and antikaon condensation in
compact stars at moderate densities.

4.1.3.1 In-medium potentials

Fig. 4.4 shows the single particle energy or 'in-medium mass shift' E(k = 0) =
mK + <Uopt(E,k = 0) for antikaons obtained in various coupled-channel
calculations. This quantity can be compared to the mean �eld picture al-
though such a comparison has to be taken with care. At �nite densities the
antikaons aquire a substantial in-medium width and do no longer behave
like quasi-particles, as assumed in a mean �eld picture. In particular at low
momenta the spectral functions can be of complex structure without a well
de�ned quasi-particle pole which makes the interpretation of the in-medium
self-energy ΠK in terms of on-shell potentials highly questionable. However,
transport models are usually formulated in terms of quasi-particles. Hence,
we do not want to refrain from this comparison. The microscopic coupled-
channel calculations deliver an attractive in-medium potential which is sig-
ni�cantly smaller than in the mean �eld approaches, in particular when a
self-consistent dressing of the kaon propagator is taken into account, and
even smaller when pion dressing is included. Ramos and Oset [291] and also
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Tolos et al. [289] claim that the dressing of the pion propagator by nucleon-
and ∆-hole excitations in the medium leads to signi�cant e�ects for the in-
medium K− potential. However, contrasting results were obtained by Korpa
and Lutz [295], Cieply et al. [296] and Roth et al. [297]. As pointed out in
Ref. [265] the in�uence of pion dressing depends on the details of the produc-
tion amplitude TKN→πΣ at subthreshold energies, but also on the amount of
softening assumed for the in-medium pion modes.

This fact is also re�ected in the optical potential (real part) shown in
Fig. 4.5. We compare the momentum dependence of <Uopt at saturation den-
sity obtained in various approaches. Results are taken from the chiral mean
�eld approach [257], denoted in Fig. 4.1 as MFT ChPT+corr., the coupled-
channel calculations of Tolos et al. [289], with and without pion dressing, and
a dispersion analysis of K+N and K−N scattering amplitudes by Sibirtsev
and Cassing [298]. The de�nition used to extract the optical potential from
the self-energy Π varies in the literature. For instance the relation (4.13)
has been used in Ref. [289]. For K+ the magnitudes of the potential are
consistent, i.e. the dispersion analysis agrees with the mean �eld approach
at zero momentum. It predicts an almost momentum independent potential
while Uopt is slightly rising as a function of momentum in mean �eld models.
For K− all models predict a considerably reduced attraction at high kaon
momenta, however, the potential depths strongly deviate. The partially self-
consistent coupled channel calculations from Scha�ner et al. [299], which rely
on an angle average ansatz, predict an even smaller potential which is of the
size of -32 MeV at saturation density.

The dispersion analysis of Ref. [298] comes close to the mean �eld result
which is, however, not astonishing since the authors disregarded the repulsive
contributions from the Σ(1385) and Λ(1405) resonances according to the
argument that these resonances should dissolve at �nite density. They claim
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their parameterizations of the K− potential consistent with data from p+A
reactions [298].

All the microscopic approaches predict K− potentials of only moderate
attraction and are thus in stark contrast to the mean �eld picture. It is
an interesting question to what extent such �ndings are compatible with
the analysis of kaonic atoms [300]. The latter suggests a strongly attractive
on-shell K− potential of about 200 MeV at ρ0. There are indications, how-
ever, that existing kaonic atom data probe the antikaon potential only at
the nuclear surface [301] and weak K− potentials describe the available data
reasonably well [302]. A �nal answer would require to account for the full
o�-shell behavior of the self energy and the spectral properties of a bound
K− state. However, such calculations have not yet been performed.
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Fig. 4.6 �nally addresses the validity of the quasi-particle picture for the
K+. It shows the kaon and antikaon spectral functions at saturation density
obtained from coupled channel calculations from Ref. [295] (including pion
dressing) for di�erent momenta. The kaons have still a clear quasi-particle
peak which in the medium acquires a �nite width. The latter is, however,
quite small (less than 5MeV) for small momenta and increases up to 15MeV
at a momentum above 400MeV which is still moderate. Hence the quasi-
particle picture and the mean �eld approximation are well justi�ed. As al-
ready stressed several times, the situation for K− mesons is quite di�erent. In
particular at low momenta the spectral functions are broad and of complex
structure. At larger momenta a quasi-particle peak may still be visible but
also here substantial strength is shifted to lower momenta. Thus the mean
�eld approximation is highly questionable for the antikaons.

4.1.3.2 In-medium cross sections

Coupled-channel calculations typically predict sizeable in-medium modi�ca-
tions of the pion-inducedK− production cross sections and the corresponding
absorption cross sections πY ←→ NK−. The fact that the S-wave Λ(1405)
resonance lies only 27 MeV below theK−p threshold implies a strong coupling
to this state and requires a non-perturbative treatment. The melting of the
Λ(1405) and Σ(1385) bound states due to Pauli blocking of the intermediate
states in the BS-equation (4.10) leads to a dramatic increase in particular of
the πΣ −→ NK− cross section at threshold. In [299] the enhancement factor
was found to be more than one order of magnitude at %0. However, self-
consistency shifts the K− mass below threshold and decreases the available
phase space which counteracts the enhancement due to a melting Λ(1405).
In the calculations of Scha�ner et al. [299] the πΣ −→ NK− is then only
enhanced by a factor of two and the πΛ −→ NK− is hardly a�ected at all.
In the self-consistent calculations of Lutz and Korpa [263] the predicted in-
medium modi�cations of these cross sections are practically opposite. They
additionally account for the full in-medium modi�cations of the K− spectral
distributions and obtain a strong enhancement of the πΛ −→ NK− cross
section due to the coupling to the Σ(1385) but almost no changes for the
πΣ −→ NK− channel. The G-matrix calculations of Tolos et al. [289] came
to opposite conclusions, namely an almost complete suppression of the pion-
induced reactions in the nuclear environment. Such strong modi�cations of
the K− production cross sections and the corresponding absorption cross
sections would have severe consequences for the K− dynamics in heavy-ion
reactions.
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4.1.4 Kaons in pion matter

Whereas in heavy-ion reactions at intermediate energies the matter is baryon
dominated, at ultra-relativistic energies (e.g., at CERN-SPS or at RHIC)
the matter is characterized by a larger meson content. For completeness it
is thus instructive to consider this case as well. The problem of medium
modi�cations experienced by kaons in a hot pion gas has been evaluated in
the early 1990's in Refs. [303] and [304] where the authors came, however, to
di�ering conclusions concerning the kaon mass shifts. Recently this problem
has been revisted by Martemyanov et al. [305]. In Ref. [305] the kaon self-
energy has been determined in a model independent way to leading order in
pion density, based on ChPT at low temperatures and experimental phase
shifts at high temperatures.

Analogous to nuclear matter (4.7) the kaon self-energy ΠK(k2, E) can be
expressed in terms of the πK forward scattering amplitudes for on-shell pions
and o�-shell kaons. The necessary on-shell πK amplitudes have been eval-
uated in ChPT to order p4 by several authors (see e.g. [306] and references
therein). Near the threshold, the isospin-even (+) and odd (−) πK scatter-
ing amplitudes can be expressed in terms of scattering lengths and e�ective
ranges a(±)

` and b(±)
` . To lowest order ChPT isospin symmetric pion matter

does not change the kaon dispersion law. The leading order e�ect appears
at the one loop level. The mean �eld, i.e. the scalar mass shift δmK and the
vector potential VK follow from the self-energy ΠK(m2

K,mK) at the on-shell
point which can be expressed in terms of s- and p-wave scattering lengths and
s-wave e�ective ranges. Since ChPT is only valid at temperatures well below
the pion mass in Ref. [305] the high temperature behavior has been based
on a more phenomenological approach which parameterizes the experimental
phase shifts and matches smoothly with the one-loop ChPT low-temperature
limit. The corresponding kaon self-energy at threshold, the mass shift and
the vector potential are shown in Fig. 4.7 as a function of temperature. At
T = 170 MeV one obtains a negative mass shift δMK = −33 MeV and a
repulsive vector potential of VK = 21 MeV. There exists a remarkable anal-
ogy to the nuclear matter case: the kaon mass shift at high temperatures is
large and negative, the vector potential is large and positive, their sum is rel-
atively small and negative. Kaons are therefore bound in pion matter similar
to nucleons or antikaons in nuclear matter. The vector potential is, however,
C-even, distinct from the case of nuclear matter. In addition both, kaons and
antikaons aquire a substantial in medium width Γ ∗K at �nite temperature
[305].

We recall that in-medium modi�cations of the kaons have direct impact
on the properties of the φ meson, see Sec. 2.4.3.
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4.1.5 Chiral symmetry restoration

At the end of this Section we brie�y address connections of in-medium kaon
dynamics to chiral symmetry restoration. The spontaneously broken chiral
symmetry of QCD manifests itself in the large vacuum expectation value of
the scalar quark condensate, 〈q̄q〉. The small but �nite current quark masses
are responsible for the explicit chiral symmetry breaking of QCD. In the chiral
limit of vanishing current quark masses, the Goldstone bosons of spontaneous
chiral symmetry breaking, the pion (or the full pseudo-scalar octet) become
massless. This fact is described by the Gell-Mann-Oakes-Renner (GOR) rela-
tion. Through the GOR relation the pseudoscalar meson masses are directly
proportional to products of the scalar quark condensates and the current
quark masses.

Nevertheless, it remains unclear how and to what extent the in-medium
changes of the antikaon mass distribution is related to the (partial) restora-
tion of spontaneously broken chiral symmetry at �nite density and/or tem-
perature. In a mean �eld ansatz the Weinberg-Tomozawa term is responsible
for the splitting of the energy levels between the degenerate �avor eigenstates
K+(us̄) and K−(ūs). As indicated in Fig. 4.8, SU(3) �avor symmetry is bro-
ken by non-vanishing up and down quark densities ρu/d 6= ρs = 0 while the
strange quark density, %s is still zero. In contrast, in isospin symmetric pion
matter no mass splitting occurs between kaons and antikaons. Charge sym-
metry breaking which occurs in isospin asymmetric nuclear matter leads to
an additional mass splitting of the di�erent isospin states, i.e., between K+

and K0(ds̄) as well as between K− and K̄0(d̄s).
In chiral coupled-channel dynamics the leading order Weinberg-Tomozawa

kaon-nucleon interaction is iterated to in�nite order. The kaons are subject
to medium modi�cations, i.e. mass shifts and changes of their spectral dis-
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tributions. However, in this framework their origin can not easily be traced
back to a restoration of chiral symmetry.

4.2 Strange baryons

Strangeness transfer reactions, e.g., πΛ ↔ NK−(K̄0), induce a coupling of
kaon and hyperon channels [307]; some of the (coupled-channel) models for
in-medium kaon dynamics discussed in the previous Section include such a
coupling. Analogous e�ects are present in the non-strange sector as implicit
in the discussion of chapter 3, as well as in the charm sector, cf. Sec. 5.5.

4.2.1 QCD sum rules

The in-medium properties of ithe Λ have been considered in Refs.[308, 309]
within the QCD sum rule approach. Here, the poorly known strange-quark
condensate 〈s̄s〉 enters, among other condensate terms. A conclusion of [309]
is that the vector self-energy is only 1/3 of the corresponding nucleon self-
energy, while the scalar part is sensitive to the four-quark codensates. Phe-
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baryon Λ(1405) Σ(1385) Λ(1520)
shift [MeV] -60 -60 -100
width [MeV] 120 70 90

Table 4.1 Changes of mass parameters and decay widths for strange baryons in nuclear
matter at saturation density as predicted in Ref. [263].

nomenological implications have not been addressed in this paper, except for
the Λ spin-orbit potential.

The Λ-Σ0 mixing in nuclear matter has also been found to sensitively
depend on higher-order condensates [310]. This reiterates the urgent need to
have better control over these condensates of mass dimension larger than 4
to establish a �rm relation of baryon properties in dense matter and QCD
vacuum parameters.

4.2.2 Hadronic models

A comprehensive approach including the evaluation of strange-baryon prop-
erties has been constructed in Ref. [263] based on chiral coupled-channel
dynamics. Part of the known baryons emerge as dynamically generated reso-
nances, while others are required as genuine resonance states, encompassing
both strange and charm [311] sectors. In the strangeness sector [263] anti-
kaons and hyperons are coupled. Corresponding in-medium properties of a
few selected hyperons are listed in Tab. 4.1. Further properties of Λ(1115),
Λ(1405), Λ(1520), Σ(1195), Σ(1385) and Σ(1690) can be found in Ref. [263].

In another variant of chiral meson and baryon dynamics [312] the resonance
states Λ(1405) and Λ(1520) are dynamically generated with the interpretation
that the constituents qqs of strange baryons are carried by the meson-baryon
cloud. An example is exhibited in Fig. 4.9 for the in-medium modi�cations
of Λ(1520). Most notably, the in-medium width may reach up 100 MeV at
normal nuclear matter density.

4.2.3 Exotica

The experimental situation of the penta-quark state Θ+, proposed as a novel
baryon in Ref. [313], is still controversial. Due to the conjectured quark struc-
ture uud(ds̄) the coupling to strangeness channels is important. For an at-
tempt to reconcile the current experimental (non-) evidences, i.e., why a Θ+

signal is seen in some experiments but not in others, see Ref. [314] Under the
assumption that the Θ+ can be considered as a hadronic state in hadronic
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Fig. 4.9 Density and momentum dependence of the self-energies of Λ(1520) as computed
in Ref. [312]. Left panel: width as a function of density; middle and right panels: imaginary
part (half width) and real part of the self-energy as a function of 3-momentum at various
densities.

matter, its production rate in heavy-ion collisions has been estimated in ther-
mal [315], transport [316, 317] and quark-recombination models [318]. .



Chapter 5

Open charm probes

Hadrons containing charm quarks are particularly valuable probes of the
medium formed in ultra-/relativistic heavy-ion collisions. Contrary to u, d
and s quarks, the (bare) charm-quark mass, mc ' 1.3GeV, provides a scale
which is much larger than ΛQCD ' 0.2 GeV and the QCD transition tem-
perature, Tc ' 0.18 GeV. In addition, mc is signi�cantly larger than typical
temperatures in the early stages of heavy-collisions, even at the highest cur-
rently available collision energies, T0 ' 0.3 − 0.4 GeV at maximum RHIC
energy. Consequently, charm-quark production is expected to be dominated
by primordial N -N collisions, and thus can be benchmarked rather reliably
via binary scaling from p-p reactions (recent RHIC data support this notion,
and even at LHC secondary production of cc̄ pairs is expected to be small);
this will be discussed in Sec. 5.1. At the same time, mc is small enough to
for charm quarks to be sensitive to reinteractions within the hot and dense
medium, and therefore provide valuable information about medium proper-
ties. On the one hand, this applies at the partonic level in the Quark-Gluon
Plasma, where recent RHIC data have given intriguing insights on charm-
(and possibly bottom-) quark energy loss and collective motion [319, 320].
The latter, in particular, indicates strong, presumably nonperturbative, in-
teractions of charm quarks in a (strongly interacting) QGP, and allows to
put constraints on pertinent di�usion coe�cients. These questions will be
discussed in Sec. 5.2. An approximate thermalization (kinetic equilibration)
of c-quarks further opens the door to study the chemistry of charmed hadrons
with potential insights on hadronization mechanisms (e.g., quark coalescence
vs. fragmentation), which is addressed in Sec. 5.3. On the other hand, D-
meson spectral functions are expected to be modi�ed in a hot and dense
hadronic medium. This will be discussed within the QCD sum rule approach
in Sec. 5.4, and within a hadronic many-body framework in Sec. 5.5. In anal-
ogy to the kaon case, it has been argued that a reduced mass and/or increased
width of in-medium D-meson spectral functions could lead to an increase of
the total charm production cross section in A-A collisions, especially for en-
ergies close to the DD̄ production threshold (as discussed in part IV on

433
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Fig. 5.1 SU(4)f multiplets of mesons (left) panel and baryons (right), taken from
Ref. [30].

�Observables�). We note, however, that charm production and medium ef-
fects on charmed hadrons presumably operate on rather di�erent time scales.
To the extent that cc̄ production is a perturbative process it's characteristic
time scale is τprod ' 1/2mc ≤ 0.1 fm/c, while the typical formation time of a
hadron wave function is roughly determined by the hadron's binding energy,
τform ' 0.5−1 fm/c. A possible caveat is that, to date, the description of the
total charm production cross section within perturbative QCD is still beset
with rather large uncertainties, leaving room for the relevance of additional
time scales larger than the naive expectation.

The basic SU(4) (�avor) multiplet classi�cation of charmed hadrons in
the vacuum is depicted in C − Y − I3 space in Fig. 5.1 (using the quantum
numbers C: charm, Y : hypercharge and I3: third component of isospin). Note
that some of the mulitple-charm baryons have not been discovered (yet). The
comparatively large charm-quark mass strongly breaks SU(4) �avor symme-
try, implying substantial mass splittings within a multiplet. A quantitative
level scheme of D-mesons in the vacuum is displayed in Fig. 5.2, where an-
gular momentum and spin quantum numbers have been assigned according
to the constituent quark model.
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Fig. 5.2 Excitation spectrum of D mesons in vacuum [321].

5.1 Perturbative calculation of charm-quark production
near threshold

Calculations of charm production are still not under solid theoretical con-
trol. A good understanding of the charm cross section is of interest for heavy
ion physics. Charm production is an important contribution to the dilep-
ton continuum at low masses. In particular, the total charm rate is a useful
reference for J/ψ production in heavy ion collisions. The FAIR facility is
the only modern heavy ion experiment that can measure charm in the near-
threshold region with plab ∼ 25 GeV (

√
SNN ≈ 6.98 GeV), a region that is

only marginally explored in pp collisions.
Because the charm quark mass is a few times ΛQCD, it is generally treated

as a heavy quark in perturbative QCD calculations. However, its relative
lightness results in a rather strong dependence of the total cross section on
mass and scale, with up to a factor of 100 between the lowest and highest
next-to-leading order (NLO) results [322]. There is also a rather broad spread
in the measured charm production cross section data at �xed target energies.
Much of this uncertainty arises from low statistics in the early experiments,
assumptions of how much of the total charm yield results in �nal-state D
mesons, and how the measured data are extrapolated to full phase space. The
more recent data have improved considerably with new detection techniques
and higher statistics.

Improvements in the calculation of the charm cross section are di�cult at
all energies, but are perhaps possible when the cc pair is produced close to
threshold, as we now describe. Factorization properties of QCD separate cross
sections into universal, nonperturbative parton densities and a perturbatively
calculable hard scattering function, the partonic cross section. Remnants of
long-distance dynamics in the hard scattering function can dominate correc-
tions at higher orders near production threshold. These Sudakov corrections
have the form of distributions singular at partonic threshold. Threshold re-
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summation techniques organize these singular distributions to all orders, pre-
sumably extending the reach of QCD into near-threshold production.

Resummed cross sections are useful as generating functions for approxi-
mate �nite-order corrections to the cross section when expanded in powers
of the strong coupling constant αs, as we describe here. The resummed cross
sections may also be evaluated numerically. The charm �xed-target data were
�rst compared to a leading log (LL) resummed calculation of the total cross
section in Ref. [323]. Because the ratio m/Λ3 is quite small, the expansion
parameter, αs, is not and the LL resummation began to fail at

√
S ≈ 20

GeV. A NLL resummed evaluation in Ref. [324] found signi�cant threshold
corrections, albeit with a reduction in scale dependence.

We work at �nite order to avoid arti�cial cuto�s, using our results of
Refs. [325�329]. The soft corrections that we calculate take the form of log-
arithms, [lnl(xth)/xth]+, also called plus distributions, with l ≤ 2n − 1 for
the order αns corrections, where xth is a kinematical variable that measures
distance from threshold and goes to zero at threshold. We have calculated the
double-di�erential heavy quark hadroproduction cross sections up to next-to-
next-to-leading order (NNLO), O(α4

s), at leading logarithm (LL) with l = 3,
next-to-leading logarithm (NLL) with l = 2, next-to-next-to-leading loga-
rithm with l = 1 and next-to-next-to-next-to-leading logarithm (NNNLL)
with l = 0 and some virtual terms (NNNLL+ζ). We only discuss QQ pro-
duction in the ij = qq and gg channels since qg scattering �rst appears at
NLO.

We �rst brie�y describe our NNLO-NNNLL calculations. We show results
for several values of the charm quark mass, m = 1.2, 1.5 and 1.8 GeV and
for scales µ = m and 2m. We compare our results for the NNLO-NNNLL
inclusive cc cross section to charm production data and to the NLO cross
sections in the relevant energy regime.

5.1.1 Resummation

In our approach, the distance from partonic threshold in the plus distributions
depends on how the cross section is calculated. We either integrate over the
momentum of the unobserved heavy quark or antiquark and determine the
one-particle inclusive (1PI) cross section for the detected quark or treat the Q
and Q as a pair in the integration, in pair invariant mass (PIM) kinematics.

In 1PI kinematics, a single quark is identi�ed, so that

i(pa) + j(pb) −→ Q(p1) +X[Q](p2) (5.1)

where Q is the identi�ed heavy quark of mass m and X[Q] is the remaining
�nal state that contains the Q. We de�ne the kinematical invariants s =
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(pa + pb)2, t1 = (pb − p1)2 −m2, u1 = (pa − p1)2 −m2 and s4 = s+ t1 + u1.
At threshold, s4 → 0, and the soft corrections appear as [lnl(s4/m2)/s4]+.

In PIM kinematics, we have instead

i(pa) + j(pb) −→ QQ(p) +X(k) . (5.2)

At partonic threshold, s = M2,M2 is the pair mass squared, t1 = −(M2/2)(1−
βM cos θ), and u1 = −(M2/2)(1+βM cos θ) where βM =

√
1− 4m2/M2 and

θ is the scattering angle in the parton-parton center-of-mass frame. The soft
corrections appear as [lnl(1− z)/(1− z)]+ with z = M2/s→ 1 at threshold.

Any di�erence in the integrated cross sections due to kinematics choice
arises from the ambiguity of the estimates. At leading order the threshold
condition is exact and there is no di�erence between the total cross sections
in the two kinematic schemes. However, beyond LO additional soft partons
are produced and there is a di�erence. To simplify the argument, the total
partonic cross section may be expressed in terms of dimensionless scaling
functions f (k,l)

ij that depend only on η = s/4m2 − 1 [326],

σij(s,m2, µ2) =
α2
s(µ)
m2

∞∑
k=0

(4παs(µ))k
k∑
l=0

f
(k,l)
ij (η) lnl

(
µ2

m2

)
. (5.3)

We have constructed LL, NLL, NNLL and NNNLL+ζ approximations to
f

(k,l)
ij in the qq and gg channels for k ≤ 2, l ≤ k. Exact results are known for
k = 1 and can be derived using renormalization group methods for k = 2,
l = 1, 2 [326]. Our calculations use the exact LO and NLO cross sections with
the approximate NNLO-NNNLL+ζ corrections.

The inclusive hadronic cross section is obtained by convoluting the inclu-
sive partonic cross sections with the parton luminosity Φij ,

Φij(τ, µ2) = τ

1∫
0

dx1

1∫
0

dx2 δ(x1x2 − τ) φi/h1(x1, µ
2)φj/h2(x2, µ

2) ,(5.4)

where φi/h(x, µ2) is the density of partons of �avor i in hadron h carrying a
fraction x of the initial hadron momentum, at factorization scale µ. Then

σh1h2(S,m
2) =

∑
i,j=q,q̄,g

1∫
4m2/S

dτ

τ
Φij(τ, µ2) σij(τS,m2, µ2) (5.5)

=
∑

i,j=q,q̄,g

∫ log10(S/4m
2−1)

−∞
d log10 η

η

1 + η
ln(10)

× Φij(η, µ2) σij(η,m2, µ2) ,

where
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Fig. 5.3 The parton luminosity for pp interactions at
√
S = 6.98 GeV as a function of η

using the GRV 98 HO densities. The left-hand side gives the qq luminosity, the right-hand
side the gg luminosity. From top to bottom, the charm quark mass is 1.2 GeV in (a) and
(b), 1.5 GeV in (c) and (d), and 1.8 GeV in (e) and (f). The solid curves are with µ = m
and the dashed, µ = 2m.

η =
s

4m2
− 1 =

τS

4m2
− 1 . (5.6)

Our investigations in Ref. [326] showed that the approximation should hold
if the convolution of the parton densities is not very sensitive to the high
η region. The GRV98 parton luminosities are shown in Fig. 5.3. We focus
our calculations on the 1PI kinematics because these kinematics are more
compatible with cc production through the gg channel.

5.1.2 Charm-quark production in pp collisions

We compare our results to the pp data tabulated in Refs. [322, 330]. These
data are the most recent and incorporate the newest measurements of branch-
ing ratios. The pp data at

√
S ≤ 30 GeV are given in Refs. [331�333].

How the cc pairs hadronize is a particularly important question for ener-
gies near threshold where some channels may be energetically disfavored.
We follow Ref. [322] and assume that σ(Ds)/σ(D0 + D+) ' 0.2 and
σ(Λc)/σ(D0 + D+) ' 0.3, independent of energy, so that the total cc cross
section is obtained from ≈ 1.5σ(DD). This assumption could have a strong
energy dependence near threshold. Thus as many charm hadrons (mesons and
baryons) as possible should be measured to better understand fragmentation
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Fig. 5.4 The energy dependence of cc̄ production in pp collisions with, (a) and (b),
m = 1.2, (c) and (d), m = 1.5, and, (e) and (f), m = 1.8 GeV. We show the NLO (solid
� GRV98, dashed � MRST2002), and 1PI NNLO-NNNLL+ζ (dot-dashed � GRV98, dotted
� MRST2002) results. On the left-hand side, µ = m while on the right-hand side, µ = 2m.

and hadronization. Finally, some of the data are taken on nuclear targets and
then extrapolated to pp assuming a linear A dependence [334, 335].

Recent comparisons of the full pp → cc data set with exact NLO cross
sections were made to determine the best mass and scale choices for extrap-
olation to higher energies [336]. Rough agreement with the data up to the
top ISR energy,

√
S = 63 GeV, was found for m = 1.2 GeV and µ = 2m for

the MRST densities and m = 1.3 GeV with µ = m for the GRV98 densities
[336]. These values of m are rather small compared to the typical value of
1.5 GeV. Thus, as in our previous paper [327], we calculate the NLO, 1PI
NNLO-NNLL and, in addition here, the 1PI NNLO-NNNLL+ζ cross sections
using m = 1.2, 1.5 and 1.8 GeV as well as µ = m and 2m. We can then test
whether the NNLO+NNNLL+ζ cross sections might favor a higher charm
quark mass. Our charm calculations employ the GRV98 HO and MRST2002
NNLO proton parton densities.

In Fig. 5.4, we compare the exact NLO and 1PI NNLO-NNNLL+ζ cross
sections calculated with the GRV98 HO and MRST2002 NNLO proton parton
densities. At NLO, the best agreement is with m = 1.2 GeV and µ = 2m,
seen in Fig. 5.4 (b).

The MRST2002 NNLO parton densities generally give larger cross sec-
tions, even for the exact NLO result, since the value of Λ3 is larger than that
of the GRV98 HO set. Also due the larger Λ3, the NNLO corrections are
signi�cantly larger.

The exact NLO cross sections calculated with m = 1.2 GeV and µ =
2m are relatively compatible with the data. Note that in Fig. 5.4(b), the
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1PI NNLO-NNNLL+ζ result is in somewhat better agreement with the two
highest energy data points than the exact NLO. The 1PI NNLO cross sections
are in rather good agreement with the data when m = µ = 1.5 GeV is
used with the MRST2002 NNLO parton densities. Indeed, the 1PI NNLO-
NNNLL+ζ result in Fig. 5.4(c) agrees rather well with the two higher energy
data points. Thus, we can conclude that the full NNLO result can likely
describe the charm data well with m = µ = 1.5 GeV whereas the lower mass
is needed with an NLO calculation alone.

Table 5.1 gives the charm cross sections in pp collisions at
√
S = 6.98 GeV.

The results are based on a central value of m = µ = 1.5 GeV. (The choice
of mass and scale used for our central value is for better illustration of the
uncertainties rather than any �t to data.) The �rst uncertainty is due the
the scale choice. Since we do not calculate the result for µ = m/2 here, we
show only the di�erence between the values of µ = m and 2m. The second
uncertainty is that due to the charm quark mass. The exact NLO and the
1PI NNLO-NNNLL+ζ cross sections are shown. The NNLO-NNNLL+ζ cross
section is larger than the NLO result by a factor of 2.6 for the MRST densities
and 2.2 for the GRV98.

σ (µb)
Order MRST2002 NNLO GRV98

NLO 0.034 − 0.027
+0.56
−0.032

0.028 − 0.022
+0.42
−0.026

NNLO-NNNLL+ζ 0.09 − 0.07
+1.4
−0.085

0.061 − 0.05
+0.9
−0.057

Table 5.1 The cc production cross sections in pp collisions at
√
S = 6.98 GeV. The

exact NLO results and the approximate NNLO-NNNLL+ζ results, based on m = µ = 1.5
GeV, are shown. The �rst uncertainty is due to the scale choice, the second, the charm
quark mass.

In Fig. 5.5, we compare the pp theoretical K factors for GRV98 HO and
MRST2002 NNLO. We show both K(1)

0 , the NLO to LO cross section ratios
and K(2)

sub, the NNLO-NNNLL+ζ to NLO cross section ratios. The K factors
are not strong functions of mass, scale or parton density. Note that K(2)

sub

varies between 1.3 and 1.7 for GRV98 HO and 1.5 to 1.9 for MRST2002
NNLO when

√
S ≥ 15 GeV and K(2)

sub < K
(1)
0 for all cases considered.

Finally, we compare the scale dependence of the cross sections in Fig. 5.6.
The GRV98 HO cross section ratios on the left-hand side are compared to the
MRST2002 NNLO ratios on the right-hand side. The scale dependence is sim-
ilar for the two sets of parton densities although the MRST scale dependence
is lower than the NLO scale dependence for all masses. These calculations are
thus more stable with respect to scale than the LO and NLO cross sections.
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Fig. 5.5 The K-factors for cc̄ production in pp collisions with, (a) and (b), m = 1.2,

(c) and (d), m = 1.5, and, (e) and (f), m = 1.8 GeV. We present K
(1)
0 (solid � GRV98

and dashed � MRST2002) and K
(2)
sub (dot-dashed � GRV98 and dotted � MRST2002) for

µ = m (left-hand side) and µ = 2m (right-hand side).

Fig. 5.6 The scale dependence of cc̄ production in pp collisions with, (a) and (b), m =
1.2, (c) and (d), m = 1.5, and, (e) and (f), m = 1.8 GeV. We give the ratios σ(µ =
m)/σ(µ = 2m) for the LO (dashed), NLO (solid), and 1PI NNLO-NNNLL+ζ (dot-
dashed) cross sections. Results with the GRV98 HO densities are given on the left-hand
side while the MRST2002 NNLO results are shown on the right-hand side.

These pQCD calculations of the approximate NNLO cross section, while
not exact, show that the total charm cross section may be considerably larger
than predicted by leading order calculations. Thus a large charm cross section
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may not be a result of in-medium e�ects but of an incomplete calculation.
The perturbative cross section should thus be checked against at least pA
collisions with light ions if pp is not possible.

We note again that the charm cross section is strongly dependent on the
charm quark mass and scale, making it doubly important to check the results
with pA interactions, particularly with light nuclei, as a means of restricting
the parameter space.

With this cautionary note, we remark that while these calculations are
all for near-threshold production in pp collisions, the results are relevant for
AA collisions. If the time scale of the collision is such that the D mesons are
produced in the medium, then predicted mass shifts could have an appreciable
e�ect on the total cc cross section that should be observable at FAIR.

5.2 Charm-quark interactions in the QGP

As indicated in the Introduction to this chapter, charm (and, inpriciple, also
bottom) quarks are valubale probes of the transport properties of the medium
formed in high-energy heavy-ion collisions: it turns out that their mass of
mc=1.2-1.5 GeV implies that their thermal relaxation time is long enough to
not fully thermalize, but short enough to undergo signi�cant reinteractions
which re�ect on their coupling to the medium. A quantitiative understanding
of those interactions is thus the key to utilizing charm-hadron spectra in
heavy-ion reactions. In this section we focus on the QGP, starting from the
high-momentum side, where energy loss is the prevalent concept, turning to
intermediate and small momenta, where charm-quark di�usion has proved a
fruitful concept.

5.2.1 Energy loss of charm quarks at high momentum

One of the major new �ndings in the �rst years of operation at RHIC was
a strong suppression of light hadron spectra in central Au-Au collisions at
high transverse momentum, pT >∼ 6 GeV, by about a factor of 4-5 relative to
p-p collisions (as characterized by the so-called nuclear modi�cation factor,
RAA ≡ dN/dpT /(NcolldN/dpT ) ' 0.2−0.25, where Ncoll denotes the number
of primordial N -N collisions in Au-Au at given centrality). This observation,
including the rather �at dependence of RAA(pT ) up to currently accessi-
ble momenta of pT ' 20 GeV, has been successfully described by energy
loss of high-energy partons via induced gluon radiation when traversing a
(gluon-dominated) QGP. The application of the radiative energy-loss picture
to heavy quarks (Q = b, c) leads to signi�cantly less energy loss. In Ref. [337],
it has been pointed out that gluon radiation o� fast moving heavy quarks is
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suppressed in forward direction, the so called �dead-cone� e�ect. Employing
perturbation theory with exact kinematics, Ref. [338] has con�rmed that,
at su�ciently large energy E, the radiation suppression occurs within the
forward cone

Θ < Θ0 =
mc

E
(5.7)

Consequently, the suppression of charm quarks (and much more so for bot-
tom quarks) has been predicted to be less pronounced, at least for momenta
up to ∼10 GeV [339, 340]. Around the same time, the importance of elas-
tic scattering for heavy-quark energy loss has been pointed out, both for
perturbative [341, 342] and nonperturbative [343, 344] interactions. Elastic
energy loss becomes parametrically dominant over the radiative one toward
low momenta; within the currently accessible momentum range at RHIC,
both contributions are comparable when evaluated within pQCD. However,
the nonperturbative elastic resonance interactions introduced in Ref. [343]
have been found to be signi�cantly stronger.

In heavy-ion collisions at RHIC, pT spectra of charm and beauty hadrons
have thus far been measured indirectly via their semi-leptonic decay channel,
D,B → e±X [319, 345, 346]. The signal, also called �non-photonic� electrons,
is extracted after subtraction of all other �photonic� sources, e.g. π0, η Dalitz
decays and photon conversions in the detector material. It turns out that the
momenta of a parent D-meson and decay e± are reasonably well correlated:
the e± momentum is about half of theD's and also the directional information
is largely conserved (which is essential for elliptic �ow measurements) [347].

First (low-statistics) nonphotonic e± spectra in Au+Au at
√
sNN =

130 GeV and 200 GeV did not reveal large di�erences between periph-
eral and more central collisions [351], and initial semi-quantitative analy-
ses [352, 353] suggested rather limited room for large energy loss. However,
more recent data with improved statistics and explicit baseline spectra from
p-p and d-Au collisions [319, 345, 346] exhibit a large suppression with an
RAA(pT >∼ 3GeV) ' 0.2− 0.3, quite comparable to the high-pT light hadron
suppression. PQCD-based radiative energy loss calculations cannot account
for this �nding, even after inclusion of pQCD elastic energy loss [350] or when
upscaling the underlying transport coe�cient by a large factor of 3-5 [340].
Thus, nonperturbative interactions seem to be required. This conclusion is
further corroborated by the elliptic �ow data which indicate much larger col-
lectivity than provided by the geometric e�ects accounted for in energy-loss
calculations (longer path length and thus more suppression out-of-plane, i.e.,
along the �long� axis of the ellipse), at least in the momentum range up to
peT <∼ 5 GeV. A collective motion of charm quarks as part of the hydrodynam-
ically expanding medium furthermore requires the inclusion of energy-gain
processes. These issues will be discussed in more detail in Sec. 5.2.2 below.

Part of the di�culty in generating the observed suppression in the single-
e± spectra is due to signi�cant contributions from B-meson decays, in con-



444 5 Open charm probes

A
A

R

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 = 200 GeVNNsAu+Au @ 

0-10% central(a)

Moore &
Teaney (III) T)π3/(2

T)π12/(2

van Hees et al. (II)

Armesto et al. (I)

 [GeV/c]
T

p
0 1 2 3 4 5 6 7 8 9

H
F

2v

0

0.05

0.1

0.15

0.2

(b)
minimum bias

 > 4 GeV/c
T

, pAA R0π

 > 2 GeV/c
T

, p2 v0π

HF
2 v±, eAA R±e

2 4 6 8 10

A
A

R

0.1

1

(a) d+Au

A
A

R

2 4 6 8 10

(b) Au+Au

     (40-80%)

2 4 6 8 10

(c) Au+Au

     (10-40%)

 pT (GeV/c)
2 4 6 8 10

A
A

R

1

0.1
(d) Au+Au (0-5%)

STAR charged hadrons pT > 6 GeV/c 

I:  DGLV R (c+b) 

II:  BDMPS (c+b)

III:  DGLV R+EL (c+b)

IV:  Hees/Rapp EL (c+b)

V:  BDMPS  (c only)
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loss (I) [348], and Langevin simulations using elastic HQ scattering based on either
pQCD+resonance scattering (II) [344] or pQCD only with upscaled friction coe�cient
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nection with a (much) smaller energy loss of b quarks. For p-p collisions,
�xed-order next-to-leading logarithm (FONLL) pQCD calculations predict
the transition from D to B-decay electrons around peT ' 4− 5 GeV (as used
in the theoretical predictions depicted in Fig. 5.7). Rather large and possibly
di�erent K-factors for charm and bottom production render the transition
momentum quite uncertain, between ca. 3 and 10 GeV [354]. This uncer-
tainty can be resolved with explicit D-meson measurements. First data from
STAR for D and D∗ production in d-Au are, in fact, available [355]. When
using these to determine the D contribution to single-e± in p-p collisions, and
attributing the missing yield to B decays, the crossing between charm- and
bottom-decay electrons occurs at peT ' 5 GeV [356], in good agreement with
the FONLL pQCD predictions.

In a recent work in Ref. [357], it has been pointed out that the larger mass
of heavy quarks implies a reduction in the heavy-meson formation time and
therfore, for not too high momentum, the hadronization process will occur in-
side the medium (in standard jet quenching calculations, partons are assumed
to fragment into hadrons subsequent to the energy loss processes). Employ-
ing a light-cone model for B- and D-meson wave functions, and including
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transverse-momentum broadening due to interactions with the medium, the
suppression of B-mesons was found to be appreciably larger than in previ-
ous calculations. This approach presumably bears some resemblence to the
resonant interactions introduced in Ref. [343], but more work is required to
better understand possible connections.

5.2.2 Charm di�usion and nonperturbative correlations
in the QGP

As �rst suggested in Ref. [358], the problem of heavy-quark (HQ) propaga-
tion in a thermal medium of (light) partons is well suited for a Brownian
motion approach. If the momentum transfers are su�ciently small, the col-
lision term of the Boltzmann equation for the HQ distribution function, fQ,
can be expanded leading to a Fokker-Planck equation,

∂fQ
∂t

= γ
∂(pfQ)
∂p

+D
∂2fQ
∂p2

, (5.8)

where γ and D are the (momentum-space) drag and di�usion coe�cients,
respectively (the former is directly related to the thermal relaxation time
of a heavy quark, τQ = γ−1)1. They are, in fact, related through the Ein-
stein relation, γ = D/TmQ (T : temperature, mQ: HQ mass), and thus the
approach to equilibrium is, in principle, fully characterized by the di�usion
coe�cient. Employing elastic Q + p → Q + p scattering (p = q, q̄, g with
q = u, d, s), Langevin simulations of the Fokker-Planck equation have re-
cently been performed to calculate heavy-quark [342, 343] and nonphotonic
electron spectra [344, 359] at RHIC. In the following, we will discuss these in
more detail.

In LO pQCD, elastic two-body scattering is dominated by t-channel gluon-
exchange, with a total cross section σel ∝ α2

s/m
2
D where mD ∝ gT is the

Debye screening mass. E.g., at a temperature T=300 MeV, and for a strong
coupling constant αs=0.4, the thermal relaxation time is τQ '15 fm/c [358],
well above expected QGP lifetimes of τQGP<∼ 5 fm/c at RHIC. In Ref. [342],
drag and di�usion coe�cients for charm quarks (assuning mc=1.4 GeV) have
been evaluated in hard-thermal-loop improved perturbation theory, and im-
plemented into a relativistic Langevin simulation of the Fokker-Planck equa-
tion within a hydrodynamic evolution of the (thermal) bulk matter for Au-
Au collisions at full RHIC energy. The simulations have been carried out for

1 For momentum dependent coe�cients, and in more than 1 spatial dimension, Eq. (5.8)
takes the form

∂fQ

∂t
=

∂

∂pi
(piγfQ) +

∂2

∂pi∂pj
(BijfQ) .
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Fig. 5.8 HQ nuclear suppression factor (left panel) and elliptic �ow (right panel) fol-
lowing from relativistic Langevin simulations for an expanding QGP in a hydrodynamic
calculation for Au-Au at RHIC [342]; pQCD elastic scattering has been employed for a
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corresponding to the di�usion coe�cients quoted in the legend (bottom-up) based on the
LO QCD relation D × 2πT ' 6/(0.5/αs)2.

semicentral collisions (impact parameter b=6.5 fm) with an initial QGP tem-
perature of T0 ' 265 MeV and a transition temperature of Tf = 165 MeV,
amounting to a QGP �reball lifetime of about 6 fm/c. The initial conditions
for the c-quark spectrum were �xed from the LO parton model assuming
binary scaling. The resulting nuclear modi�cation factor and elliptic �ow pa-
rameter as a function of pT are summarized in Fig. 5.8. One �nds a strong
dependence of both suppression and collective �ow on the (spatial) charm dif-
fusion coe�cient, along with a marked correlation between these two quanti-
ties. Also note the leveling o� of v2(pT ) for pT >∼ 2 GeV, characteristic for the
transition from a thermal to a kinetic regime, which is naturally borne out
of the Langevin process (and has been observed at RHIC for light hadrons).

In Ref. [343] heavy-light quark resonances have been introduced to calcu-
late drag and di�usion coe�cients in a strongly interacting QGP (sQGP).
This is motivated by lattice QCD computations which found hadronic reso-
nance states above Tc in both light-light (qq̄) and heavy-heavy (QQ̄) chan-
nels [360, 361]. The Q-q̄-Φ vertex (Φ=D or B resonance) has been constructed
in accordance with HQ symmetry as

L = GΦ Q̄
1+ 6v

2
Φ Γ q + h.c. , (5.9)

where 6 v denotes the HQ four velocity operator and GΦ the e�ective (un-
known) coupling constant. Assuming the existence of one state, say in the
pseudoscalar channel (JP = 0−), HQ (spin) symmetry implies degeneracy
with the vector state (JP = 1−). In addition, chiral restoration in the QGP
leads to degeneracy of chiral partners, i.e., scalar with pseudoscalar and vec-
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tor with axialvector Φ mesons. Thus, the Dirac-matrix part of the coupling
Γ in eq. (5.9) takes on the values 1, γ5, γµ and γ5γ

µ, leading to a total of
16 spin-isospin states for both D and D̄ mesons with a single coupling con-
stant GΦ2. The latter has been varied to cover a range of decays widths for
Φ→ c+ q̄ of 0.3-0.8 GeV, as calculated from the 1-loop selfenergy which, in
turn, �gures into the Φ propagators. When evaluating the charm-quark ther-
malization time using s- and u-channel D-meson exchange one �nds a factor
of ∼3 reduction compared to elastic pQCD scattering at temperatures typical
for the �rst few fm/c in Au-Au collisions at RHIC, cf. left panel of Fig. 5.9.
The resulting total thermal relaxation times for elastic c-quark rescattering in
an sQGP are around 5-7 fm/c (right panel of Fig. 5.9) and thus comparable
to the expected duration of the QGP phase at RHIC. B-mesons resonances
similarly reduce the thermalization times of b-quarks by a factor of ∼3 rela-
tive to pQCD scattering. However, the absolute value is signi�cantly larger
than for c-quarks, τb ' 10− 30 fm/c in the temperature range T ' 1− 2Tc,
rendering (the approach to) b-quark thermalization much delayed.

The corresponding drag and di�usion coe�cients have been implemented
into a relativistic Langevin simulation using an expanding elliptic �reball
model for the thermal background medium (with expansion parameters
adjusted to hydrodynamic calculations [362]) [344]. The initial tempera-
ture in (semi-) central

√
sNN = 200 GeV Au-Au collisions amounts to

T0 = 370(340) MeV, with an assumed Tc = 180 MeV, resulting in a total
QGP lifetime of ∼7 (5) fm/c (at the end of the QGP-hadron gas mixed
phase). When employing elastic pQCD rescattering alone, the results for the
c-quark v2 and RAA, displayed in Fig. 5.10, approximately agree with the

2 For HQ interactions with strange quarks, only HQ symmetry for Ds resonances has been
assumed.
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hydrodynamic Langevin simulations of Ref. [342], cf. Fig. 5.8. 3 As to be
expected from the thermal relaxation times, resonance interactions lead to
a substantial (factor of ∼3) increase of the c-quark suppression and elliptic
�ow. At the same time, the b-quark spectra are still rather little a�ected.
Also note that the sensitivity to the (unknown) resonance coupling strength
at the Q-q-Φ vertex is quite moderate. One of the features in the e�cacy
of the resonant interactions in accelerating the approach to thermalization is
their isotropic angular distribution in the center-of-mass system of the quarks;
pQCD scattering, on the other hand, occurs mostly at forward angles.

To compare to experimental e± spectra, the HQ output spectra from the
Langevin simulation have to be hadronized and decayed. In Ref. [344], the
former has been carried out in a combined coalescence and fragmentation
approach: using the model of Ref. [347], the HQ spectra are �rst subjected
to coalescence with light quarks (with radial and elliptic �ow distributions
as used in the description of light hadron data); left-over c and b quarks are
fragmented into D and B mesons assuming no momentum loss (δ-function
fragmentation, providing a conservative estimate of the suppression e�ect).
After 3-body decays into electrons, the resulting spectra agree reasonably well
with PHENIX [345, 364] and STAR data [346], cf. lower panels in Fig. 5.11
and left panels in Fig. 5.7. The upper panel of Fig. 5.11 shows the e± spec-
tra if all c and b quarks are hadronized with δ-function fragmentation, i.e. if
no coalescence is implemented. One sees that coalescence leads to a signif-
icant increase of both ve2 and R2

AA, introducing an �anti�-correlation of the
two quantities (usually a stronger coupling to the medium implies stronger
elliptic �ow and suppression, i.e. an increase in v2 along with a reduction in
RAA). Both features improve the description of the experimental data, i.e.,

3 Recalling the form of the dominant pQCD c-g cross section, σel ∝ α2
s/m

2
D, a coupling

constant of αs = 0.4, together with a Debye mass mD = gT with g = (4παs)1/2=2.23
(implying α2

s/g
2=0.032) as used in Ref. [344], corresponds to a di�usion constant of close

to D(2πT ) = 24 in Fig. 5.8 [342] (implying α2
s/g

2 ' 0.252/1.52=0.028).
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Fig. 5.11 Nuclear suppression factor (left panels) and elliptic �ow (right panels) of sin-
gle electrons emerging from the decay of D and B mesons based on relativistic Langevin
simulations for heavy quarks at RHIC [344, 363]. The upper panels represent calculations
where the �nal heavy-quark distributions have been hadronized using δ-function fragmen-
tation only, while the results in the lower panels are based on a coalescence+fragmentation
approach [347], i.e., inlcude coalescence of heavy quarks with light quarks from the heat
bath. The calculations are compared to PHENIX [345] and STAR [346] data for RAA,
and PHENIX data [364] for v2.

the large v2 and the shape of RAA (in particular the �delayed� decrease up
to peT ' 3 GeV). The e± suppression and elliptic �ow of the charm contri-
bution alone is displayed by the purple lines in Fig. 5.11, exhibiting stronger
e�ects compared to the total at e± momenta peT >∼ 3 GeV. This shows that
the bottom decay contributions become appreciable (and eventually domi-
nant) at rather low e± momenta, but it also means that an explicit D-meson
measurement is a key to resolving the question of the bottom contribution,
to either refute or con�rm the large e�ects on the charm quarks.

Due to the discriminative power of the recent e± spectra it is possible to es-
timate the charm di�usion constant in the sQGP. Given a fair agreement with
the Langevin simulations including resonance interactions plus coalescence,
the range of di�usion constants corresponding to the uncertainty in the inter-
action strength in the approach of Refs. [343, 344] is plotted in Fig. 5.12. One
�nds a spatial di�usion constant of aboutDs ' 5/2πT . This can be compared
to the pQCD inspired approach of Ref. [342]: recalling Fig. 5.8, a comparable
value of Ds leads to an RAA and v2 at the c-quark level which is roughly con-
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sistent with that following from the pQCD+resonance interactions as shown
in Fig. 5.11.

HQ spectra at RHIC have also been investigated in transport calcula-
tions [365, 366], with conclusions quite similar to the Langevin approaches:
a substantial upscaling of elastic pQCD cross sections for c-parton scattering
is required to obtain a suppression and �ow reminiscent to what is observed
in the data (including e�ects of coalescence with light quarks), corroborating
the notion of a strongly interacting QGP.

It seems inevitable to conlcude that pQCD interactions are not strong
enough to account for the modi�cations of HQ spectra at RHIC, thus requir-
ing the presence of substantial nonperturbative e�ects. Remaining challenges
toward a deeper understanding of HQ interactions in the sQGP include: (i)
The assumption of resonance interactions should be scrutinized by employ-
ing a more microscopic description of Q-q̄ scattering using input from �nite-
temperature lattice QCD (lQCD). One could adopt, e.g., the T -matrix ap-
proach as recently constructed to evaluate Q-Q̄ (as well as q-q̄) interactions
in the sQGP [367, 368] based on heavy-quark potentials extracted from the
lQCD HQ free energy above Tc. The pertinent T -matrices show a large non-
perturbative enhancement close to and above the quark-antiquark thresholds;
it would be very intersting to compute pertinent friction and di�usion coe�-
cients in the heavy-light sector. (ii) Radiative processes, which are expected
to become the dominant source of energy loss in the high-momentum limit,
should be implemented into the Fokker-Planck framework. One of the prob-
lems is a proper treatment of interference (Landau-Pomeranchuk-Migdal) ef-
fects for radiated gluons, which, however, is presumably less pronounced for
heavy quarks. First estimates for 2→ 3 processes in the HQ sector have been
performed in Ref. [369]. (iii) A systematic study should be performed with
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respect to the chemical composition of the QGP: current radiative energy-
loss models as discussed in the previous section routinely assume the early
matter to be a gluon-dominated plasma (as a natural result of a color-glass
initial state of the colliding nuclei), which maximizes the radiative interac-
tion strength (induced gluon radiation). If, however, the QGP quickly reaches
chemically equilibrium, about 60% of the partons are anti-/quarks. The latter
are, in turn, the key mediator for the resonance interactions (or, more gener-
ally, color-neutral channels). The chemical composition of the QGP thus has
important impact on the evaluation of HQ interactions (and, possibly, also
for light partons).

Item (i) has been addressed in a recent paper by van Hees et al. [370]:
based on potentials extracted from lQCD computations of the heavy-quark
free energy at �nite temperature, heavy-light quark T−matrices have been
calculated in both quark-antiquark (c-q̄) and quark-quark (c-q) channels, ac-
counting for both S− and P−wave scattering. It has been found that the
dominant contributions to the in-medium HQ selfenergy are due to the at-
tractive color-singlet (meson) and color-antitriplet (diquark) channels. These
are precisely the channels that are present in mesons and baryons, i.e., rel-
evant for hadronization. This approach therefore provides a natural link be-
tween a strongly interacting QGP and hadronization via constituent-quark
recombination, and thus between the phenomenological successes of ideal hy-
drodynamic and quark-coalescence models at RHIC. The resulting c-quark
widths in the QGP are large (up to ∼300 MeV), and the transport (friction)
coe�cients are quite similar to the e�ective resonance model, cf. Fig. 5.13.
However, while in the resonance model most of the interaction strength for c-
quarks is due to scattering o� antiquarks from the heat bath, in the T−matrix
approach the contributions from meson and diquark channels are about equal
(the latter carry less interaction strength but a larger (color-) degeneracy).
Consequently, the resonance model would predict a rather di�erent behavior
of c and c̄ quarks in baryon-rich matter as expected in heavy-ion collisions
at the future CBM experiment (a potentially formed QGP should have an
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appreciable excess of quarks over antiquarks). This e�ect is not present in the
(microscopic and more complete) T−matrix approach. However, the domi-
nance of interactions with anti-/quarks over gluons from the heat bath in both
approaches might help to distinguish between �pre-hadronic� correlations and
an sQGP which is driven by interactions with gluons. In the former case, the
observable e�ects on D mesons at CBM (i.e., elliptic �ow and suppression)
should be larger than in the latter case. These e�ects could receive addi-
tional contributions from the hadronic phase, where D+ and D0 can undergo
charm-exchange reactions with baryons (e.g., DN → πΛc) which are not
available to D− and D̄0 mesons (antibaryons are much less abundant) [371].
Thus, the importance of reactions in the hadronic phase would be signaled
by stronger modi�cations of D-meson spectra relative to D̄ spectra.

5.2.3 Charm dilepton decays

Since parton fusion in primordial N -N collisions is expected to be the domi-
nant source of charm in heavy-ion collisions, c and c̄ are produced pairwise.
If both c and c̄ within a correlated pair eventually decay semileptonically,

c̄c→ DD̄ → e+e−X , (5.10)

one ends up with a correlated source of dileptons that cannot be subtracted
by standard combinatorial methods (such as mixed event techniques), see
also [372].

At maximum SPS energy, the correlated-charm contribution to the dilep-
ton spectrum in p-p (or p-A) collisions is comparable to Drell-Yan annihi-
lation in the invariant mass range up to M ' 3 GeV. However, when these
two sources are extraploated to central Pb-Pb (using binary collision scal-
ing), the experimental dimuon spectra in the intermediate-mass region (IMR,
1 GeV <∼M <∼ 3 GeV) as measured by NA38/NA50 [373] are underpredicted
by about a factor of 2. Originally, this has been taken as an indication of
a factor of ∼3 enhancement of open-charm production in central Pb-Pb.
However, it has been shown that the presence of a rather standard thermal
�reball (with initial temperture of T0 ' 200 MeV and total lifetime of 12-
15 fm/c) leads to thermal dilepton radiation that essentially accounts for
the observed excess [374], cf. also Refs. [375, 376]. Di-muon spectra from
open charm decays and thermal spectra have indeed a very similar shape
at SPS energies [377]4. Recent data from the NA60 collaboration in In-In
collisions at full SPS energy [379] have recon�rmed the presence of an excess
and, using displaced decay vertices, have shown that this excess is not due to

4 In principle, there could be charm energy loss and di�usion, even though theoretical
analysis does not indicate large e�ects [378]. However, more de�nite conclusions require
more precise data and more elaborate calculations.
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open-charm decays. At beam energies envisaged in the CBM experiment one
is signi�cantly closer to the open-charm threshold, implying that the relative
magnitude of the charm component in the dilepton spectra is reduced. How-
ever, if charm quarks undergo signi�cant rescattering in a putative sQGP, and
if their dilepton signal can be separated from the prompt yield (e.g., using
dispaced vertices), possible medium modi�cations (most notably a softening
of the invariant mass distribution) could provide a valuable complement to
the single-charm observables discussed in Sec. 5.2.2.

Finally we note that the in-medium properties of open-charm states have
important consequences on the in-medium spectral properties of charmonia,
and thus on their suppression pattern in heavy-ion collsions. If, in addition,
regneration of charmonia via cc̄ coalescence becomes important, charmonium
production also becomes sensitive to both the total number of cc̄ pairs and
their pT spectra (however, this is only expected for ultrarelativistic heavy-
ion collisions at center-of-mass energies above 20 GeV, i.e., above the SPS
energy range) [380, 381]. These points are to be discussed in relation with
charmonium physics.

5.3 Charm chemistry and thermal models

Thermal models are successful in reproducing ratios of produced light hadrons
in heavy-ion collisions in terms of just two parameters, the baryon chemical
potential and temperature, (µchB , Tch) (in addition, one introduces chemi-
cal potentials for conserved charges, such as isospin, strangeness or charm
in strong interactions), cf. Ref. [211] for a recent review. These quantities
have been interpreted in terms of a chemical freezeout of the interacting sys-
tem, characterizing the stage of the evolution where inelastic reactions cease
and the abundancies of stable hadrons (with respect to strong interactions)
are frozen. This is to be distinguished from thermal freezeout (at tempera-
ture Tfo), which occurs when elastic interactions, such as πN → ∆ → πN
or ππ → ρ → ππ, cease (at which point the momentum distributions are
frozen). Since elastic reactions usually have much larger cross sections than
inelastic ones, such as πN → KΛ or ππ → KK̄, one expects Tch > Tfo

5.
In elementary p-p/-A (as well as π-p/-A) collisions, chemical and thermal
freezeout temperatures essentially coincide, consistent with the notion of lit-
tle, if any, �nal-state interactions. Even though in elementary reactions the
nonstrange particle ratios also follow chemical freezeout systematics (inter-
preted as �statistical hadronization�), strangeness production is suppressed,
i.e., chemically not equilibrated. It is then natural to ask how the situation
develops for the substantially heavier charm quarks and hadrons. As brie�y
alluded to in Sec. 5.2.3, the number of produced cc̄ pairs is most likely not

5 Note that this does not apply to strongly decaying resonances which are rather the main
mediators of elastic interactions, such as ∆ and ρ, cf. Sec. 3.
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system (cm energy) (D++D−)/(D0+D̄0) D−/D+ D̄0/D0 Ds/D

p-N (20-40 GeV) 0.40±0.05 1.3±0.1 1.4±0.1 0.13±0.01
p-N (200 GeV) 0.40±0.05 1.24±0.1 1.35±0.1 0.23±0.02
A-A (17.3 GeV) 0.46 1.6 1.59 0.25

A-A (200 GeV) 0.45 1.04 1.05 0.26

Table 5.2 Compilation of D-meson �avor ratios evaluated for elementary p-N collisions
in a recombination approach based on parton distribution functions [389] (lines 2 and
3, corresponding to rapidity integrated yields) and within the statistical recombination
approach for central A-A collisons based on thermal equilibrium [391] (lines 2 and 3,
corresponding to midrapidity yields, dND/dy).

enhanced in A-A collsions, i.e., it follows the expected binary collisions scal-
ing, both at SPS [379] and at the much higher RHIC energies [382] (this is
corroborated by theoretical estimates [383]). The o�-chaemical-equilibrium
for charm quarks can be accommodated by introducing a charm-quark fu-
gacity factor, γc, which is equal for c and c̄ quarks. The key question then
is how the c and c̄ quarks distribute themselves among the produced charm
hadrons, i.e., the relative charm chemistry, and what one can learn from it
(the rich information encoded in momentum spectra has been discussed in
some detail in Secs. 5.2.1 and 5.2.2).

Flavor asymmetries are a well-established phenomenon in hadronic colli-
sions (p-p, π-N etc.). Especially at forward rapidities, marked enhancements
of antiparticle-to-particle ratios of produced strange and charm hadrons have
been observed, e.g. for K+/K− or D−/D+ [384, 385]. This has been success-
fully attributed to quark recombination processes, where a strange or charm
antiquark, produced in forward direction, coalesces with a valence quark from
the projectile [386�388]. An extension of these ideas to central rapidities has
been discussed, e.g., in Ref. [389] by generalizing the approach to include
coalescence with sea quarks (cf. also Ref. [390]). This enables the investiga-
tion of inclusive particle production asymmetries for charmed hadrons; the
fraction of D-mesons produced via recombination amounts to 50-80%, and
fair overall agreement with available data for the xF -dependent and inclusive
�avor asymmetries in elementary collisions has been found. Typical results
for D-meson �avor ratios for �xed target (RHIC) energies,

√
s=20-40 GeV

(200 GeV) are summarized in the upper two lines of Tab. 5.2 [389]. These
values for elementary collision can then be used as a baseline for charm-
hadrochemical analysis in heavy-ion reactions.

Hadrochemical analysis of open-charm hadron production have been con-
ducted in the statistical hadronization model, e.g., in Refs. [381, 391, 392],
see also Sec. 6.2 including charmonia. While the number of charm quarks is
routinely assumed to be �xed by hard production as discussed above, the no-
tion of temperature in a statistical hadronization approach still requires the
c-quark momentum distributions to kinetically equilibrate (which seems to
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be a good assumption at least for RHIC energies, cf. Sec. 5.2.2). The charged-
to-neutral D-meson ratio appears to be rather stable, but the antiparticle-
to-particle ratios vary much stronger with collisions energy in central A-A
compared to elementary collisions, re�ecting the variation in chemistry with√
s (essentially the decrease in baryon chemical potential; note, however, that

the values quoted for A-A correspond to midrapidity, while the p-N ones refer
to inclusive yields). Also note that at lower energies, strangeness equilibra-
tion re�ects itself by a factor of 2 increase in the Ds/D ratio, which could be
a promising signal at CBM energies.

5.4 QCD sum rules

Given a current with the quantum numbers of a hadron with open or hidden
charm one can evaluate, along the strategy outlined in Sec. 2.3.1, the current-
current correlator with an Operator Product Expansion (OPE) to relate the
hadronic properties to various condensate terms. The advantage of QCD
sum rules is the use of universal condensates which are estimates at �nite
baryon density and temperature utilizing leading terms in the corresponding
expansion, in connection with pertinent nucleon and pion matrix elements.

5.4.1 Open charm mesons

In the light quark sector, the vector mesons ρ and ω depend only weakly on
the genuine chiral condensate 〈q̄q〉 but sizeably on 4-quark condensates [80]
which often are factorized in squares of the chiral condensate. The reason for
this weak dependance is that the renormalization group invariant combina-
tion mq〈q̄q〉 enters sum rules for ρ and ω mesons; due to the smallness of
the u, d quark masses, mq, the impact of 〈q̄q〉 is strongly suppressed. In the
light-heavy quark sector, say for D mesons, the combination mc〈q̄q〉 enters
and one anticipates that the large charm mass mc ampli�es the role of the
chiral condensate 〈q̄q〉.

With respect to the quark structures D+ = d̄c and D− = c̄d one further
expects [393] a pattern of in-medium modi�cations as known from K− and
K+ mesons [394], i.e., a downward shift of excitation strength with quantum
numbers of K− or D+, D0 and a tiny upward shift for K+ or D−, D̄0. Purely
hadronic model calculations (cf. Sec. 5.5) indeed qualitatively support this
pattern in the open charm sector.

Most QCD sum rule evaluations for open-charm mesons focus on vacuum
properties (see [395, 396] and references therein). The in-medium study in
Ref. [397] has considered the isospin average of D±. In Ref. [393] both the
isospin average and a D± mass splitting in the nuclear medium are evaluated
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based on a pole ansatz. While the latter is appropriate in vacuum, it may not
be accurate in medium in view of recent hadronic model calculations [311,
398] (also discussed in Sec. 5.5). Therefore, one should rather evaluate QCD
sum rules by considering appropriate moments of the spectral distributions
of D± (as well as D0 and D̄0).

The Wilson coe�cients are calculated up to mass dimension 6 and listed
in various papers, both for vacuum [395, 396] and in medium [397, 399]. The
literature on the medium modi�cations of D mesons within the QCD sum
rule approach is poor, cf. [397, 399]. Ref. [397] claims an isospin averaged
D± downward mass shift of ∼ 50 MeV at nuclear saturation density, while
Refs.[399, 400] favor a mass splitting of about 40 MeV.

The pseudo-scalar current jD+ = id̄γ5c for the D+ meson results in the
correlator

ΠD+(q) = i

∫
d4x eiq·x〈T jD+(x)j†D+(0)〉, (5.11)

where 〈· · · 〉 means Gibbs average and T time ordering. A similar correlator
may be de�ned for the D− meson with current jD− = ic̄γ5d. (D0 and D̄0

follow by the replacement d → u.) The occurence of positive and negative
frequency contributions lead to the decomposition ΠD+ = Π+

D+ +Π−
D+ and

a further decomposition into parts which are even or odd, respectively, with
respect to q → −q. In total: ΠD+ = Π+e

D+ +Π−e
D+ +Π+o

D+ +Π−o
D+ .

Twice subtracted dispersion relations for the correlator of D+-mesons at
rest, q = (ω,0), read

ReΠe
D+(ω2) =

ω4

π

∫ ∞

0

ds

s2
1

s− ω2

(
ImΠ+e

D+(s) + ImΠ−e
D+(s)

)
+ subtractions

(5.12)
1
ω

ReΠo
D+(ω) =

ω4

π

∫ ∞

0

ds

s5/2
1

s− ω2

(
ImΠ+e

D+(s)− ImΠ−e
D+(s)

)
+ subtractions

(5.13)

The subtraction terms vanish after a Borel transformation Bω→M [49]. A
subtle issue in medium is a possible Landau term emerging from contributions
at s→ 0. It corresponds to the Thomson limit of the forward DN scattering
amplitude, which, however, vanishes in leading order in a medium without
charm content.

For large space-like momenta, −ω2 � Λ2
QCD, the OPE for the left-hand-

side of Eqs. (5.12) and (5.13) is used:

ReΠe
OPE(ω2) = c0 +

∞∑
j=1

cj(ω2)〈Oj〉 (5.14)

and an analogous expansion for the odd part. Here, c0 denotes the perturba-
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tive contribution and is given explicitly in Ref. [401]. Condensates are encoded
in the expectation values 〈Oj〉 and are ordered according to their dimension-
ality. Condensates of high dimensionality are accompanied by high powers
of 1/ω2 and/or 1/m2

c encoded in the Wilson coe�cients cj . In the region
of applicability of the OPE ω and mc are large. Consequently, condensates
of high dimensionality are suppressed and therefore neglected. Typically one
considers in Eq. (5.14) condensates up to dimension 6 (not explicitly given
here).

For the right-hand-side of Eqs. (5.12, 5.13) one might use the standard
pole + continuum ansatz (assuming equal continua for ImΠ±e

D+)

1
π

ImΠ±e
D+(s) = F±δ(s−m2

±) +
1
2π

ImΠper(s)Θ(s− s±) .

The perturbative contribution ImΠper corresponds to c0 on the OPE side,
and we have de�ned F± = F ±∆F , m± = m±∆m and s± = s0 ±∆s. The
residues F± and masses m± can be determined from the sum rules (5.12) and
(5.13). To leading order in ∆F , ∆s and ∆m, one obtains the mass splitting
∆m and the residue F

F =
1
2
em

2/M2
Bω→M

(
ReΠe

OPE(ω2)
)
− 1

2π

∫ ∞

s0

ds e(m2−s)/M2
ImΠper(s) (5.15)

∆m = − 1
4F (s0−m2)

em
2/M2
Bω→M

(
1
ω

ReΠo
OPE(ω)(m2−ω2)(s0−ω2)

)
, (5.16)

where the logarithmic derivative of eq. (5.15) is used to determine m as
average in the Borel window with adjustment of s0 to achieve maximum
�atness, and eq. (5.15) itself to determine afterwards F . The mass splitting
∆m follows then from (5.16).

The quantities de�ned in eqs. (5.15) and (5.16) depend on the Borel mass
M. They have to be averaged within the sliding Borel window from Mmin

to Mmax which is determined by the requirements of not more than 10%
contribution of the mass dimension 6 condensates to the total OPE (Mmin)
and equality of the low-lying resonance contribution and the perturbative
continuum contribution (Mmax.) The continuum threshold s0 is determined
by the requirement of maximum �atness within the Borel window.

Using standard values for the involved vacuum and in-medium condensates
we get in medium a small up-shift of the average mass by about 8 MeV, and
a mD± mass splitting of ∼70 MeV where the D+ is below the D− mass,
as expected. The density dependence of the mass splitting is exhibited in
Fig. 5.14, cf. [402] for further discussions. The actual numbers are listed in
Tab. 5.3 (subject to at least ∼30% uncertainty due to unknown condensate
values). One particular type of condensate is worth to be mentioned since it
is important for the mass splitting, namely the mixed condensates
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Fig. 5.14 Charged D-meson masses in cold nuclear matter as a function of density within
the QCD sum rule calculations of Ref. [402, 403].

〈d̄γ0gsσ
µνGaµν

λa

2
d〉 = x〈d̄gsσµνGaµν

λa

2
d〉 (5.17)

with x = −1 · · · 1. Results for variations of x are brie�y mentioned in the
caption of Tab. 5.3.

Several issues remain to be clari�ed, including: (i) the Landau term be-
yond leading order, (ii) the symmetric continuum [393], (iii) moments when
going beyond the zero-width approximation, (iv) the in�uence of density de-
pendence of genuine chiral condensate.

n [fm−3] 0 0.17

M2
min [GeV2] 0.941 0.989

M2
max [GeV2] 5.423 5.253

s0 [GeV2] 4.805 4.725
F [GeV4] 0.0458 0.0389
1
2 (mD− +mD+) [GeV] 1.860 1.868

mD− −mD+ [MeV] 0 67.7

Table 5.3 Input and results of a QCD sum rule evaluation forD-meson masses in nuclear
matter in zero-width approximation with symmetric continuum. The mass splitting varies
between 100 and 37 MeV for x = −1 · · · 1, with a mean value of 67.7 MeV for x = 0.

5.4.2 Remarks on J/ψ

In the QCD sum rule for the J/ψ, a termmc〈c̄c〉 appears, which for the heavy
quark can be expanded as [404]
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mQ〈Q̄Q〉 = − 1
12π
〈αs
π
G2〉− 1

1440π2m2
Q

〈g3
sG

3〉− 1
120π2m2

Q

〈(DG)2〉+O(m−5
Q , αs).

(5.18)

This implies that in the heavy-quark limit,mQ →∞, the 2-quark condensate
is to be substituted by the gluon condensate 〈αsπ G

2〉. The latter, in turn, is
rather inert against density and temperature changes far enough from the
decon�nement boundary in the hadronic phase. Since this is the only de-
pendence on quark condensates of low mass dimension, it is expected that
medium modi�cations of J/ψ are tiny (< 10 MeV), as more complete evalu-
ations of the sum rules con�rm [400].

5.5 Charm hadrons in medium

In the following we explore medium modi�cations of D mesons along the
strategy employed for K± mesons, see Sec. 4.1.

5.5.1 Cold nuclear matter

In Ref. [405], the spectral density of the D meson in cold nuclear matter is
studied within a microscopic self-consistent coupled-channel approach using
a separable potential for the S-wave DN interaction. This bare interaction
allows for the transition from DN to πΛc, πΣc, ηΛc and ηΣc channels, all
carrying charm c = 1. We only consider channels with up, down and charm-
quark content keeping the SU(3) symmetry. This approach is similar to using
SU(4) symmetry and ignore the channels with strangeness which are higher
in mass and well above the DN threshold. The parameters of this model, i.e.
coupling constant g and cuto� Λ, are determined by generating dynamically
the Λc(2593) resonance, which is the counterpart of the Λ(1405) in the charm
sector.

The medium e�ects on the Λc(2593) resonance and, hence on the D-meson
potential, due to the Pauli blocking of the intermediate nucleonic states as
well as due to the dressing of nucleons and pions are analyzed. In Fig. 5.15, the
D meson optical potential is obtained for di�erent approaches: self-consistent
calculation for the D-meson potential and self-consistent calculation for the
D-meson potential including the dressing of nucleons and the pion self-energy
in the intermediate states. The D-meson potential at zero momentum and
nuclear matter saturation density, %0=0.17 fm−3, stays between 8.6 MeV
for Λ = 0.8 GeV and -11.2 MeV for Λ = 1.4 GeV when only the D meson is
dressed (upper left panel). For the full self-consistent calculation (upper right
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Fig. 5.15 Real and imaginary parts of theD meson potential at kD=0 as a function of the
density for di�erent sets of coupling constants and cuto�s, that generate dynamically the
Λc(2593) resonance, and for two approaches: self-consistent calculation for the D meson
potential (left panels) and self-consistent calculation for the D meson potential including
the dressing of nucleons and the pion self-energy in the intermediate states (right panels).

panel), the value of theD-meson potential lies in between 2.6 MeV for Λ = 0.8
GeV and -12.3 MeV for Λ = 1.4 GeV. Previous works based on QCD sum-rules
[397, 400], quark-meson coupling (QMC) models [406, 407] or chiral e�ective
Lagrangians [408] predict an attractiveD-nucleus potential with depths rang-
ing from -50 to -200 MeV. We therefore conclude that the coupled-channel
e�ects result in an overall reduction of the in-medium e�ects independent of
the set of parameters (g,Λ) and the in-medium properties of the intermedi-
ate states. On the other hand, the self-consistent coupled-channel calculation
allows for the determination of the imaginary part of the D-meson potential,
which was not obtained in the previous works. The imaginary part turns out
to be quite important ranging from -51.6 MeV for Λ = 0.8 GeV to -27.9 MeV
for Λ = 1.4 GeV when only the D meson is dressed (lower left panel) while it
changes from -49 MeV for Λ = 0.8 GeV to -18.2 MeV for Λ = 1.4 GeV in the
full self-consistent calculation (lower right panel). A later coupled-channel
calculation [311], which includes channels with strangeness saturating the
interaction by t-channel vector-meson exchange [409], substantiates our �nd-
ings obtaining a repulsive D meson mass shift and a considerable imaginary
part for the D-meson potential.

D+ D−

Lutz, Korpa [311] -250, + 32 + 18
Tolos et al. [398] small small mainly widths e�ects

Table 5.4 Mass shifts of peaks (in MeV) in D± spectral functions at nuclear saturation
density.
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Fig. 5.16 D-meson spectral density at kD = 0 as a function of energy with Λ =1 GeV
and g2 = 13.4 for di�erent densities and for two approaches: self-consistent calculation
for the D-meson potential (left panel) and self-consistent calculation for the D-meson
potential including the dressing of nucleons and the pion self-energy in the intermediate
states (right panel).

The D-meson spectral density at zero momentum is shown in Fig. 5.16
for Λ =1 GeV and g2 =13.4, and for several densities in the two self-
consistent approaches considered before. When only the D meson is dressed
self-consistently (left panel), the quasi-particle peak slightly moves to lower
energies as density increases since the D-meson potential becomes more at-
tractive (see upper left panel of Fig. 5.15). The Λc(2593) resonance is seen
for energies around 1.63-1.65 GeV as a second peak on the left-hand side of
the quasi-particle peak. For the second approach when nucleons and pions
are dressed in the intermediate states (right panel), a structure around 1.8
GeV mixes with the quasi-particle peak which translates into a broadening of
the spectral density at the quasi-particle energy. This structure corresponds
to a resonance below the DN threshold with the Λc-like quantum numbers
and, as reported in Ref. [405], appears together with another structure below
the πΣc threshold, which is not noticeable in the �gure. The nature of these
two structures deserves further studies. In both cases we conclude that the
quasi-particle peak stays close to its free position. However, the features of the
low-energy region on the left-hand side of the quasi-particle peak are di�erent
according to the di�erent in-medium behavior of the Λc(2593) resonance in
both approaches.

The calculation of D meson spectral distributions in cold nuclear matter of
Ref. [311] results in an up-shifted (18 MeV) D− peak, while the D+ develops
strongly down-shifted (250 MeV) strength due to resonance-hole states with
Λc(1594) and Σc(2620) and an up-shift (30 MeV) of the original D+ peak.
The spectral distributions are exhibited in Fig. 5.17, where also the D±

s is
included. The above results of in-medium e�ects are summarized in Tab. 5.4.
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Fig. 5.17 Spectral distributions of D± and D±s at nuclear saturation density according
to Ref. [311].

5.5.2 Hot pion gas

Fuchs et al. [410] considered open and hidden charm hadrons in a hot pion gas.
They �nd sizeable e�ects at temperatures above 100 MeV: at T = 150 MeV
the mass shift is about -40 MeV for D mesons and the J/ψ width is increased
to 10 MeV. Their results are summarized in Fig. 5.18. Due to reactions J/ψ ↔
DD̄,D∗D̄∗, D+D̄+ a shift of the e�ective in-medium D,D+ masses can open
these channels.

The behavior of D mesons was also addressed in a linear sigma model near
the chiral symmetry restoration transition in Ref. [411].

5.5.3 Hot and dense nuclear matter

Evaluations of D-meson spectral densities under conditions resembling those
expected at FAIR have recently been performed in Ref. [398]. The D-meson
spectral density under such conditions can be obtained by extending the mi-
croscopic self-consistent coupled-channel calculation in dense nuclear matter
of Ref. [405] to �nite temperature [398]. The introduction of temperature in
the in-medium DN interaction a�ects the intermediate channels (DN , πΛc,
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Fig. 5.18 Temperature dependence of D,D+ and J/ψ states in a hot pion medium.
Results are from Ref. [410].

πΣc, ηΛc and ηΣc) by modifying the Pauli blocking of the nucleons, the Bose
distribution on the pionic intermediate states and the dressing of D mesons,
nucleons and pions, as reported for the K̄N case in Ref. [290].

In Fig. 5.19 the D-meson spectral density at zero momentum and T =
120 MeV is shown for di�erent densities and for a cuto� Λ =1 GeV and a
coupling constant g2 =13.4. This is one of the sets of parameters that repro-
duce the position and width of the Λc(2593) resonance (see Ref. [405]). The
temperature is chosen in accord with the expected temperatures for which D
mesons will be produced at FAIR. The spectral density is displayed for the
two approaches considered [398]: self-consistent calculation of the D-meson
self-energy including the dressing of the nucleons in the intermediate states
(left panel) and the self-consistent calculation including not only the dressing
of nucleons but also the self-energy of pions (right panel). The spectral den-
sity at T = 0 for nuclear matter saturation density, %0 = 0.17 fm−3, is also
included. Compared to the zero temperature case, the quasi-particle peak at
�nite temperature stays closer to its free position for the range of densities
analyzed (from %0 up to 3%0). This is due to the fact the Pauli blocking is
reduced with increasing temperature. Furthermore, structures present in the
spectral distribution at T = 0 are washed out [290]. However, the D-meson
spectral density still shows a considerable width.

In order to better study the evolution of the spectral density with temper-
ature, Fig. 5.20 displays the quasi-particle energy together with the width of
the D-meson spectral density at zero momentum as a function of the tem-
perature for the previous densities and for the approaches considered before.
For T = 0 we observe a change of the D-meson mass with respect to its
free value between -23 MeV for %0 and -76 MeV for 3%0 when D mesons
and nucleons are dressed in the intermediate states (upper left panel). For
the full self-consistent calculation (upper right panel), the D-meson potential
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Fig. 5.19 D-meson spectral density at kD = 0 and T = 120 MeV as a function of
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lies between -5 MeV for %0 and -48 MeV for 3%0. For higher temperatures, the
quasi-particle peak is close to the free D-meson mass (at T = 120 MeV and
%0, the D-meson potential is -1 MeV for the �rst approach and -0.1 MeV for
the second one). With regards to the width of the D-meson spectral density,
we observe a slight dependence on the temperature. At T = 120 MeV the
width increases from 52 MeV to 163 MeV for %0 to 3%0 when D mesons and
nucleons are dressed in the intermediate channels (lower left panel). The in-
crement goes from 36 MeV at %0 to 107 MeV at 3%0 for the full self-consistent
calculation (lower right panel).

Similar �nite-temperature results have been obtained recently within a
self-consistent coupled-channel approach for the D-meson selfenergy taking,
as a bare interaction, a type of broken SU(4) S-wave Weimberg-Tomozawa
term supplemented by an attractive scalar-isoscalar interaction [412]. Within
this model, at �nite temperature the D-meson spectral density shows a sin-
gle pronounced peak for energies close to the D-meson free-space mass that
broadens with increasing density with an extended tail towards lower ener-
gies [413], as seen in Fig. 5.21.

As already reported for the case of cold nuclear matter, the small shift of
theD-meson mass in the nuclear medium is contrary to the large changes (-50
to -200 MeV) reported in previous mean-�eld calculations [397, 400, 406�408].
Based on these results, an enhancement of open charm in nucleus-nucleus
collisions was suggested to understand the enhancement of �intermediate-
mass dileptons� in Pb+Pb collisions at the SPS energies [414] (however, more
recent NA60 data [379] have shown that this enhancement is due to �prompt�
dileptons, presumably thermal radiation [374]). According to the previous
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interaction.

self-consistent models, the inclusion of a considerable width of the D-meson
in the medium is the only source which could lead to an enhanced in-medium
D-meson production, as studied for kaons in Ref. [415].

As a consequence, an o�-shell transport theory is needed to describe D-
meson production. For that purpose, not only the D-meson spectral density
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Fig. 5.22 In-medium transition rates for D+n (D0p) at T = 120 MeV as a function of
the center-of-mass energy for di�erent densities and the two approaches considered: self-
consistent calculation of the D-meson self-energy including the dressing of the nucleons
in the intermediate states (left panel) and including not only the dressing of nucleons but
also the self-energy of pions (right panel).

but also in-medium D-meson cross sections are required. Fig. 5.22 shows the
elastic in-medium transition rates for D+n (D0p) at T = 120 MeV for the
two approaches considered. For the self-consistent calculation including the
dressing of D mesons and nucleons in the intermediate states (left panel),
we observe an enhanced transition rate for energies around the Λc(2593)
resonance mass. However, when pions are also dressed in the self-consistent
process (right panel), the enhanced transition rate is reduced drastically ac-
cording to the di�erent in-medium behavior of the Λc(2593) resonance (see
previous discussion in subsection 5.5.1). The cross sections at threshold are
expected on the order of 1 mb to 20 mb for the range of densities studied in
both approaches.

The in-medium e�ects discussed here may be relevant for heavy-ion experi-
ments at the future International FAIR project at GSI. The CBM experiment
will address, among others, the investigation of open charm. Our results imply
that the e�ective mass of D mesons, however, may not be drastically modi�ed
in dense matter at �nite temperature, but D mesons develop an apprecia-
ble width in the hot and dense environment. Therefore, the abundance of D
mesons in nucleus-nucleus collisions should be calculated in o�-shell trans-
port theory. Our calculation indicates that the medium modi�cations to the
D mesons in nucleus-nucleus collisions will be dominantly on the width and
not on the mass.
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5.5.4 Charm baryons

In-medium porperties of open-charm baryon resonances have also been stud-
ied in Ref. [311], extending the approach of Ref. [263] based on non-linear
chiral SU(3) dynamics into the charm sector. Similar to strangeness exchange
reactions, which couple K− and Λ production in intermediate-energy heavy-
ion reactions, one accounts for charm exchange reactions coupling open-charm
mesons and baryons [311]. The baryonic counter parts to the open charm me-
son dynamics are displayed in Fig. 5.23.





Chapter 6

Charmonium

As discussed in the preceding chapter, the charm-quark mass introduces an
additional large scale into the problem of studying hot and dense QCD matter
in the vicinity of phase changes, mc � Tc, ΛQCD. While open-charm probes
are an ideal tool to assess the transport properties of the medium at the in-
terface of the kinetic and thermal regimes, the investigations of hidden-charm
bound states (charmonia) allows, in principle, a unique access to the QCD
potential between two heavy (quasistatic) color charges. Charmonium (and
bottomomium) spectroscopy in the vacuum has been widely and success-
fully used to infer the properties of the strong force in the vacuum, see, e.g.,
Ref. [416] for a comprehensive survey. The challenge in the present context
is to transfer these (and develop new) concepts to the study of charmonia in
medium and connect these to the properties of the medium. The �holy grail�
of this enterprise is the discovery of the decon�nement transition. Indeed,
in a seminal paper [417], Matsui and Satz suggested that the suppression of
J/ψ's in heavy-ion collision could be used as a direct indicator of decon�ne-
ment, and NA50 data from Pb-Pb collisions at the SPS apparently con�rm
this e�ect. However, recent developments have revealed that the problem of
charmonium production in heavy-ion collisions is substantially more com-
plex: lattice QCD computations indicate that ground-state charmonia (and
bottomonia) may survive as bound states well into the Quark-Gluon Plasma,
and observations at RHIC found the same level of J/ψ suppression as at
the SPS, despite the unequivocally larger energy densities (temperatures)
reached at

√
sNN = 200 AGeV as compared to 17.3 GeV. This, e.g., imme-

diately prompts the question of how the (absence of a) trend will continue at
higher (LHC) and lower (FAIR) energies. Does, e.g., secondary charmonium
production via c-c̄ (or D-D̄) coalescence solve the puzzles?

The following sections will be devoted to short up-to-date reviews of equi-
librium properties of charmonia as inferred from lattice QCD and potential
models (Sec. 6.1), as well as of applications to heavy-ion collisions within
the statistical hadronization model (Sec. 6.3) and charmonium transport ap-
proaches (Sec. 6.3).

469
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6.1 Charmonium in equilibrium

6.1.1 Color screening and quarkonium

The Matsui and Satz suggestion referred to above [417] is based on the notion
that, at high temperatures, color screening will lead to melting of heavy-quark
bound states. While early lattice calculations con�rmed the presence of strong
color screening at high temperature [418] it was not until recently that lattice
studies of color screening have been related to quarkonium properties at �nite
temperature. The reason for this is the fact that on the lattice color screening
is studied in terms of the free energy of a static quark anti-quark pair, and
its relation to the potential used in the Schrödinger equation is not clear. In
the next section we will discuss the properties of heavy quark anti-quark free
energy calculated in lattice QCD.

6.1.2 Free energy of static quarks in lattice QCD

Following McLerran and Svetitsky [418] the partition function of a system
with a static quark anti-quark (QQ̄) pair at �nite temperature T can be
written as

ZQQ̄(r, T ) = 〈W (r)W †(0)〉Z(T ) , (6.1)

with Z(T ) being the partition function of the system without static charges
and

W (x) = P exp(ig
∫ 1/T

0

dτA0(τ,x)) (6.2)

the temporal Wilson line. L(x) = TrW (x) is also known as Polyakov loop, and
in the case of pure gauge theory it is an order parameter of the decon�nement
transition. As the QQ̄ pair can be either in color singlet or octet state one
should separate these irreducible contributions to the partition function. This
can be done using the projection operators P1 and P8 onto color singlet and
octet states introduced in Refs. [419, 420]. Applying P1 and P8 to ZQQ̄(r, T )
we obtain the following expressions for the singlet and octet free energies of
the static QQ̄ pair

exp(−F1(r, T )/T ) =
1

Z(T )
TrP1ZQQ̄(r, T )

TrP1
=

1
3
Tr〈W (r)W †(0)〉 (6.3)

exp(−F8(r, T )/T ) =
1

Z(T )
TrP8ZQQ̄(r, T )

TrP8

=
1
8
〈TrW (r)TrW †(0)〉 − 1

24
Tr〈W (r)W †(0)〉. (6.4)
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Although usually F1,8 is referred to as the free energy of the static QQ̄ pair, it
is important to keep in mind that it refers to the di�erence between the free
energy of the system with static quark anti-quark pair and the free energy of
the system without static charges.

As W (x) is a not gauge invariant operator we have to �x a gauge in
order to de�ne F1 and F8. To ensure F1 and F8 to have a meaningful zero
temperature limit we better �x the Coulomb gauge because in this gauge a
transfer matrix can be de�ned and the free energy di�erence can be related
to the interaction energy of a static QQ̄ pair at zero temperature (T = 0).
Another possibility discussed in Ref. [421] is to replace the Wilson line by
a gauge invariant Wilson line using the eigenvector of the spatial covariant
Laplacian. For the singlet free energy both methods were tested and they
were shown to give numerically indistinguishable results, which in the zero
temperature limit are the same as the canonical results obtained from Wilson
loops. One can also de�ne the color-averaged free energy,

exp(−Fav(r, T )/T ) =
1

Z(T )
Tr(P1 + P8)ZQQ̄(r, T )

Tr(P1 + P8)
=

1
9
〈TrW (r)TrW †(0)〉 ,(6.5)

which is expressed entirely in terms of gauge invariant Polyakov loops. This
is the reason why it was extensively studied on the lattice during the last two
decades. The color-averaged free energy is a thermal average over the free
energies in color-singlet and color-octet states

exp(−Fav(r, T )/T ) =
1
9

exp(−F1(r, T )/T ) +
8
9

exp(−F8(r, T )/T ) . (6.6)

Therefore it gives less direct information about medium modi�cations of
inter-quark forces. Given the partition function ZQQ̄(r, T ), we can calculate
not only the free energy but also the entropy as well as the internal energy
of the static charges

Si(r, T ) =
∂

∂T
ln
(
T
Zi
QQ̄

(r, T )

Z(T )

)
= −∂Fi(r, T )

∂T
(6.7)

Ui(r, T ) = T 2 ∂

∂T
ln
(
Zi
QQ̄

(r, T )

Z(T )

)
= Fi(r, T ) + TSi(r, T ) (6.8)

with i = 1, 8, av. For the discussion of the in-medium properties of quarko-
nium the color-singlet free energy as well as the internal energy are the most
appropriate quantities. The color-singlet free energy, F1(r, T ), has been cal-
culated in quenched (Nf = 0) [422�424], 2-�avor (Nf = 2) [425] and 3-
�avor [426], as well as most recently in 2+1-�avor QCD with realistic quark
masses [427�429]. Evaluating the temperature derivative of F1(r, T ) numeri-
cally one can estimate the corresponding internal energy. Lattice calculations
of the singlet free energy in quenched QCD are shown in Fig. 6.1. At short
distances the free energy is temperature independent and coincides with the
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Fig. 6.1 The color-singlet free energy in quenched QCD (left) and the corresponding
internal energy (right) [422�424]. The black line shows the parametrization of the zero
temperature potential calculated on the lattice.

zero temperature potential (shown by the black line). The temperature depen-
dence of the singlet free energy becomes signi�cant at distances larger than
0.4fm/(T/Tc) [424]. Furthermore, at distances larger than (1 − 1.2)/T , the
singlet free energy is exponentially screened [424]. This exponential screening
is governed by the Debye mass mD. However, for quarkonium physics the
behavior of the free energy at short distances r < T is more relevant. Note
that the free energy above Tc is monotonically decreasing, and, at su�ciently
high temperatures, is negative at all separations. The internal energy is larger
than the free energy and is even larger than the zero temperature potential at
intermediate distances. At small distances it agrees, of course, with the zero
temperature potential as expected. If used as a potential in the Schrödinger
equation it will give signi�cantly larger binding energy than the free energy.

The free energy of static quark anti-quark pair calculated in full QCD
shares most of the properties of the free energy calculated in quenched QCD
discussed above. In Fig. 6.2 we show the result of calculations in 2+1-�avor
QCD with physical strange quark mass and light quark masses corresponding
to a pion mass of about 200 MeV. The most signi�cant di�erence to quneched
calculations is the presence of string breaking: the free energy approaches a
constant at large distances instead of linearly rising. The internal energy
calculated in full QCD is also very large in the vicinity of the transition. In
Fig. 6.2 we also show the asymptotic value of the internal energy, U∞(T ) =
U1(r →∞, T ), in full QCD at high temperatures. If U∞(T )/2 is interpreted
as a thermal correction to the heavy quark mass increase implies that close
to Tc the e�ective charm quark mass is larger by a factor of two!

The free energy of a static quark anti-quark pair has been also studied
at �nite baryon density using the Taylor expansion method [430]. At �nite
baryon density screening e�ects become stronger, as expected [430]. At high
temperatures the dependence of the screening mass on the baryon chemical
potential can be described by perturbation theory [430].
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6.1.3 Spectral functions and Euclidean correlators

Spectral functions o�er the most suitable way to study in-medium properties
and/or the dissolution of charmonium states at high temperature and density.
The spectral functions are related to the Euclidean-time correlation functions,
G(τ, T ), by the integral relation

G(τ, T ) =
∫ ∞

0

dωσ(ω, T )
cosh(ω(τ − 1/2T ))

sinh(ω/2T )
. (6.9)

Euclidean time correlation functions can be calculated in lattice QCD. There
have been several attempts to extract the charmonium spectral functions from
lattice correlators using the Maximum Entropy Method (MEM) [361, 431�
433]. For the light quark sector this has been already discussed in Sec. 2.5. The
studies of charmonium spectral functions have indicated that quarkonium
states can survive up to temperatures as high as 1.6Tc, contradicting earlier
expectations based on potential models with screening (see, e.g., Refs.[434�
437]). At low temperatures, spectral functions can be reliably calculated us-
ing MEM. However, at high temperatures the reconstruction of the spectral
functions becomes more di�cult as the extent of the Euclidean time direc-
tion, τmax = 1/(2T ), becomes smaller (see, e.g., the discussion in Ref. [433]).
Therefore, it has been suggested to study in detail the temperature depen-
dence of the correlation function G(τ, T ). This can be done most e�ectively by
studying the temperature dependence of the ratio G(τ, T )/Grec(τ, T ) [431],
where

Grec(τ, T ) =
∫ ∞

0

dωσ(ω, T = 0)
cosh(ω(τ − 1/2T ))

sinh(ω/2T )
. (6.10)

The trivial temperature dependence due to the integration kernel is elimi-
nated in this ratio. If the spectral function does not change above the decon-
�nement transition, ones has G(τ, T )/Grec(τ, T ) = 1. Deviations of this ratio
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from unity thus indicate changes in the spectral functions. It has been found
that in the pseudo-scalar channel this ratio shows little temperature depen-
dence, remaining close to unity well into the QGP [431, 433]. In the scalar and
axial-vector channels, on the other hand, this ratio is temperature dependent
and changes by a factor of two across the decon�nement transition [431, 433].
This seems to suggest that the 1S charmonium state survives in the decon-
�ned medium up to quite high temperatures, while P -wave charmonium (χc)
melts close to the transition temperature, in agreement with expectations
based on a sequential suppression pattern [437]. It has been realized, however,
that zero-mode contributions could be the dominant source of the temper-
ature dependence of the Euclidean correlators [438, 439]. This contribution
arises because in the decon�ned phase charmonium spectral functions contain
information not only about quark anti-quark pairs (bound or un-bound) but
also about scattering states of single heavy quarks in the plasma, i.e., heavy-
quark transport (see e.g., Ref. [440]; this topic is discussed in some detail in
Sec. 5.2). When the zero-mode contribution is subtracted the temperature
dependence of charmonium correlators turns out to be very small even in the
case of the P -waves [438, 439]. In the next subsection we will discuss how
this can be understood in terms of potential models.

6.1.4 Charmonium spectral functions and potential
models

Traditionally, charmonium properties at �nite temperature have been studied
using potential model with some phenomenological version of a screened po-
tential [434�437, 441�443]. In more recent studies the free or internal energy of
the static quark anti-quark pair calculated on the lattice, or the combination
of the two, has been used as a potential in a Schrödinger equation (see, e.g.,
Refs. [441�443]). At zero temperature, the potential is well de�ned in terms
of an e�ective theory, potential Non-Relativistic QCD (pNRQCD) [416, 444].
In the absence of the corresponding e�ective �eld theory approach at �nite
temperature (see, however, Ref. [445] for recent progress in this direction), the
de�nition of the potential is Jsomewhat ambiguous. The free energy and the
internal energy provide lower and upper bounds on the potential. Typically,
the dissociation temperatures have been de�ned as the point of zero bind-
ing. Clearly, such a de�nition overestimates the dissociation temperatures,
and their precise value depends on the choice of the potential. However, for
any choice of the potential consistent with lattice data the binding energy of
charmonium states will decrease with the temperature (see, e.g., Ref. [441]).

A more consistent approach to the problem of quarkonium melting relies on
the calculation of spectral functions in potential models. For su�ciently heavy
quarks the spectral function can be related to the non-relativistic Green func-
tions [446�448] or to the T -matrix [368]. One can study the spectral functions
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Fig. 6.3 The S-wave charmonium spectral functions at di�erent temperatures as calcu-
lated in the potential model of Ref. [446, 447]. The inset shows the comparison of the
corresponding Euclidean correlators to the results of lattice calculations.

at di�erent temperatures and the absence of a resonance peak in the spectral
function will determine more precisely the dissolution temperatures of di�er-
ent charmonium states. From the spectral functions the Euclidean time cor-
relation functions can be starightforwardly calculated using Eq. (6.9), which,
in turn, can be compared to the correlation functions calculated directly in
lattice QCD. Such comparisons provide valuable checks for potential models.
In Fig. 6.3 the spectral function calculated in a potential model is shown for
S-wave charmonia together with the corresponding Euclidean time correla-
tion functions [446]. The 1S charmonium state melts at temperatures around
1.2Tc, but this does not lead to large changes in the correlation functions
which agree well with the results of the lattice calculations. The situation is
similar in the case of the P -wave charmonia (see discussion in Ref. [446]). The
analyses of the spectral functions and the corresponding Euclidean time cor-
relators have been performed for other choices of potential and temperature
dependent quark masses and lead to similar �ndings [368, 449], albeit with
quantitatively varying conclusions. Of course, the precise shape of the spec-
tral functions as well as the values of the dissociation temperatures depend
on the assumed potential and are somewhat di�erent in di�erent studies.
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6.2 Charm(onium) production within the statistical
hadronization model

6.2.1 Introduction

In a recent series of publications [391, 450, 451] it has been demonstrated that
data on J/ψ and ψ′ production in nucleus-nucleus collisions, in the energy
range from top SPS energy (

√
sNN ≈ 17 GeV) on, can be interpreted within

the statistical hadronization model proposed in Ref. [452, 453]. This includes
the centrality and rapidity dependence of recent data at RHIC (

√
sNN=200

GeV) [454], as shown in Fig. 6.4 [451]. The extrapolation of these results to
LHC energy (

√
sNN=5.5 TeV) yields a rather striking centrality dependence

[450, 451], also shown in Fig. 6.4. Depending on the magnitude of the c̄c cross
section in central Pb-Pb collisions [455], even an enhancement of J/ψ produc-
tion compared to pp collisions (RJ/ψAA > 1) is expected due to hadronization
(at chemical freeze-out) of uncorrelated (at these high energies) charm quarks
thermalized in QGP.
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Fig. 6.4 Centrality dependence of the relative J/ψ yield R
J/ψ
AA at midrapidity [451].

In this section results of the statistical model for charm are presneted
for the energy range from near threshold (

√
sNN ≈ 6 GeV) to RHIC [381].

The lower end of this range is relevant for the CBM experiment [456] at
the future FAIR facility. One of the motivations for such studies was the ex-
pectation [398, 456] to provide, by a measurement of D-meson production
near threshold, information on their possible in-medium modi�cation near
the phase boundary. However, the cross section σcc̄ is governed by the mass
of the charm quark mc ≈ 1.3 GeV, which is much larger than any soft Quan-
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tum Chromodynamics (QCD) scale such as ΛQCD. Therefore we expect no
medium e�ects on this quantity.1 The much later formed D-mesons, or other
charmed hadrons, may well change their mass in the hot medium. The re-
sults of various studies on in-medium modi�cation of charmed hadrons masses
[311, 397, 398, 406, 407, 414, 457�459] are sometimes contradictory. What-
ever the medium e�ects may be, they can, because of the charm conservation,
σcc̄ = 1

2 (σD+σΛc+σΞc+...)+(σηc+σJ/ψ+σχc+...), only lead to a redistribu-
tion of charm quarks [381]. This argument is essentially model-independent
and applies equally well at all energies. Here we will consider various types
of scenarios for medium modi�cations and study their e�ect within the sta-
tistical hadronization framework in the energy range from charm threshold
to collider energies. In this context, we note that excellent �ts of the com-
mon (non-charmed) hadrons to predictions of the thermal model have been
obtained using vacuum masses (see ref. [460] and references therein). An at-
tempt to use modi�ed masses for the RHIC energy [461] has not produced
a conclusive preference for any mass or width modi�cations of hadrons in
medium. On the other hand, some evidence for possible mass modi�cations
was presented in the chiral model of [462].

6.2.2 Assumptions and ingredients of the statistical
hadronization model

The statistical hadronization model (SHM) [450, 452, 453] assumes that the
charm quarks are produced in primary hard collisions and that their total
number stays constant until hadronization. Another important factor is ther-
mal equilibration in the QGP, at least near the critical temperature, Tc. We
neglect charmonium production in the nuclear corona [450], since we focus in
the following on central collisions (Npart=350), where such e�ects are small.

In the following we brie�y outline the calculation steps in our model
[450, 452, 453]. The model has the following input parameters: i) charm pro-
duction cross section in pp collisions; ii) characteristics at chemical freeze-out:
temperature, T , baryochemical potential, µb, and volume corresponding to
one unit of rapidity V∆y=1 (our calculations are for midrapidity). Since, in
the end, our main results will be ratios of hadrons with charm quarks noma-
lized to the c̄c yield, the detailed magnitude of the open charm cross section
and whether to use integrated yield or midrapidity yields is not crucial.

The charm balance equation [452, 453], which has to include canonical
suppression factors [466] whenever the number of charm pairs is not much
larger than 1, is used to determine a fugacity factor gc via:

1 Such a separation of scales is not possible for strangeness production, and the situation
there is not easily comparable.
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Fig. 6.5 Energy dependence
of the charm production cross
section in pp collisions. The
NLO pQCD values [336] are
compared to calculations using
PYTHIA and to data in pA
collisions, taken from ref. [463].
Our extrapolations for low en-
ergies are shown with continu-
ous lines, for total and midra-
pidity (dσcc̄/dy) cross section.
The open square is a midra-
pidity measurement in pp col-
lisions [464]. The dashed line
with dots indicates a parame-
terization of the measured en-
ergy dependence of the J/ψ
production cross section [465].

Ndir
cc̄ =

1
2
gcN

th
oc

I1(gcN th
oc )

I0(gcN th
oc )

+ g2
cN

th
cc̄ . (6.11)

Here Ndir
cc̄ is the number of initially produced cc̄ pairs and In are modi-

�ed Bessel functions. In the �reball of volume V the total number of open
(N th

oc = nthocV ) and hidden (N th
cc̄ = nthcc̄V ) charm hadrons is computed from

their grand-canonical densities nthoc and n
th
cc̄ , respectively. This charm balance

equation is the implementation within our model of the charm conservation
constraint. The densities of di�erent particle species in the grand canoni-
cal ensemble are calculated following the statistical model [460]. The balance
equation (6.11) de�nes the fugacity parameter gc that accounts for deviations
of heavy quark multiplicity from the value that is expected in complete chem-
ical equilibrium. The yield of charmonia of type j is obtained as: Nj = g2

cN
th
j ,

while the yield of open charm hadrons is: Ni = gcN
th
i I1(gcN

th
oc )/I0(gcN

th
oc ).

As no information on the charm production cross section is available for
energies below

√
s=15 GeV, we have to rely on extrapolation. The basis for

this extrapolation is the energy dependence of the total charm production
cross section calculated in ref. [336] for the CTEQ5M parton distribution
functions in next-to-leading order (NLO), as shown in Fig. 6.5. We have scaled
these calculations to match the more recent values calculated at

√
s=200 GeV

in ref. [354]. We employ a threshold-based extrapolation using the following
expression:

σcc̄ = k(1−
√
sthr/

√
s)a(
√
sthr/

√
s)b (6.12)
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with k=1.85 µb,
√
sthr=4.5 GeV (calculated assuming a charm quark mass

mc=1.3 GeV [30]), a=4.3, and b=-1.44. The parameters a, b, k were tuned to
reproduce the low-energy part of the (scaled) NLO curve. The extrapolated
curves for charm production cross section are shown with continuous lines
in Fig. 6.5. Also shown for comparison are calculations with PYTHIA [463].
To obtain the values at midrapidity we have extrapolated to lower energies
the rapidity widths (FWHM) of the charm cross section known to be about
4 units at RHIC [354] and about 2 units at SPS [467].

With these cross section values, the rapidity density of initially produced
charm quark pairs, shown in Fig. 6.6 strongly rises from 1.1·10−3 to 1.7 for the
energy range

√
sNN=7-200 GeV. We note that the so-obtained charm produc-

tion cross section has an energy dependence similar to that measured for J/ψ
production, recently compiled and parametrized by the HERA-B collabora-
tion [465]. For comparison, this is also shown in Fig. 6.5. The extrapolation
procedure for the low-energy part of the cross section obviously implies signif-
icant uncertainties. We emphasize, however, that the most robust predictions
of our model, i.e. the yields of charmed hadrons and charmonia relative to
the initially produced cc̄ pair yield are not in�uenced by the details of this
extrapolation.

For the studied energy range,
√
sNN=7-200 GeV, T rises from 151 to 161

MeV from
√
sNN=7 to 12 GeV and stays constant for higher energies, while µb

decreases from 434 to 22 MeV [460]. The volume V∆y=1 at midrapidity, shown
in Fig. 6.7 [460] continuously rises from 760 to 2400 fm3. Due to the strong
energy dependence of charm production, Fig. 6.6, the canonical suppression
factor (I1/I0) varies from 1/30 to 1/1.2. Correspondingly, the charm fugacity
gc increases from 0.96 to 8.9, see Fig. 6.8.

Before proceeding to discuss our results, we would like to emphasize some
peculiar aspects of charm at low energies. First, the assumption of charm
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equilibration can be questionable. In this exploratory study we have never-
theless assumed full thermalization. At SPS and lower energies collision time,
plasma formation time, and charmonium (or open charm hadrons) formation
time are all of the same order [468, 469]. Furthermore, the maximum plasma
temperature may not exceed the J/ψ dissociation temperature, TD, although
recent results [446] indicate that TD can be very close to Tc. Charmonia may
be broken up by by gluons and by high energy nucleons still passing by from
the collision. In this latter case cold nuclear suppression needs to be carefully
considered (as discussed, e.g., in [470, 471]). Consequently, our calculations, in
which both charmonium formation before QGP production and cold nuclear
suppression are neglected, may somewhat underestimate the charmonium
production yield at SPS energies [450] and below.

We note that models that combine the 'melting scenario' with statistical
hadronization have been proposed [380, 472]. Alternatively, a kinetic descrip-
tion of charmonium formation by coalescence in the plasma [473�476] as well
as within transport models [477, 478] has been considered.

6.2.3 Energy dependence of charmed hadrons yield

Our main results are presented in Fig. 6.9. The left panel shows our predic-
tions for the energy dependence of midrapidity yields for various charmed
hadrons. Beyond the generally decreasing trend towards low energies for all
yields one notices �rst a striking behavior of the production of Λ+

c baryons:
their yield exhibits a weaker energy dependence than observed for other
charmed hadrons. In our approach this is caused by the increase in bary-
ochemical potential towards lower energies (coupled with the charm neutral-
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Fig. 6.9 Energy dependence of charmed hadron production at midrapidity. Left panel:
absolute yields, right panel: yields relative to the number of cc̄ pairs. Note, in both panels,
the scale factors of 10 and 100 for J/ψ and ψ′ mesons, respectively [381].

ity condition). A similar behavior is seen for the Ξ+
c baryon. These results

emphasize the importance of measuring, in addition to D-meson production,
also the yield of charmed baryons to get a good measure of the total charm
production cross section. In detail, the production yields of D-mesons depend
also on their quark content.

The di�ering energy dependences of the yields of charmed hadrons are
even more evident in the right panel of Fig. 6.9, where we show the predicted
yields normalized to the number of initially produced cc̄ pairs. Except very
near threshold, the J/ψ production yield per cc̄ pair exhibits a slow increase
with increasing energy. This increase is a consequence of the quadratic term
in the J/ψ yield equation discussed above. At LHC energy, the yield ratio
J/ψ/cc̄ approaches 1% [450], scaling linearly with σcc̄ (for details see [381]).
The ψ′ yield shows a similar energy dependence as the J/ψ, except for our
lowest energies, where the di�erence is due to the decrease of temperature
(see above). We emphasize again that this model prediction, namely yields
relative to cc̄ pairs, is a robust result, as it is in the �rst order independent on
the charm production cross section. Due to the expected similar temperature,
the relative abundance of open charm hadrons at LHC is predicted [455] to
be similar to that at RHIC energies.
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6.2.4 E�ects of in-medium modi�cation of charmed
hadrons masses

We consider two scenarios2 for a possible mass change ∆m of open charm
hadrons containing light, u or d, quarks: i) a common decrease of 50 MeV for
all charmed mesons and their antiparticles and a decrease of 100 MeV for the
Λc and Σc baryons (50 MeV decrease for Ξc); ii) a decrease of 100 MeV for all
charmed mesons and a 50 MeV increase for their antiparticles, with the same
(scaled with the number of light quarks) scenario as in i) for the baryons.
Scenario i) is more suited for an isospin-symmetric �reball produced in high-
energy collisions and was used in [414], while scenario ii) may be realized
at low energies. In both scenarios, the masses of the Ds mesons and of the
charmonia are the vacuum masses. We also note that if one leaves all D-meson
masses unchanged but allows their widths to increase, the resulting yields will
increase by 11% (2.7%) for a width of 100 MeV (50 MeV). If the in-medium
widths exhibit tails towards low masses, as has been suggested by [398], to
�rst order the e�ect on thermal densities is quantitatively comparable with
that from a decrease in the pole mass.
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Fig. 6.10 Energy dependence of the yield of charmed hadrons relative to the charm
quark pair yield for two scenarios of the mass change (left panel for scenario i), right panel
for scenario ii), see text). For the D mesons, the full and open symbols are for particles
and antiparticles, respectively. Note the factors 10 and 100 for the J/ψ and ψ′ mesons,
respectively [381].

2 The scenarios are constructed by modi�cation of the constituent quark masses of light (u
and d) quarks in the charmed hadrons by �xed amounts. Reducing, for example, the light
quark masses by 50 MeV will lower D-meson masses by 50 MeV and the Λc(Ξc) mass by
100 (50) MeV.
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The results for the two cases are presented in Fig. 6.10 as yields relative
to the number of initially-produced cc̄ pairs. As a result of the redistribution
of the charm quarks over the various species, the relative yields of charmed
hadrons may change. For example, in scenario i) the ratios of D-mesons are
all close to those computed for vacuum masses (Fig. 6.9), while for scenario
ii) the changes in the relative abundances of the D and D̄ mesons are obvious.
In both cases the Λc/D ratio is increased.

As a result of the asymmetry in the mass shifts for particles and antipar-
ticles assumed in scenario ii), coupled with the charm neutrality condition,
the production yields of D+

s and D−
s mesons are very di�erent compared to

vacuum masses. Overall, however, charm conservation leads to rather small
changes in the total yields. We emphasize that, although the charm conser-
vation equation is strictly correct only for the total cross section we expect
within the framework of the statistical hadronization model, also little in-
�uence due to medium e�ects on distributions in rapidity and transverse
momentum. This is due to the fact that the crucial input into our model is
dNAuAu

cc̄ /dy and there is no substantial D-meson rescattering after formation
at the phase boundary.

In Fig. 6.11 we demonstrate that the total open charm yield (sum over all
charmed hadrons) exhibits essentially no change if one considers mass shifts,
while the e�ect is large on charmonia. This is to be expected from eq. 6.11:
as the masses of open charm mesons and baryons are reduced, the charm
fugacity gc is changed accordingly to conserve charm. Consequently, since
the open charm yields vary linearly with gc, one expects little change with
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Fig. 6.11 Energy dependence of the relative change in the production yield of open charm
hadrons and of J/ψ meson considering di�erent scenarios for in-medium mass modi�cations
(see text) [381].
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medium e�ects in this case. In contrast, the yields of charmonia vary strongly,
since they are proportional to g2

c . To demonstrate this we plot, in Fig. 6.11,
the relative change of the yields with in-medium masses compared to the case
of vacuum masses. For this comparison, we have added a third case, namely
considering that the mass change of charmed baryons is the same as for the
mesons. Because of total charm conservation, with lowering of their masses
the open charm hadrons eat away some of the charm quarks of the charmonia
but, since the open charm hadrons are much more abundant, their own yield
will hardly change.

Note that the reduction of the J/ψ yield in our model is quite di�erent
from that assumed in [397, 457, 458, 475, 477], where a reduction in D-
meson masses leads to the opening up of the decay of ψ′ and χc into DD̄ and
subsequently to a smaller J/ψ yield from feed-down from ψ′ and χc. In all
the previous work the in-medium masses are considered in a hadronic stage,
while our model is a pure QGP model, with in-medium mass modi�cations
considered at the phase boundary.

6.2.5 Conclusions

We have investigated charmonium production in the statistical hadronization
model at lower energies. An interesting result is that the yield of charmed
baryons (Λc, Ξc) relative to the total cc̄ yield increases strongly with decreas-
ing energy. Below

√
sNN=10 GeV, the relative yield of Λc exceeds that of any

D meson except D̄0, implying that an investigation of open charm production
at low energies needs to include careful measurements of charmed baryons,
a di�cult experimental task. The charmonium/open charm yield rises only
slowly from energies near threshold to reach ∼1% at LHC energy. Note that
this ratio depends on the magnitude of the charm cross section, further un-
derlining the importance to measure this quantity with precision. We have
also investigated the e�ect of possible medium modi�cations of the masses of
charmed hadrons. Because of a separation of time scales for charm quark and
charmed hadron production, the overall charmed meson and baryon cross
section is very little a�ected by in-medium mass changes, if charm conser-
vation is taken into account. Measurable e�ects are predicted for the yields
of charmonia. These e�ects are visible at all beam energies and are more
pronounced towards threshold.
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6.3 Charmonium transport in hot and dense medium

6.3.1 Introduction

The J/ψ suppression signature in nuclear collisions (possibly indicating de-
con�nement [417]) is de�ned as a reduced J/ψ yield per binary nucleon-
nucleon collision in a heavy-ion reaction, relative to elementary p+p reactions
at the same energy. This is quanti�ed by the so-called nuclear modi�cation
factor (sometimes also referred to as suppression factor, SJ/ψ),

R
J/ψ
AA =

dNAA
J/ψ/dy

Ncoll · dNpp
J/ψ/dy

, (6.13)

where Ncoll denotes the number of binary collisions for a given centrality
class, and dNJ/ψ/dy the rapidity density of the J/ψ yield integrated over

transverse momentum. J/ψ suppression is characterized by RJ/ψAA being less
than one. Since the mass of heavy quarks (charm and bottom) is much larger
than typical secondary (thermal) excitations of the system created in nuclear
collisions, mc,b � T , they are mainly produced through initial hard pro-
cesses. Therefore, the background for theoretically calculating heavy-�avor
production is rather solid and the study of J/ψ production can yield impor-
tant information on the properties of the quark-gluon plasma (QGP) formed
in the early stage of nuclear collisions.

Charmonia are bound states of charm and anti-charm quarks (recall
Fig. 5.1), and J/ψ is the ground (1S) state of charmonia with spin 1 found
by Richter and Ting in 1974. The 1P and 2S states with spin 1 are χc and
ψ′. The JP=1− vector mesonsJ/ψ and ψ′ can decay into a pair of leptons
(µ+µ− or e+e−) and are thus directly measurable in experiment, while it
is more di�cult to detect χc's. In p+p collisions, the contribution from χc
decays to the �nal-state J/ψ yield (�feeddown�) is about 30% at SPS energy,
but it is less than 10% for the ψ′ decay [479].

The formation time of a cc̄ pair produced through hard interactions (e.g.,
gluon fusion) is about 1/mc ∼ 0.1 fm/c, and only a small fraction of the cc̄
pairs (∼ O(10−2)) eventually form charmonia in a color-singlet state. Since
charmonium formation is a non-perturbative process, it is di�cult to directly
apply QCD in the study of the formation processes. E�ective methods include
the color-evaporation, color-singlet and color-octet models.

Since cc̄ pairs are created via hard processes, the J/ψ yield in p+A colli-
sions should be proportional to the number of binary nucleon-nucleon inter-
actions. However, from the experimental �ndings in p+A collisions (as well as
for light nuclear projectiles), there exists already a J/ψ suppression, the so-
called �normal� nuclear suppression induced by multiple scattering between
J/ψ (or its pre-resonance state) and spectator nucleons [480]. In addition to
nuclear absorption, the primordially produced charmonia su�er �anomalous�
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Fig. 6.12 A schematic illustration of J/ψ production and suppression in relativistic heavy
ion collisions.

suppression when they pass though the hot and dense medium created in
heavy-ion collisions [481, 482].

The number of charm quarks created in the initial stage of heavy-ion col-
lisions increases substantially with collision energy. While a small production
of charm quarks at SPS energy is expected (about ∼0.2 in central Pb-Pb),
there are more than 10 cc̄ pairs produced in a central Au+Au collision at
RHIC (at

√
sNN = 0.2 TeV) [382], and the number is probably over 200 in

heavy-ion collisions at LHC (at
√
sNN = 5.4 TeV) [483]. The large number of

uncorrelated cc̄ pairs in the QGP can recombine to form charmonia (primarily
J/ψs). Obviously, this regeneration will enhance the J/ψ yield, and the mo-
mentum spectra of the �nal-state J/ψ's may be quite di�erent from the one
with only initial production. The time evolution of J/ψ initial production,
nuclear absorption, anomalous suppression and continuous regeneration in
the course of a heavy-ion reactions are schematically illustrated in Fig. 6.12.

6.3.2 Normal and anomalous J/ψ suppression

Proton-nucleus (p+A) collisions are believed to be a good measure of nor-
mal (nuclear) J/ψ suppression. Suppose the projectile proton collides with
a nucleon at (b, z) (characterizing the transverse and longitudinal positions)
in the target nucleus and produces a J/ψ or its pre-resonant state on a very
short time scale. On its way out of the nucleus, the produced J/ψ collides
inelastically with spectators which can be expressed via an absorption factor
(or survival probability) as
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Fig. 6.13 Normal nuclear suppression of the J/ψ at SPS energy. The y-coordinate is pro-
portional to the suppression factor SJ/ψ and the x-coordinate is the e�ective nuclear path
length, L = 〈T 〉/2ρ0, with ρ0 being normal nuclear density. The dashed line represents a
�t using the expression (6.15). The �gure is taken from Ref. [484].

Snuc
J/ψ =

1
A

∫
d2bdz ρ(b, z)e−

R∞
z
dz′σabsρ(b,z

′)

=
1

Aσabs

∫
d2b

(
1− e−σabsT (b)

)
, (6.14)

where ρ is the nucleon density distribution function, σabs the J/ψ absorp-
tion cross section, and T (b) =

∫
dzρ(b, z) is the thickness function. Strictly

speaking, there should be a factor of (A − 1)/A in the exponential, which,
however, can be neglected for su�ciently large A. For small absorption cross
sections, the survival probability can be simpli�ed as

Snuc
J/ψ = e−σabs〈T 〉/2, (6.15)

where 〈T 〉 = 1
A

∫
d2b [T (b)]2 is the average thickness of the nucleus A. From

the comparison with the SPS data [484] (see Fig. 6.13), the average nuclear
absorption cross section at SPS energy is extracted as σabs = 6.5 ± 1.0 mb,
similar for both J/ψ and ψ′. Early photon production experiments [485] sug-
gest that the inelastic J/ψ+nucleon cross section (3.5±0.8 mb) is signi�cantly
less than the above value, and the inelastic cross section for ψ′ is almost four
times the value for J/ψ. The most recent analysis of NA50 data [486], which
features an increased sensitivity to ψ′ production, exhibits some of this trend,
with σabs = 4.1± 0.5 mb and 8.2± 1.0 mb for the J/ψ and ψ′, respectively.
This indicates that the cc̄ states su�ering from nuclear absorption have al-
ready (at least partially) evolved into their �nal states, even though the role
of pre-resonant states could still be present.
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Fig. 6.14 Anomalous J/ψ suppression at SPS energy. The �gure is taken from Ref. [487].

Note that the e�ect of nuclear absorption depends strongly on the passing
time dt = 2RA/ sinhYB of the two colliding nuclei, where RA is the nuclear
radius and YB is their rapidity in the center-of-mass frame. While at SPS
energy the collision time is about 1 fm/c and normal suppression is large,
the cold nuclear matter e�ect in extremely energetic nuclear collisions should
be small, due to the small collision time, e.g., dt ∼ 0.1 fm/c at RHIC and
1/200 fm/c at LHC.

While Fig. 6.13 illustrates that the nuclear absorption mechanism can well
account for the experimental data in p+A and light nuclear collision systems
at SPS energy, the experiments with heavy nuclear projectile and target (Pb-
Pb and In-In) show that the suppression of J/ψ (and ψ′) in semi-/central
collisions goes well beyond normal nuclear absorption [487�489], see Fig. 6.14.
This phenomenon, called �anomalous� J/ψ suppression, is considered as one
of the most important experimental results in relativistic heavy-ion collisions
at SPS [490]. Various theoretical approaches have been put forward to explain
the anomalous suppression [481, 482, 491, 492].

The �rst mechanism is based on the original prediction of Matsui and
Satz [417]: the Debye screening e�ect in the QCD medium created in the
early stage of nuclear collisions leads to J/ψ melting. The properties of the
charmonium states in QGP and in vacuum are presumably quite di�erent. In
the vacuum, the e�ective static potential between a c and a c̄ can be written
as

V (r) = −4
3
αs(r)
r

+ σr , (6.16)

as recently con�rmed in lattice QCD computations, see, e.g., Ref. [425]. The
�rst and the second term in eq. (6.16) are associated with one-gluon exchange
and a linear con�nement potential, respectively. At �nite temperature, the
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potential is modi�ed due to color screening, which can be implemented in a
phenomenological way as [434]

Vmed(r) = −4
3
αs(r)
r

e−mDr + σr

(
1− e−mDr

mDr

)
, (6.17)

where 1/mD(T ) is called Debye screening length. The heavy-quark free en-
ergies computed in lattice QCD [493] at di�erent temperatures are, how-
ever, more involved, cf. Fig. 6.1. In particular, as discussed in the pre-
ceeding Sec. 6.1, it is currently an open question whether the free energy,
F = U − TS, or the internal energy, U , is the appropriate quantity to be
identi�ed with a heavy-quark potential suitable for use in in Schrödinger
or Lippmann-Schwinger equation [368, 447, 448, 494�496]. In any case, due
to the weakening of the potential with increasing temperature, the resonant
states of cc̄ dissociate at some Mott temperature Td [417]. If the maximum
temperature of the medium produced in heavy-ion collisions reaches the Mott
temperature, the Debye screening e�ect results in anomalous charmonium
suppression. Recent lattice calculations of charmonium spectral functions in
the decon�ned phase suggest that the J/ψ can survive up to temperatures
of Td ' 1.6 − 2 Tc [431, 497, 498] (Tc: (pseudo-) critical temperature of
the decon�ned phase transition), while the excited states ψ′ and χc disap-
pear around Tc [431], see also Sec. 6.1. Employing the heavy-quark potential
extracted from the lattice calculation, the potential models generally sup-
port the results from the spectral function analyses [368, 447, 448, 494�496],
even though no quantitative conclusions on the dissociation temperatures
have been reached yet. A common conclusion from the lattice-based calcula-
tions is that di�erent charmonium states correspond to di�erent dissociation
temperatures. This leads to the sequential dissociation model [499, 500] of
describing anomalous charmonium suppression: With continuously increas-
ing temperature of the �reball, ψ′ will melt �rst, then χc dissociates, and
�nally J/ψ disappears. Considering the fact that about 40% of the �nal state
J/ψ's originate from the decay of ψ′ and χc in p+p and p+A collisions, the
anomalous J/ψ suppression in Pb+Pb collisions at SPS is associated with
the dissociation of ψ′ and χc in the produced �reball. A precise measurement
on ψ′ and especially on χc yield in the future can help to check the sequential
model. Along similar lines, J/ψ suppression in hot and dense medium has
been described in a general threshold model without considering microscopic
dynamics [501]. In this model the J/ψ suppression function is written as

SJ/ψ(b) =
∫
d2s SnuclJ/ψ (b, s) Θ(nc − np(b, s)) , (6.18)

where SnuclJ/ψ (b, s) is the J/ψ survival probability after nuclear absorption, b is
the impact parameter, and s is the transverse coordinate of J/ψ. The density
np(b, s) in the step function is proportional to the energy density of the
matter at position (b, s). In the hot and dense part of the �reball, where np is
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Fig. 6.15 The J/ψ suppression at SPS energy. The solid line is the calculation in the
threshold model and the dashed line is the result with only nuclear absorption. The �gure
is taken from Ref. [502].

larger than a critical value nc, all the J/ψ's are absorbed by the matter, and
those J/ψ's outside this region only su�er normal suppression. The threshold
density nc in this model is a parameter, taken, e.g., as the maximum np in
S+U collisions at SPS (where no anomalous J/ψ suppression is observed). If
the matter with np > nc is QGP, the critical density nc can be considered
as the threshold value to create QGP. Despite its simplicity, the threshold
explains well the anomalous suppression in Pb-Pb collisions at SPS [502], see
Fig. 6.15.

The above analyses utilizing the Debye screening e�ect is typically based
on the simplifying assumption of a constant temperature in connection with
a sharp transition of the inelastic charmonium widths from zero (stable be-
low Td) to in�nity (dissolved above Td). However, the volume of the pro-
duced �reball in relativistic heavy-ion collisions is relatively small and ex-
pands rapidly, implying rather fast temperature changes and short �reball
lifetimes. In this case, the conclusion from the static Debye screening e�ect
may deviate from the real system, and it becomes essential to include the
concrete interactions between partons and charmonia, leading to sizable in-
elastic reaction rates comparable to the �reball expansion (or cooling) rate.
In particular, the charmonia can be destroyed below the dissociation temper-
ature. Debye screening is still operative, by controlling the binding energy
which in turn determines the phase space (and thus the width) of the dy-
namic dissociation reactions [380]. An important such process in the QGP is
the (leading-order) gluon dissociation process [503] g+ J/ψ → c+ c̄, in anal-
ogy to the photon dissociation process of electromagnetic bound states [504].
For small binding energies (i.e., when approaching the dissociation temper-
ature), the phase space for gluon dissociation shrinks and next-to-leading
order (NLO) processes take over [380, 505], most notably inelastic parton
scattering g(q, q̄) + J/ψ → g(q, q̄) + c+ c̄. Not only partons in the decon�ned
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phase can induce anomalous suppression, but also the secondary particles
like π, ρ and ω (so-called comovers) in a hot and dense hadron gas can inter-
act with charmonia inelastically and cause J/ψ suppression [506�509]. The
suppression due to the comover e�ect can be schematically expressed as

ScoJ/ψ = e−
R
dτ〈vσco〉ρco(τ) , (6.19)

where ρco(τ) is the comover density at proper time τ at the J/ψ's position,
and the inelastic cross section (multiplied by the relative velocity) is averaged
over di�erent kinds of comovers and the interaction energy. The comover den-
sity, ρco(τ), is normally obtained through some kind of evolution mechanism
of the matter (generally assumed to be of Bjorken-type, i.e., proportional to
the inverse of the proper time, 1/τ), and is �tted to the measured �nal-state
hadron yield dNh/dy. The cross section σco is an adjustable parameter in the
calculation. In some calculations the comover densities turn out to be rather
high, corresponding to energy densities well above the critical one computed
in lattice QCD. Consequently, the pertinent comover-interaction cross section
assumes rather small values, e.g., σco = 0.65 mb in Ref. [509], which are more
suitably interpreted as partonic comover interactions.

A more detailed description of the matter evolution together with a
dynamical treatment of the interactions between charmonia and comovers
has been carried out in the hadronic transport models UrQMD [510] and
HSD [478] where the J/ψ motion is traced microscopically throughout the
medium. The charmonium-hadron cross sections, however, remain input pa-
rameters to these models. Alternatively, one may employ theoretical calcu-
lations of charmonium dissociation cross sections with light mesons, as com-
puted in either quark [511] or hadronic models [512, 513]. By adjusting the
comover cross sections (and possibly other parameters, such as formation
times), interactions at the hadron level can reproduce the SPS data of J/ψ
suppression [478, 509], see Fig. 6.16.

Motivated by the lattice QCD �ndings of surviving J/ψ bound states well
above Tc, recent work in Ref. [514] has treated the formation and evolution
of c-c̄ correlations more microscopically. In a weakly coupled QGP (wQGP),
charm quarks would �y away from each other as soon as enough energy is
available, while in a strongly coupled QGP (sQGP), the strong attraction
between quarks (see Fig. 6.1), as well as their small di�usion constant in the
sQGP, opens the possibility of returning to the J/ψ ground state, leading to
a substantial increase in survival probability [514]. The charm-quark motion
in the medium is described by a Langevin equation,

dp
dt

= −γp + η −∇V, (6.20)

where η is a Gaussian noise variable, normalized such that 〈ηi(t)ηj(t′)〉 =
2mcT with i, j indexing transverse coordinates (mc: charm quark mass). For
strongly coupled matter, the drag coe�cient characterizing the thermaliza-
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Fig. 6.16 The J/ψ suppression at SPS energy. The lines represent calculations in the
comover model. The �gure is taken from Ref. [509].

tion of charm quarks in the medium is large, γ ' (2 − 4) πT 2

1.5mc
. Taking the

internal energy as the heavy-quark potential (extracted from a lattice-QCD
computed free energy, see Fig. 6.1) the survival probability of charmonia in
sQGP is larger than that in wQGP. This qualtitatively explains why there
is no large di�erence between suppressions at SPS and RHIC. When using
e�ective potentials which are identi�ed with the free energy, F , or a lin-
ear combination the internal energy U and F , the charmonium binding is
less pronounced leading to dissociation temperatures (i.e., zero binding) be-
low 1.5 Tc even for the J/ψ, as compared to above 2 Tc when employing
U [368, 494]. We also recall that a small charm di�usion constant can be
obtained from elastic c-quark interactions based on the internal energy as a
potential, cf. Sec. 5.2.2.

6.3.3 Regeneration

The normal and anomalous suppressions discussed above apply to initially
produced charmonia. In A+A collisions at SPS energy and below, there is
typically no more than one cc̄ pair produced per central Pb-Pb collision
(Ncc̄ '0.2 at Elab=158 AGeV). Thus, if the two quarks can not form a (pre-
resonant) charmonium bound state close to their creation point, the prob-
ability to recombine in the medium and form a resonant state is small and
can probably be neglected. However, for nuclear collisions at collider ener-
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gies (RHIC and LHC), the situation becomes quite di�erent. In a central
Au+Au collision at the maximum RHIC energy, about 10-20 cc̄ pairs are
produced [382, 483], and the uncorrelated c and c̄ from di�erent pairs have a
signi�cant probability (proportional to square of the number of cc̄ pairs) to
meet and form a charmonium bound state in the medium. The J/ψ regen-
eration in partonic and hadronic (or mixed) phases arises as a possible new
mechanism for charmonium production in heavy-ion collisions at RHIC and
LHC.

Within the statistical hadronization model, charm quarks are assumed to
equilibrate kinetically and secondary charmonium production entirely occurs
at the hadronization transition, as discussed in Sec. 6.2.

Recent lattice calculation of charmonium spectral functions [431, 497, 498]
(see also Sec. 6.1) suggest that J/ψ can exist in a thermal environment at
temperatures well above the decon�nement phase transition. Therefore, un-
like in the statistical model, charmonia in the kinetic formation model [473�
476, 515, 516] can be regenerated continuously throughout the QGP region,
and the formed J/ψ's re�ect the initially produced charm-quark spectra and
their modi�cation due to the interaction with the medium. In the kinetic ap-
proach of Refs. [473, 474, 515], J/ψ production during the entire lifetime of
ithe decon�ned phase is dynamically calculated through (related) formation
and dissociation processes at �nite temperature and density. The simplest
dissociation reaction utilizes absorption of individual (decon�ned) gluons in
the medium to �ionize� the color-singlet J/ψ, g+ J/ψ → c+ c̄, resulting in a
cc̄ pair in a color-octet state. The inverse of this process serves as the corre-
sponding formation reaction, in which a cc̄ pair in a color-octet state emits
a color-octet gluon and falls into the color-singlet J/ψ bound state. The dis-
sociation cross section σD has been calculated in the OPE-based model of
gluon dissociation of a deeply bound heavy quarkonium [517, 518], and the
formation cross section is obtained through detailed balance. The competition
between the J/ψ formation and suppression is characterized by the kinetic
equation [474]

dNJ/ψ

dτ
= λFNcNc̄/VFB(τ)− λDNJ/ψρg , (6.21)

where ρg is the gluon density in the thermalized medium, and λ = 〈σvrel〉
the reactivity determined by the inelastic cross section (σ) and initial rela-
tive velocity (vrel), averaged over the momentum distribution of the initial
particles. The �reball volume, VFB , is modeled according to the expansion
and cooling pro�les of the heavy-ion reaction zone. The �rst term on the
right hand side of eq. (6.21) represents formation, and the second term ac-
counts for anomalous suppression of the produced charmonia in the medium.
Due to the quadratic behavior of the formation rate on the charm-quark
number, one expects an increase with centrality of formed J/ψ per binary
collision. The medium is usually considered as an ideal gas of quarks and
gluons, described by perfect Bjorken (1+1 dimensional) hydrodynamics. In-
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tegrating (6.21) over the QGP lifetime, one obtains the �nal J/ψ yield [473].
When investigating charmonium 3-momentum spectra [474] even the use of
pQCD calculated charm-quark distributions leads to rapidity and transverse-
momentum spectra of the formed quarkonia which are narrower than those
expected from diagonal pairs (initially created together) in the absence of a
decon�ned medium. For thermalized charm quarks with collective �ow con-
trolled by hydrodynamics, the J/ψ spectra are substantially narrower and
contain information on those of the underlying heavy quarks.

A common assumption of the statistical hadronization model [452] and the
above kinetic model [473] is that the initially produced charmonia are entirely
destroyed (or not formed) in the (early) QCD medium. This is probably
a good approximation for central heavy-ion collisions at RHIC and LHC
energies, but for nuclear collisions at SPS and lower energies, as well as for
peripheral collisions and light ions (even at higher energies), one needs to
include initial production together with normal and anomalous suppressions.
This was �rst done in the two-component model of Refs. [380, 472], where
the �nal yield of charmonia is the sum of �direct� and �thermal� production,

NJ/ψ = Ndir
J/ψ +N th

J/ψ . (6.22)

The direct component are charmonia initially produced via hard processes
with subsequent nuclear absorption and anomalous suppression in the QGP
[380, 472]. Regeneration in this model is restricted to statistical hadroniza-
tion at the boundary of the con�nement phase transition, as in the statistical
hadronization model. Both direct and thermal components are subsequently
subject to hadronic dissociation processes. The two-component model has
been further developed into a kinetic rate-equation approach in Ref. [475],
where a di�erential equation similar to eq. (6.21) has been solved in an ex-
panding thermal �reball background,

dNΨ
dτ

= −ΓΨ (NΨ −N eq
Ψ ) , (6.23)

formulated in terms of the charmonium equilibrium limits, N eq
Ψ , and in-

elastic dissociation rates, ΓΨ . The former have been evaluated including
in-medium masses of charm quarks and open-charm hadrons in the QGP
and hadron gas (HG), respectively, as well as a schematic correction for
incomplete thermalization (determined by a charm-quark relaxation time,
τ eq
c ); the inelastic reaction rates account for in-medium binding energies of
charmonia. The above form of the rate equation allows to incorporate in-
elastic processes beyond 2 ↔ 2 scattering, which is particularly important
for small charmonium binding energies where inelastic 2 ↔ 3 processes,
g(q, q̄)+J/ψ → g(q, q̄)+c+ c̄, become important (instead of gluo-dissociation
used in the kinetic model of Ref. [473]). In the HG, inelastic interactions with
pions (π+J/ψ → D+D̄∗, D̄+D∗) and ρ mesons (ρ+J/ψ → D+D̄,D∗+D̄∗)
are accounted for, which mostly a�ect the ψ′ abundance. This approach has
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Fig. 6.17 The centrality dependence of the nuclear modi�cation factor R
J/ψ
AA calculated

in the thermal rate-equation approach of Ref. [475] at RHIC energy. The �gure is taken
from Ref. [519].

largely con�rmed the results of the 2-component model and can describe well
the J/ψ production from SPS to RHIC energy. At SPS energy, the direct
production prevails over the thermal component for S+U (Elab = 200 A
GeV) and Pb+Pb (Elab = 158 A GeV) collisions at any centrality [472]. The
thermal contribution sets in when the temperature of the system reaches the
critical value for decon�nement phase transition and grows with increasing
open-charm production. At RHIC energy, the J/ψ yield is still dominated by
initial production for peripheral collisions, but regeneration becomes compa-
rable (or even exceeds) direct production for semi-/central collisions, albeit
a signi�cant uncertainty due to incomplete charm-quark thermalization re-
mains [519, 520], see Fig. 6.17.

In the above kinetic rate equation approaches, charmonia are essentially
regenerated at or before the hadronization transition. J/ψ regeneration
may also occur in hadron matter by considering the backward channels
D + D̄ → J/ψ+ mesons through detailed balance [478]. While the regen-
eration is negligible at SPS energy, its contribution to the �nal J/ψ yield is
essential and comparable to the dissociation by the comoving mesons at ex-
tremely relativistic energies (note, however, that the comover densities may
be of the same magnitude as the critical energy density, εc '1 GeV/fm3).
Also in this approach, regeneration explains why the total J/ψ suppression
at RHIC energy as a function of centrality is similar to the suppression at
SPS energy [521].

Recent RHIC data on the rapidity dependence of the nuclear modi�ca-
tion factor [454] show that the J/ψ yield in the forward rapidity region
(|y| ∈ [1.2, 2.2]) is smaller than that in the central rapidity region (|y| < 0.35).
This phenomenon is hard to explain in models with only initial production
mechanisms, since the anomalous suppression in the central region, where
the highest temperatures are expected, should be stronger than that at for-
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ward/backward rapidities. Considering that the regeneration occurs mainly
in the central region, this J/ψ rapidity dependence is probably an evidence
for charmonium regeneration in heavy ion collisions at RHIC [450, 522].

6.3.4 Transverse-momentum distributions

All models for inclusive J/ψ yields � with and without the assumption of a
QGP and with and without regeneration mechanism � describe the observed
suppression after at least one parameter is adjusted. Transverse-momentum
distribution may depend more directly on the production and regeneration
mechanisms and, therefore, contain additional information about the nature
of the medium and J/ψ, thus helping to distinguish between di�erent sce-
narios.

Anomalous suppression is not an instantaneous process, but takes a certain
time depending on the mechanism. During this time the produced charmonia
with high transverse momentum may �leak� out the parton/hadron plasma
and escape suppression [417]. As a consequence, low-pt charmonia are more
likely to be absorbed, and consequently the average transverse momentum
of the observed charmonia will show an increase which grows monotonically
with the average lifetime of the plasma. A self-consistent way to incorporate
the e�ect of leakage into the various models is through charmonium transport
equation in phase space [523�525].

The medium created in high-energy nuclear collisions evolves dynamically.
In order to extract information about the medium by analyzing the J/ψ
distributions, both the hot and dense medium and the J/ψ production pro-
cesses must be treated dynamically. Due to its large mass, the J/ψ is unlikely
fully thermalized with the medium. Thus its phase space distribution should
be governed by transport equation including both initial production (incl.
anomalous suppression) as well as regeneration. The charmonium distribu-
tion function, fΨ (pt,xt, τ |b) (Ψ = J/ψ, ψ′, χc), in the central rapidity region
and in the transverse phase space, (pt,xt), at �xed impact parameter b is
controlled by the classical Boltzmann transport equation [476]

∂fΨ
∂τ

+ vΨ · ∇fΨ = −αΨfΨ + βΨ . (6.24)

The second term on the left-hand side arises from free streaming of Ψ with
transverse velocity vΨ = pt/

√
p2
t +m2

Ψ which leads to the leakage e�ect. The
anomalous suppression and regeneration mechanisms are re�ected in the loss
term αΨ and gain term βΨ , respectively. It is assumed that the medium locally
equilibrates at time τ0, after nuclear absorption of the initially produced
J/ψ's has ceased. The latter e�ect can be included in the initial distribution,
fΨ (pt,xt, τ0|b), of the transport equation.
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Fig. 6.18 The suppression factor and 〈p2
t 〉 for J/ψ in Pb+Pb collisions at SPS as a

function of transverse energyEt. The dotted and solid lines are calculated with the comover
model without and with considering the leakage e�ect, respectively. The �gure is taken from
Ref. [524].

When the loss and gain terms are known, the transport equation can be
solved analytically with the result

fΨ (pt,xt, τ |b) = fΨ (pt,xt−vΨ (τ−τ0), τ0|b)e−
R τ
τ0
dτ ′αΨ (pt,xt−vΨ (τ−τ ′),τ ′|b)

+
∫ τ

τ0

dτ ′βΨ (pt,xt−vΨ (τ−τ ′), τ ′|b)e−
R τ
τ′ dτ

′′αΨ (pt,xt−vΨ (τ−τ”),τ”|b). (6.25)

The �rst and second terms on the right-hand side indicate the contribution
from initial production and continuous regeneration, respectively. Both su�er
anomalous suppression. The coordinate shift xt → xt − vΨ∆τ re�ects the
leakage e�ect during the time period ∆τ .

At SPS energy [523, 524] regeneration can be neglected by setting βΨ =
0. In the comover-interaction model [509] for the suppression mechanism,
the J/ψ suppression and averaged transverse momentum 〈p2

t 〉 are shown in
Fig. 6.18. The calculation without leakage, obtained by setting vΨ = 0, does
not �t the data for 〈p2

t 〉, even in the domain of low transverse energy, Et
(which in the NA50 experiment is used as a measure of centrality). Only
when the leakage e�ect is taken into account, the calculation agrees well
with the data. Since only high-pt charmonia are sensitive to the leakage
e�ect, and since they are only a small fraction of the inclusive yield, both
calculations with and without leakage can �t the J/ψ yield very well. The
leakage e�ect on the transverse-momentum distribution is not sensitive to the
underlying mechanism; the calculation [524] with the threshold model [502]
as the suppression mechanism gives a similar structure of 〈p2

t 〉 for J/ψ.
At RHIC energy [476, 525] we should include the contribution from the

continuous regeneration in QGP (see also Refs. [450, 474, 520]). Since the
hadronic phase occurs later in the evolution of heavy ion collisions when the
density of the system is lower compared to the early hot and dense period, the
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t 〉 for J/ψ at RHIC energy as a function of number of binary collisions.

The left and right panel correspond to pQCD calculated and thermalized charm-quark
distributions, respectively. The �gure is taken from Ref. [476].

hadronic dissociation can, as a �rst approximation, be neglected. Considering
only the gluon dissociation process for the loss term αΨ and its inverse process
for the gain term βΨ , and determining the thermal gluon distribution and
the QGP space-time region by solving the ideal hydrodynamic equations, the
〈p2
t 〉 of the J/ψ is shown in Fig. 6.19 as a function of the number of binary

collisions, Ncoll. For both the pQCD calculated (left panel) and thermalized
(right panel) charm-quark distributions, the momentum spectra are indeed
more sensitive to the production mechanism than the integral yield. For the
initially produced J/ψ's, the multiple gluon scattering in the initial state and
the leakage e�ect due to the anomalous suppression lead to a 〈p2

t 〉 broadening.
For the regenerated J/ψ's, the charm quarks in the pQCD scenario undergo
no rescattering in the initial state nor in the QGP, and they are similar to the
statistical distribution in the thermal scenario. The 〈p2

t 〉 of the regenerated
J/ψ's is much smaller than that of the initially produced J/ψ's. In both
scenarios, only the full calculation with both production mechanisms can
�t the experimental data reasonable well. Since the collective �ow develops
with time, the 〈p2

t 〉 for the suddenly produced J/ψ's on the hadronization
hypersurface should be larger than the result for continuously regenerated
J/ψ's in the whole volume of QGP.

6.3.5 Charmonia in heavy-ion collisions at low energies

While in heavy-ion collisions at RHIC and LHC the formed medium is char-
acterized by high temperatures and low net baryon densities, at relatively
low energies, such as at FAIR, highly compressed baryon matter at low tem-
perature is anticipated. Monte Carlo simulations [526] indicate the maximum
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energy and baryon density in a central Au+Au collision at FAIR energy to
reach ε ∼ 6 GeV/fm3 and ρ/ρ0 ∼ 10, see the detailed discussion in Part III
of this book. In the following, we will give a qualitative discussion of some of
the trends one might expect in the FAIR energy regime, based on the exper-
imental and theoretical lessons at higher energies as discussed above.

Normal vs. Anomalous Suppression. At low energies, regeneration in both
the partonic and hadronic medium is expected to be small and the initial
production will dominate the charmonium yield. Normal nuclear absorption
of the directly produced charmonia is in the time period t < td. At RHIC and
LHC energies, where the collision time td is small and the lifetime of the par-
tonic medium large, nuclear absorption is not a dominant factor, compared
to anomalous suppression. However, at low energies, where the collision time
td is much longer and the lifetime of partonic medium is much shorter, nu-
clear absorption becomes important, possibly the dominant e�ect. It has even
been argued [527] that heavy quark re-scattering in a cold nuclear medium
can fully account for the observed J/ψ suppression in Pb+Pb collisions at
SPS energy, without considering further suppression in the hot medium cre-
ated in the later expansion stages.

Transverse-Momentum Spectra. In comparison with the regenerated char-
monia in the medium, the initially produced charmonia through hard pro-
cesses have larger transverse momentum. At RHIC, the superposition of ini-
tial production and regeneration for J/ψ's leads to a roughly constant (or
even slightly decreasing) average transverse momentum squared, 〈p2

t 〉, with
centrality [476, 520, 528]. However, at FAIR energy, the 〈p2

t 〉 of the J/ψ's
(dominated by initial production) should increase with centrality, due to the
Cronin e�ect, i.e., the initial multiple scattering of gluons with nucleons (prior
to the hard scattering leading to charmonium production).

Formation Time E�ects. The time for the medium created in heavy ion col-
lisions to reach thermal equilibrium is short at high energies, about 0.5 fm/c
at RHIC and 0.1 fm/c at LHC, and long at low energies, at least 1 fm/c
at FAIR (the time interval between �rst contact and full nuclear overlap is
already ∼1.5 fm/c). Considering a �nite formation time of charmonia, about
0.5 fm/c, J/ψ's are easily dissociated in the hot medium at RHIC and LHC,
but might survive in the medium at low energies. Since charmonia are di�cult
to be thermalized at low energies, their elliptic �ow at FAIR will be smaller
than that at RHIC and LHC. Charmonia studies at FAIR may also present a
possible way to distinguish di�erent scenarios of J/ψ suppression [529]. For
instance, when after adjusting the suppression at SPS energy, the suppression
at FAIR by comovers will be stronger than that by threshold melting; in ad-
dition, for the ψ′/ψ ratio, the comover scenario predicts a smooth excitation
function, contrary to a step-like structure for threshold melting. See Part IV
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of this book for more details.

Medium E�ects. It is widely believed that chiral symmetry governs the
low-energy properties and dynamics of hadrons in the vacuum and at �nite
temperature and density. The chiral symmetry restoration transition at high
temperature (small baryon density) is a crossover, while it presumably be-
comes a �rst order phase transition at high density. Both the QCD sum rule
analysis [157] and the LO perturbative QCD calculations [517] suggest that
the J/ψ mass is reduced in nuclear matter due to the reduction of the gluon
condensate. At SPS energy, chiral symmetry restoration reduces the threshold
for charmonium break-up and could lead to a step-like behavior of the reac-
tion rate, as suggested to account for the anomalous J/ψ suppression [530].
The study of the ratio ψ′/ψ at SPS shows the importance of the hadronic
phase for ψ′ interactions, possibly related to the e�ect of chiral symmetry
restoration [475]. Another high density e�ect is the Friedel oscillation in the
single-particle potential induced by a sharp Fermi surface at low temperature,
which is widely discussed in nuclear matter and quark matter [531�534]. The
heavy-quark potential at zero baryon density, shown in Fig. 6.1, decreases
monotonously with increasing temperature. In compressed baryon matter,
however, the potential may oscillate and approach the weak coupling limit
very slowly. This could imply that J/ψ's survive in a wide region of high
densities.

Charmed Baryons. The importance of charmed baryons at low energies
has been recently discussed in Ref. [381] within the statistical hadronization
model. While the J/ψ and ψ′ yields relative to the total number of cc̄ pairs
are roughly independent of collision energy over a wide region from FAIR
to RHIC, the relative yield for charmed baryon Λc decreases strongly with
increasing energy, exceeding the yield of D mesons at the low-energy end.
This indicates that the investigation of open-charm production at low ener-
gies mandates the inclusion of charmed baryons.



Chapter 7

Excitations of color-superconducting
matter

7.1 Color superconductivity in the QCD phase diagram

Color-superconducting quark matter phases play an important role in the
discussion of the QCD phase diagram at low temperatures and intermediate
till high densities. Predictions in the vicinity of the decon�nement phase
transitions rely on e�ective models since systematic methods (lattice QCD,
perturbative QCD, Hard Dense Loop approximantion) do not apply. The
status of the �eld is summarized in recent reports, e.g. [535�537] and useful
references are found therein. Out of the many phases discussed the phase
eventually relevant for heavy-ion collisions at high baryon densities is the two-
�avor superconducting (2SC) phase where the scalar di-quark �eld develops
a non-vanishing mean value, the corresponding energy gap is of the order
of 100 - 200 MeV leading to estimates for the critical temperature in a large
range between 20 and 100 MeV. Most of the microscopic model calculations of
the phase diagram and properties of in-medium �uctuations are performed in
NJL-type models [537]; promising approaches, closer to QCD, with dynamical
quark self energies are covariant nonlocal approaches [538, 539]. We give
examples for the 2SC phase boundaries of these two types of models in Fig.
7.1 their boundaries

7.2 Strong decays of mesonic resonances

In the mean-�eld approximation, the ground state of the color-neutral quark
matter with 2 �avors corresponds to the minimum of the zero-temperature
thermodynamic potential density, Ω, which in a four-quark model of the NJL
type looks as
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Fig. 7.1 Phase diagram for isospin-symmetric two-�avor quark matter from NJL-type
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temperatures for the 2SC phase transition and the occurence of the pseudo-gap phase can
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(m−m0)2

4G
+
|∆|2

4Hs
− 4

∑
±

∫
d3q

(2π)3
|E±∆| − 2

∑
±

∫
d3q

(2π)3
|Ĕ±|,(7.1)

where E±∆ =
√

(E±)2 + |∆|2, E± = E±µ̄ and Ĕ± = E±µ̆ are dispersion laws
of quarks and anti-quarks in the 2SC phase, with E =

√
q2 +m2 being the

quark dispersion law in vacuum,m the constituent quark mass and µ̄ = µ+µ8,
µ̆ = µ − 2µ8, with µ and µ8 being the quark baryonic chemical potentials
(the main and the one related to the color-charge Q8, respectively). The
interaction strength of the standard and di-quark channels is described by
constants G and Hs. In the 2SC phase, there is a gap, ∆, in the dispersion
law of quarks.

To �nd the minimum of Ω, one should solve the gap equations

∂Ω(m,∆;µ, µ)
∂m

=
∂Ω(m,∆;µ, µ8)

∆
= 0, (7.2)

while keeping the quark matter color-neutral:

〈Q8〉 = −∂Ω(m,∆;µ, µ8)
∂µ8

= 0. (7.3)

Solving these equation, one obtains values of the gaps, as shown in Figs. 7.2.

The calculation of masses of meson and diquark states requires two-point
correlators of related quark cu-rrents. The masses are found as the values
of energy at zero-valued 3-momentum that correspond to the poles of the
correlators. Results of numerical calculations performed in [541] are presented
in Figs. 7.3 and 7.4.

In the phase with color superconducting quark matter, mesons can, in prin-
ciple, decay to free quarks. However, there is some reason for decays of the σ
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∆s2 is neglected.

and π mesons to be suppressed in these conditions. As it has been discussed in
[541, 542], in the 2SC phase the σ- and π-mesons turn to be quasi-particles
with quantum numbers of a scalar isoscalar and a pseudoscalar isovector
meson, respectively. These quasi-particles have almost degenerate masses be-
cause chiral symmetry is almost restored in these conditions, and the pion is
as heavy as the σ-meson with the mass about 300 MeV. Nevertheless, a direct
decay of a pion to free quarks is forbidden at zero temperature. Moreover, it
turns out that the σ-meson is also stable if its mixing with di-quarks is ne-
glected (numerically, it is very small). As a consequence, one should observe
a narrow state with vacuum quantum numbers and with the mass near 300
MeV.

The reason for the mesons stability comes from the following: A decay of a
meson means that its constituents become free and move with four-momenta
satisfying their dispersion laws. In the 2SC phase, the quark and anti-quark
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have gaps in the dispersion laws that push up their energy so high that their
total energy should have at least ∼700 MeV to move freely. But there are
poles in the propagators of the σ-meson and pion at the energy about 300
MeV just a little above the phase transition. This means that the paired
quarks cannot take there places on the mass-shall to begin their free motion
and have to remain bound inside the meson. As there are unpaired quarks
in the 2SC phase, one can think that they could contribute to the decay. In
fact, insofar as free quarks appear in pairs (a quark and an anti-quark), the
total energy that is necessary to create such a pair is the sum of the creation
energies both of the quark and the antiquark. It turns out that the energy
is enough to produce a free pair because there is no gap in the dispersion
law for unpaired quarks. Nevertheless, it turns out that at zero temperature
their energy levels are already occupied by other quarks from the medium; as
there cannot be two fermions with the same quantum numbers at the same
time and place, such decay is suppressed, according to the Pauli blocking
principle.

One should note here that once the mixing of σ-meson with the scalar
di-quarks is taken into account the σ-meson can decay to quarks via the di-
quark channel. In this case, the rate of σ decay depends on the mixing and
is numerically very small.

In order to illustrate the explanations above, it is instructive to display the
part of the two-point correlator of pseudoscalar isovector currents that deter-
mines the inverse pion propagator. The calculations carried out by authors
in [541] give the following result:
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Πab(p0) = δab
2G −8δab

∫
d3q

(2π)3
E+
∆E

−
∆ + E+E− +∆2

E+
∆E

−
∆

E+
∆ + E−∆

(E+
∆ + E−∆)2 − p2

0

−16δab
∫

d3q

(2π)3
θ(E − µ̆)E
4E2 − p2

0

≡ δabΠ(p0), (7.4)

One can see from (7.4) that the inverse propagator of the pion can acquire
an imaginary part (which represents its decay rate and is proportional to
the pion width) only if the denominators of the integrand can be equal zero
somewhere in the integration region. In fact, the integrands are not singular
if the parameters correspond to on-shell pions in the 2SC phase. Look, the
quantity (E+

∆ + E−∆)2 is an increasing function of 3-momentum and has the
minimal value

√
(µ̄−m)2 + |∆|2 +

√
(µ̄+m)2 + |∆|2 which is larger than

700 MeV. The second singularity (see the last integral in (7.4) is disabled
because it is cut out by the θ-function that determines the energy spectrum
of fermion states which are allowed, according to the Pauli blocking principle.

7.3 Pre-critical phenomena of color superconductivity

So far, we have discussed possible experimental signatures of the creation
of the color-superconducting quark matter. In this section, we shall consider
quark matter in the normal phase but near the critical temperature Tc of
the color superconductivity and discuss the possibility to observe pre-critical
phenomena of color superconductivity by the heavy-ion collisions. Our dis-
cussions are based on the observation that there can exist a rather wide
pre-critical region of the color superconductivity in the T -µ plane at moder-
ate density, as shown in Fig. 7.1: The large �uctuations of the diquark-Cooper
pair �eld can survive even well above Tc owing to the strong coupling nature
of the quark matter[543, 544]. The large di-quark pair �uctuations may a�ect
various observables leading to distinct precursory phenomena of the color su-
perconductivity[543], and one may think of the possibility to see precursory
phenomena of color superconductivity in the quark matter possibly created
by the heavy-ion collisions even if the created matter is not cold enough to
realize the color superconductivity.

In the extremely high-density region, the perturbative calculation should
be valid and it shows that the quark matter in this region is the color su-
perconductor of a strong type-I in which the �uctuations of the gauge �elds
dominate those of the di-quark-pair �eld[545, 546]. The phase transition to
the color-superconducting phase is a �rst order due to the gauge �uctuations
in this region. On the other hand, the color superconductivity is expected to
turn to a type-II at lower density[547]. Therefore, it should be appropriate
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to consider only the e�ect of the pair �uctuations at moderate density which
is relevant to heavy-ion collisions.

The low energy e�ective models yield a large di-quark gap ∆ ∼ 100 MeV
at moderate densities and vanishing temperature [537]. This implies that the
ratio of the diquark coherence length to the average inter-quark length, which
is proportional to EF /∆ with EF being the Fermi energy, can be as small as
∼ 10. This value is more than two or three order smaller than those of the
metal superconductors; the stronger the interaction between the quarks, the
shorter the coherence length, which can be as small as almost the same order
of the inter-quark distance [548, 549]. The short coherence length implies that
the �uctuation of the pair �eld is signi�cant and the mean-�eld approximation
looses its validity.

It is known that the large �uctuations cause an excess of the speci�c heat,
which eventually diverges at Tc owing to the critical �uctuations for the sec-
ond order transition [540, 544]; such an anomalous increase of the speci�c heat
may a�ect the cooling of the proto-compact stars. Here one should, however,
notice that the critical divergence of the speci�c heat is essentially due to the
static �uctuations of the pair �eld [550]. The analysis of the static �uctua-
tions around the critical temperature as seen in the speci�c heat leads to the
notion of the Ginzburg-Levanyuk region where the �uctuation overwhelms
the mean-�eld [540, 544].

In the following, we turn to the discussions on the dynamical �uctuations
of the di-quark pair �eld. At �nite temperature, the dynamical �uctuations
of the pair �eld become also signi�cant and develop a well-de�ned collective
mode as the temperatures is lowered toward Tc if the color superconducting
phase transition is of second order or of weak �rst order. A calculation us-
ing the Nambu-Jona-Lasinio model shows that it is the case: The spectral
function of the diquark �uctuations gets to have a sharp peak in the low-
energy region at about T = 1.2Tc, and the peak position decreases as the
temperature is lowered toward the critical temperature[543]. The collective
mode associated with the �uctuations of the order parameter is called the
soft mode of the phase transition.

Are there interesting phenomena owing to the existence of the soft mode of
the color superconductivity in the heated quark matter at moderate densities?
One of them is the formation of a pseudo-gap in the density of states (DOS)
of quarks, i.e., an anomalous depression in the DOS around the Fermi surface
[540, 551]: The DOS of the quark matter is calculated in Ref. [551] in the
low-energy e�ective model: Here, the quark propagtor is modi�ed due to the
coupling with the �uctuating pair-�eld or the pairing soft mode, as shown in
Fig. 7.5. The resulting DOS above Tc is shown in Fig. 7.6 for several values
of the quark chemical potential µ = 350, 400, 500MeV. One clearly sees that
there appears a depression in the DOS around the Fermi energy for each µ
near Tc, and they survive up to ε ≡ (T − Tc)/Tc ≈ 0.1 irrespective of µ[540,
551]. In other words, there is a �pseudo-gap region� within the QGP phase
above Tc up to T ∗ = 1.1Tc at moderate densities. One should notice that
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Fig. 7.5 The Feynman diagrams representing the quark Green function in the T-matrix
approximation employed in Ref. [540]. The thin (bold) lines represent the free (full) prop-
agator and the wavy line denotes the pairing soft mode.

the pseudo-gap in the DOS is a re�ection that the quarks around the Fermi
surface have a short life time owing to the decay process q→ hole+(qq)soft
emitting the soft mode like Cherenkov process. This short-livedness of the
quarks around the Fermi surface means that the heated quark matter at
moderate densities can not be a Fermi liquid [540, 552]. It is noteworthy
that the pseudo-gap formation is known as a characteristic behavior of the
materials which become the high-Tc superconductors(HTSC) [553, 554]. Thus
heated quark mater at moderate densities is similar to the HTSC materials
rather than the usual superconductors of metals.

What observables are most favorable to see the e�ect of the existence of
the soft mode composed of the �uctuations of the pair �eld in the quark
matter? It is known in the condensed matter physics that pair �uctuations
above Tc cause a large excess of the electric conductivity, which is called
the para-conductivity. Two microscopic mechanisms that give rise to such
an anomalous conductivity are identi�ed and called Aslamazov-Larkin and
Maki-Thompson terms [555�557], both of which are depicted in Fig. 7.7: The
dotted lines in the �gure denote the gauge �eld, i.e., the electro-magnetic
�eld (or the photon) in this case. The color-conductivity would be also en-
hanced by the similar mechanisms near Tc of the color superconductivity,
although it would be di�cult to detect the conductivities directly in ex-
periments. However, an idea is that the diagrams shown in Fig. 7.7 can
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Fig. 7.7 The diagrams that contribute to the photon (or gluon) self-energy representing
the Aslamazov-Larkin (left) and the Maki-Thompson (right) terms[540]. The wavy lines
denote the soft mode.

be interpreted as modi�cations of the self-energy of the gauge �elds, i.e.,
Πµν(Q) = F [iθ(t)〈[jµ(x), jν(0)〉], where F denotes the Fourier transforma-
tion. That is, the external photon or gluon �elds can couple to the soft mode
of the color superconductivity with the pairing soft mode in the diagrams
being replaced by the di-quark pair �elds. Thus one sees that the photon
self-energy Πµν(Q) in the quark matter at T > Tc can be modi�ed due to
the �uctuations of the di-quark pair-�eld as well as inside the color supercon-
ducting phase[175]. This is interesting, because modi�cations of the photon
self-energy due to the soft mode may be detected as an enhancement of the
invariant-mass distribution of dileptons emitted from the created matter, as
represented by the well-known formula (2.3), cf., e.g., Ref. [558]. The typical
observable in experiment is the invariant-mass spectrum of dilepton produc-
tion rate, which is given in terms of dRee/d4q as

dRee
dM2

=
∫
d3q

2q0
dRee
d4q

. (7.5)

Fig. 7.8 shows a preliminary result [559, 560] of dRee/dM2 obtained from
the Πµν(Q) with the AL term, which is evaluated in an approximate form.
The solid lines denote the contributions of the AL term to the production
rate for reduced temperatures ε ≡ (T − Tc)/Tc at µ = 400MeV, while the
dashed lines show the production rate from the free quark system for T =
Tc and 1.5 Tc at µ = 400 MeV. The Figure shows that the contribution
of the AL term causes a large enhancement with a sharp peak structure
in the production rate at very low masses, and the peak becomes larger
and sharper as the temperature approaches Tc. Such a low-mass region is,
however, where a large contribution due to π0 Dalitz decays occurs. Therefore,
these processes have to be disentangled to identify the AL process due to
the precursory diquark pairing �uctuations, which might be, unfortunately,
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Fig. 7.8 A preliminary result for the dilepton production rates, Eq. (7.5), for several
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T = 1.5 Tc (above).

di�cult to perform [560].1 One should also estimate the contribution from
the Maki-Tompson term as well as check the present estimate of the AL term.

Another open question is the relative magnitude of these processes com-
pared to emission from the color-superconducting quark matter phase, if the
latter is realized in experiment. In Ref. [175] dilepton production from the
three-�avor color-�avor locked phase has been estimated, expected to be re-
alized at extremely high densities; a similar behavior of dRee/dM2 as that
in Fig. 7.8 is observed, recall lower left panel in Fig. 2.23. A corresponding
calculation of dilepton production rates from the 2SC phase has not yet been
performed. If it turns out that a peak in the spectrum at not too small invari-
ant masses can be identi�ed, then one would possibly have an observational
signal for the color-superconducting phase. This would be quite a unique
characteristics of the CBM experiment, if CSC (or their precursor) phases
are at all accessible in terrestrial heavy-ion collisions.

1 We remark that the soft modes associated with the chiral phase transition at �nite tem-
perature can also cause an anomalous enhancement of the dilepton production rate [560]





Chapter 8

Summary and relations to observables

Based on our discussion of excitations of strongly interacting matter in this
Part, let us reassess what we deem the most promising avenues for further
progress in understanding the fundamental (microscopic) structure of QCD
matter. Rather than aiming for completeness, we will focus in this summary
on a few central points that relate to the questions posed in the introduc-
tion. Concerning the consequences for observables we will restrict ourselves
to heavy-ion collisions and not allude to more elementary reactions (such as
pA or πA).

A central issue is to �nd unambiguous signatures of chiral symmetry
restoration, requiring a connection between observables and chiral order pa-
rameters. In Sec. 2.3.2 we have outlined a systematic approach that we believe
can deliver this connection: Based on chiral model calculations of both in-
medium (isovector) vector and axialvector correlators on the one hand, and
on accurate (dilepton) measurements to constrain the vector spectral func-
tion on the other hand, one evaluates Weinberg sum rules that relate energy
moments of �vector-minus-axialvector� spectral functions to chiral order pa-
rameters (pion radius and decay constants, 4-quark condensates). The four
sum rules provide four moments which signi�cantly constrain the energy, mo-
mentum and temperature dependence of any (experimentally) viable e�ective
model for axial-/vector correlators. This connection is further strengthened if
the order parameters are evaluated model-independently within lattice QCD.
An additional, but not required, bonus would be experimental information
on the in-medium axialvector spectral function, maybe in the π±γ channel.
Especially the �rst two sum rules, eqs. (2.31) and (2.32), which are moments
in 1/s2 and 1/s, emphasize the soft parts of the spectral functions. In light of
model calculations which predict baryonic e�ects (a central point of CBM) to
be most signi�cant at masses below M ' 0.4 GeV (recall Fig. 2.14), the need
for experimental access to this regime is compelling. From this perspective,
dielectrons are preferable over dimuons.

The importance of soft electromagnetic (EM) observables is further ampli-
�ed by the connection to susceptibilities and conductivities. These quantities

511
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follow from spacelike zero-momentum and zero-energy limits of vector and
EM correlators, and have already been computed in lattice QCD. Experi-
mentally, valuable information should be encoded in comparisons of ρ vs.
ω spectral functions to study isovector vs. isoscalar susceptibilities; in this
context an accurate excitation function of dilepton spectra is particularly im-
portant to possibly identify a regime of a large enhancement of the isoscalar
susceptibility. Here an experimental bonus could come in form of the pro-
longed lifetime of a (pseudo-) mixed phase in the �rst-order regime which
would naturally enhance pertinent dilepton emission. The EM conductivity,
on the other hand, can be directly related to the (very) soft photon produc-
tion rate, suggesting that a soft-photon measurement via HBT correlation
methods (à la WA98) should be conducted.

In the open-charm sector we have identi�ed transport properties of charm
quarks and/or hadrons as promising quantities to connect matter properties
with observables, in particular the pertinent charm di�usion coe�cient(s).
At RHIC, the observed suppression of primordial charm spectra (currently
measured via semileptonic electron decays), and especially their collective
behavior as re�ected in the elliptic �ow, v2(pT ), are instrumental in charac-
terizing the produced strongly coupled medium. A key question is the micro-
scopic origin of the underlying charm-quark interactions with the medium,
e.g., whether they are driven by the quark or gluon component of the heat
bath. Here, the baryon-rich matter in the CBM experiment might provide an
improved discriminatory power, especially if nonperturbative e�ects in the
vicinity of Tc play an important role (initial temperatures at CBM are not
expected to signi�cantly exceed Tc '180 MeV, in contrast to the early stages
at RHIC). Arguments based on perturbative QCD suggest that in-medium
properties of D-mesons (or c-quarks) do not a�ect the total charm produc-
tion cross section (being determined in hard N -N collisions, i.e., on a much
shorter time scale than the formation of a D-meson wave function). The rele-
vance of hadronic medium e�ects on D-meson spectral properties most likely
resides in their transport properties as discussed above, as well as in their
impact on charmonium decays (reduced thresholds). In fact, the conditions
at CBM could facilitate the discrimination of hadronic from partonic e�ects:
if hadronic reinteractions of D-mesons are prevalent, the baryon-dominated
matter should result in an asymmetry in D and D̄ (or e+ and e−) spec-
tra, since the former (but not the latter) can interact via charm-exchange
reactions (D + N → π + Λc) or particle-hole excitations (D → ΛcN

−1).
The asymmetry should manifest itself in stronger modi�cations (e.g., larger
elliptic �ow) of D mesons relative to D̄'s. If the opposite is observed, it
would be indicative for mesonic resonance interactions in the partonic stage
(c̄+ q → D̄ → c̄+ q), which a�ect c̄ quarks stronger than c's. If the modi�ca-
tions are about equal, it would still be indicative for QGP-driven reinterac-
tions, since (i) even at CBM energies the quark-antiquark asymmetry in the
QGP is moderate, and (ii) recent microscopic computations of charm trans-
port in the QGP suggest an approximate balance between mesonic (c-q̄, c̄-q)
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and diquark (c-q, c̄-q̄) interaction strengths. Measurements of charm baryons
would further clarify these systematics.

Another fundamental aspect of the QCD phase diagram is the de-/con�nement
transition. Here, it is notoriously di�cult to establish a close connection be-
tween observables and order parameters. The most promising one is probably
the expectation value of the Polyakov loop which characterizes the (exponent
of the) large-distance limit of the free energy of a heavy-quark pair, and thus
relates to in-medium charmonium properties. Whether in practice this cor-
responds to a dissolution of (certain) charmonium bound states, or rather
a (possibly sharp) increase in their width across Tc, remains an open prob-
lem at present. Also here it will be essential to quantify the strength of the
hadronic dissociation rates of charmonia, especially for ψ′ and χc states which
are rather close to the DD̄ threshold and are therefore expected to be par-
ticularly sensitive to in-medium modi�cations of D-mesons (possibly related
to chiral symmetry restoration). Since the suppression of direct J/ψ's in the
QGP could be rather small, an accurate assessment of the χc feeddown will
be mandatory (as well as a precise determination of (primordial) nuclear ab-
sorption e�ects in p-A reactions; primordial ψ′ production is expected to be
small).

With the tools and strategies utilizing electromagnetic and charm probes
as described above, we believe that we can signi�cantly advance our under-
standing of a fundamental form of matter that under laboratory conditions
is only accessible in energetic collisions of heavy nuclei. A close collabora-
tion between theory and experiment will undoubtedly play a key role in this
endeavor.
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Chapter 1

Introduction

This Part presents the various conceptual schemes and computational mod-
els that are employed for the dynamical description of high-energy nuclear
collisions. The focus will be on the energy range where one expects large en-
hancements of both the net baryon density and the energy density, relative
to the values characteristic of ordinary nuclear matter. As quantitatively il-
lustrated in Fig. 1.1, such collisions are utilised as a tool for exploring the
properties of hot and baryon-dense matter.

However, this task is not straightforward. Nuclear systems are relatively
small even on the scale of the strong-interaction range. Indeed, even the
largest available nuclei have about half of their nucleons situated in the sur-
face region.1 Further complication arises from the long-range Coulomb inter-
action which, together with the surface energy, reduces the nuclear binding
energy by typically about a factor of two, relative to the value of a corre-
sponding piece of bulk matter. Thus the physical environments produced in
nuclear collisions are far from those of idealised uniform matter and it is
therefore essential to take proper account of the signi�cant variation of the
local conditions throughout the system probed.

Moreover, the time window during which the densities are signi�cantly
enhanced is often so short that local equilibrium may not be established.
Consequently, it is generally not straightforward to extract the statistical
equilibrium quantities of primary interest, such as temperature and chemical
potentials, from the collision data.

Thus, while thermodynamics describes bulk matter in statistical equilib-
rium, which may be characterised as being large and stationary, the available
collision systems are neither. They may rather be characterised as being small
and transient. Because these problems are inherent to heavy-ion physics, it
is necessary to rely extensively on dynamical transport treatments. Unfortu-

1 The total number of nucleons in a nucleus is A = 4
3πR

3ρ0, where R = r0A1/3 is
the nuclear radius, while the number of nucleons within a distance a from the surface
is Asurf = 4πR2aρ0, so the ratio is Asurf/A = 3a/r0A1/3 ≈ a/2r0 for lead, which
amounts to about one half for a ≈ r0 ≈ 1.2 fm.
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Fig. 1.1 Time evolution of a central gold-gold collision as obtained with the 3-�uid model
[1] (Sect. 5.3.1). Left: Contours of the total energy density in the reaction plane, for a
bombarding energy of 20 A GeV. The light-coloured outer halo indicates the matter that
has already undergone chemical freeze-out. The �ow velocities of the baryon-rich projectile-
like and target-like �uids are indicated by the arrows (open and solid, respectively). Right:
The associated time evolution of the net baryon density ρ(0, 0, 0, t) and the total energy
density ε(0, 0, 0, t) in the centre of the system, as well as the corresponding trajectory in
the ρ− ε phase plane, with results for bombarding energies of 10 and 5 A GeV also shown
[2]. The expected phase coexistence region is indicated schematically (yellow), while the
chemical freeze-out (green) is based on �ts to data [3].

nately, as of yet, it has not been possible to derive such treatments directly
from the underlying QCD quantum �eld theory. Extensive phenomenological
modelling is therefore required.

After an introductory discussion of the general physical features of the
nuclear collision dynamics, we discuss the range of conceptual approaches.
Starting with cascade models (Chap. 2), we continue with treatments build-
ing on the one-body approximation level that have been so successful for nu-
clear dynamics at lower energies (Chap. 3). Besides kinetic transport, detailed
conceptual developments in the treatment of �unstable� particles such as res-
onances are reviewed. This is followed by various microscopic many-body
models (Chap. 4), before �nally macroscopic concepts such as �uid-dynamic
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treatments are presented (Chap. 5). Subsequently, we discuss a number of
illustrative applications (Chap. 6) and then close with an exposition of the
main challenges still facing us in the area of collision dynamics modelling
(Chap. 7).

1.1 General features

The strength of elementary interactions and their uncertainties due to the
composite nature of hadrons, together with the mesoscopic nature of the in-
teracting systems, make nuclear and hadron physics essentially a phenomeno-
logical science. Nuclear reactions, particularly central collisions of heavier
nuclei, bring in a complexity above that present for nuclear structure and
are best discussed within the framework of transport concepts. While such
transport description should ideally be derived from the basic physics, it is in
practice necessary to signi�cantly rely on phenomenology. But even though,
transport models can provide valuable insight and help to guide both, theory
and experiment.

Derived or based on physically sound assumptions, the many-particle re-
action models have a number of common features. The most important is an
element of information reduction (�coarse graining�). Attempts to follow the
detailed many-body evolution of the evolving system are neither practical
nor desirable. In practice, the most important information is expressible in
terms of the one-body phase-space densities for the various particle species
in a given event.

The transport descriptions generally rest on a separation of the space-
time scales that characterise the microscopic interactions between individual
hadrons from the scales characteristic of the macroscopic dynamics. In the
absence of short encounters between individual hadrons, the changes within
a reacting system are gradual. This invites a classical description and, in
fact, the majority of transport approaches in our context rely on the classical
dynamics as long as hadrons are well separated. On the other hand, basic
considerations demonstrate that a classical description cannot apply to the
collisions between individual hadrons at short distances. In such collisions,
quantum numbers change abruptly. Since details of the initial conditions
of short-range encounters between hadrons are essentially wiped out by the
coarse-graining, the outcome can normally be predicted only probabilistically.
The combination of a probabilistic treatment of the short-range encounters
between the particles and a classical deterministic treatment of motion in-
between the close encounters is characteristic for most of the transport ap-
proaches employed for reactions. Even if the dynamics in-between collisions
is not treated classically, given the gradual changes a primarily deterministic
treatment can be employed e.g in form of a wave function dynamics which
most likely captures most changes of interest during a limited evolution time.
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At the high hadron densities of interest, the separation between the various
times scales become blurred. Thus the typical travel time between successive
hadron-hadron encounters shrinks and becomes comparable to the duration
of the encounters themselves. Furthermore, the macroscopic evolution grows
relatively rapid and can no longer be clearly separated from the microscopic
time scales. On the other hand, the high-density parts of the system tend to
fairly quickly reach local thermal equilibrium. Therefore, even if the absence
of a clear separation of the relevant scales invalidates the standard justi�-
cation for a transport treatment, such a framework may still produces the
correct macroscopic properties of the system and hence yield a quantitatively
useful dynamical description. However, there is no similar mitigating factor
apparent when the separation between the scales is blurred due to Lorentz
e�ects in highly relativistic collisions. The identity of individual hadrons is
then brought into question and a description in terms of constituent partons
may be more appropriate.

1.2 Collision geometry and dynamical scales

Fig. 1.2 Participant-spectator picture of a nucleus-nucleus collision [4].

The gross features of the collision dynamics can simply be estimated as-
suming that irrespective of scatterings to �nite angles the nucleons keep their
original straight-line trajectories on their way through the opposing nucleus,
Fig 1.2, de�ning the separation into participants and spectators. These two
notions refer to nucleons that do collide at least once and to those that con-
tinue their original motion in the respective projectile or target fragments.
In the following A and B denote the mass numbers of projectile and target
nucleus, respectively. With nuclear radii and a total nucleon-nucleon cross
section of the order of

RA ≈ r0A
1/3, RB ≈ r0B1/3,

σNNtot ≈ πr20 ≈ 40mb; r0 = 1.12fm (1.1)
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a projectile nucleon hitting centrally a lead nucleus with a diameter of 13 fm
experiences collisions with about N̄ ≈ B1/3 ≈ 7 target nucleons on its way.

The straight-line collision geometry considerations discussed in Sect. 2.2
lead to very simple geometrical estimates for the mean number of partici-
pants and mean number of NN-collisions. Impact parameter averaged (i.e.
for minimum bias events) they become [4]

〈Npart〉 =
AσB +BσA

σAB
≈ AB2/3 +BA2/3

(A1/3 +B1/3)2
,

〈Ncoll〉 = AB
σNNtot
σAB

≈ AB

(A1/3 +B1/3)2
. (1.2)

Here σA ≈ πr0A
2/3, σB ≈ πr0B

2/3 and, σAB ≈ πr0
(
A1/3 +B1/3

)2
are the

corresponding nuclear reaction cross sections. In central collisions the above
averages roughly change to

〈Npart〉 ≈
{
A+ 3

2A
2/3B1/3 for A� B

A+B for A ≈ B

〈Ncoll〉 ≈
{
AB1/3 for A� B
1
2A

4/3 for A ≈ B (1.3)

assuming for simplicity a cylindrical target participant zone for the asym-
metric case A� B.

While signals arising from equilibrated matter (such as the multiplicity
of pions) tend to scale with the number of participants, 〈Npart〉, processes
that can be treated perturbatively (such as hard electromagnetic probes or
near-threshold kaons) scale with the number of collisions, 〈Ncoll〉.

The geometrical scales are to be compared with the typical dynamical
scales. These concern the interaction ranges and for the application of classical
dynamics the typical de Broglie wavelength.

The long range part of the strong interaction between two hadrons is
limited by inverse mass of the lightest exchanged meson, mostly the pion,
yielding rint . ~/(mπ c) ∼ 1.4 fm. At short distances typically at a size
∼ 0.5 fm the repulsive core of the NN interaction and sub-hadron structure
e�ects come into play. Since the dynamics at short inter-particle distances
is quite quantal, the actual distances explored in the interactions may be
characterised by the inverse momentum transfer, r ∼ ~/q.

In the classical collision regime the average distance between the elemen-
tary collisions, i.e. the mean free path, can be estimated as λ ≈ 1/(ρ σ),
where ρ is the hadron density and σ is a representative cross section for the
interaction in free space. With an NN cross section of σ = 40mb = 4 fm2 this
yields λ ∼ 1.6 fm at normal nuclear density of ρ0 = 0.16 fm−3. The e�ective
in-medium cross section may di�er from its free-space value for various rea-
sons. In particular, quantum-statistical e�ects such as the Pauli principle and
changes in the single-particle dispersion relations may suppress the cross sec-
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tions or induce a resonance behaviour [5, 6]. Moreover, at high densities only
lower angular momenta can be attributed to the microscopic collision of two
hadrons, while the higher angular momenta still contribute to the mean �eld.
Such suppression e�ects were observed in the calculations of Refs. [7�10].

A semi-classical description requires that the reduced de Broglie's wave-
length, −λB = ~/p, where p is the characteristic particle momentum, is small
relative to the characteristic scales for spatial changes min(λ,R). From the
low side, the typical momenta are limited by the Fermi momentum in the ini-
tial nuclei, yielding −λB . 1 fm. Towards the end of a collision, some degree of
local equilibration is usually established, with temperatures that depend on
the collision energy and usually do not exceed T ∼ 150MeV. For nucleons,
this yields −λB & ~/

√
3mN T ∼ 0.3 fm. On the other hand, the character-

istic scales for the spatial variation are of the order of the nuclear radius,
R ' 1.12 fmA1/3 which amounts to 3− 7 fm, for A = 20− 240.

Characteristic temporal scales for collisions are generally related to the
spatial scales through the characteristic particle velocities v. Thus, the mean
time between collisions is τ ' λ/v, while the interaction time is tint ∼ rint/v
(in the absence of a resonance). The mean free-�ight time τ generally deter-
mines the rate of equilibration for the single-particle phase-space density. On
the other hand, the duration of an interaction tint, determines the rate at
which the two-particle density equilibrates at short inter-particle distances.

Kinetic transport theories normally require λ > rint and min(λ,R) > −λB
with analogous inequalities for the respective times. When important, rel-
ativistic e�ects complicate the relations between the scales, since di�erent
results are obtained in di�erent frames, elongated or shortened. As an exam-
ple, consider a nucleon excited into a resonance with a half life t∗int of the
order of (1− 2) fm/c. When that resonance moves at a non-relativistic speed
in its host nucleus, the corresponding interaction distance is relatively short
as compared to the mean free path or the nuclear size, rint ≈ v t∗int < λ < R.
However, when the Lorentz factor γ of the relative nuclear motion is large,
the interaction range seen from the collision partner is r′int = v γ t∗int which
may exceed the interaction mean free path in that nucleus or even its radius.
When such apparent transient times acquire macroscopic size, the validity of
transport theory may be extended by explicitly incorporating degrees of free-
dom for the long-lived states, be that baryon resonances, nuclear clusters, or
strings. A byproduct of such an explicit treatment of transient states may be
practical simpli�cations in dealing with interaction processes involving more
than two particles in the initial or �nal states. As an example consider the
pion absorption process on two nucleons: πNN → NN . Process of such type
are complicated to handle as it involves a three-body initial state. Employing
an intermediate resonance picture as provided by the ∆ isobar resonance in
this case, the process may then be accommodated as a sequence of two-body
precesses: πN → ∆ and ∆N → NN , though for the price that possible in-
terference e�ects are ignored. That latter strategy is followed in many kinetic
applications.
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Fig. 1.3 The lowest SU(3) baryon multiplets: the octet (left) and the decuplet (right).
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1.3 Degrees of freedom

Nuclear collisions in the addressed energy range experience quite rapidly
changing physical environments (see Fig. 1.1). Therefore it is a signi�cant
challenge to encompass all of those within a single microscopic model. In
the approach phase the dominant processes may already be direct interac-
tions between partonic degrees of freedom, quarks and gluons, whereas the
late stage is well described in terms of a hadron resonance gas. The explicit
reference to the microscopic degrees of freedom is avoided in macroscopic
treatments such as �uid dynamics, see Chap. 5.

The inclusion of the partonic degrees of freedom is not yet at a satisfactory
level, although a number of practical prescriptions were devised, as will be de-
scribed in connection with the speci�c models. By comparison, the treatment
of the hadronic gas is rather well developed. The most important hadronic
states are shown in Figs. 1.3 and 1.4. When the models are extended to the
charm sector the SU(3) multiplets have to be extended to the corresponding
SU(4) multiplets [11].

A speci�c production process is denoted as subthreshold if the threshold
rapidity di�erence for its occurrence in an elementary NN collision exceeds
that of the nuclear collision. The most important production thresholds at
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Fig. 1.5 Threshold beam energies for the production of various hadrons in elementary
reactions NN → X compared to the energy ranges available at the existing SIS18 at GSI
and the future SIS100/300 at FAIR/GSI.

both SIS-18 and SIS-300 are shown in Fig. 1.5. Particle production in the
vicinity of the corresponding threshold leads to particular physical insight
in many cases. The reason is simply that these particles carry special quan-
tum numbers and may not reach chemical equilibrium with the surrounding
medium. Under such circumstances, their detection provides speci�c infor-
mation on the conditions prevailing at their production stage.

Rare production processes are of particular interest, since they may serve
as probes of the high-density collision stage. An instructive example is the
production of K+ mesons near the threshold (which is ≈ 1.6 GeV in NN col-
lisions), which was studied extensively �rst at the Bevalac and subsequently
at SIS and has provided valuable information on the nuclear equation of state
[12] (see also the section on strangeness in the Part �Observables�). Due to
the absence of other low-mass hadrons with positive strangeness, the kaons
are not absorbed in the medium, although they may experience some elastic
scattering [13, 14]. (It should be noted, though, that the same is not true
for antikaons, such as the K−, which react strongly with baryons to form Λ
hyperons; this illustrates that not all rare particles are suitable in the same
way.)

The energy range where a given model is applicable is essentially de-
termined by the degrees of freedom included. Thus, if the abundance of
strangeness-carrying particles is su�cient to in�uence the overall dynamics
then strangeness must be included explicitly. On the other hand, if the colli-
sion energy lies just in the vicinity of the threshold of a particular mesonic or
baryonic production then such a process is relatively rare and does not in�u-
ence the overall reaction dynamics. In this situation, it need not be treated
dynamically but can be calculated by perturbative means [13].

Indeed, from the calculational point of view, the small kaon produc-
tion cross section at BEVALAC and SIS18 energies invites for perturbative
schemes, in which the individual production events can be treated as additive,
with no e�ect on the overall dynamics [13]. This method can then also be em-
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ployed for rare processes at higher collision energies, such as charm production
at CBM energies (see Fig. 1.5) which is somewhat analogous to strangeness
production at the Bevalac and the SIS18. It reduces the computational re-
quirements by orders of magnitude, thus making otherwise prohibitively rare
processes readily calculable.

1.4 Relation to the equation of state

A dynamical transport model should describe not only the temporal evolu-
tion of the system away from equilibrium but it should also account for the
equilibrium state itself. The latter can, ideally, be obtained by propagating
the equations of motion while imposing spatial periodic boundary conditions,
i.e. �putting the system into a box and letting it settle�. In this manner, the
statistical properties of the system can be extracted. Of particular interest
is the equation of state, the pressure of uniform matter as a function the
controllable state variables, namely the energy density and the net densi-
ties associated with each of the conserved �charges� (baryon number, electric
charge, strangeness, etc.).

Obviously, when a particular dynamical model is employed as a tool for
exploring the equation of state it is important to know the equation of state
implied by the model itself. While this information can in principle be ob-
tained by the equilibration procedure sketched above, it is quite problematic
in practice. In particular, some dynamical models violate detailed balance
because certain reverse processes are not included. (Typically, many-body
decays, such as ω → 3π, may readily be included while the reverse many-
body fusion processes are di�cult to treat.) Fortunately, in the context of
nuclear collisions, such reverse processes may often be safely neglected be-
cause the dynamics is completed before they can play a role. But in the
context of the (arti�cially imposed) equilibration process, the absence of re-
verse processes distorts the resulting stationary state away from the proper
equilibrium. This inherent feature makes it especially challenging to probe
the equation of state with dynamical transport models.

It is important in this connection to recognise that the actual equation
of state of a given dynamical model, as discussed above, generally di�ers
from the equation of state speci�ed as a model ingredient. For example, in
one-body models (Chap. 3) the Boltzmann collision integral is (usually) local
and so it does not contribute to the pressure. The equation of state implied
by the model is then identical to the one speci�ed in the e�ective one-body
Hamiltonian. However, this simple feature holds only if the actual numerical
implementation of the collision integral is e�ectively local. While this would
be true in the limit of in�nitely many test particles per physical particle,
it is not true in the most often employed implementations, such as those
using parallel ensembles (see Sect. 3.5.2). As a result, there is usually an
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additional (but most often unknown) contribution to the pressure from the
residual scatterings. This practical problem underscores the subtlety of the
relationship between simulation models and the equation of state.

Another inherent problem of particular relevance to the CBM experiment
arises from the (presumed) presence of a �rst-order phase transition. Dy-
namical simulations with a variety of transport models (Sect. 6.1) suggest
that over a wide range of energies the expansion stage of nuclear collisions
drives the bulk of the system into the region of phase coexistence. Such mat-
ter is thermodynamically unstable against a spatial separation into the two
coexisting phases, a decon�ned baryon-rich quark-gluon plasma and a gas
of hadron resonances. This phase-separation process is a key companion to
the occurrence of a �rst-order phase transition and may form the basis for
developing suitable signals of this central feature of the phase diagram. It is
therefore essential to develop transport treatments that have the ability to
encompass this phenomenon.

This problem was faced during an earlier epoch of the �eld when the focus
was on the nuclear liquid-gas phase transition, cf. Sect. 2.2.3.4 in Part I. This
resulted in the development of the Boltzmann-Langevin model in which the
inherent randomness of the residual collisions provides the physical trigger of
the instabilities accompanying the phase transition. The self-consistent mean
�eld then ampli�es the instabilities and thus leads the system towards a phase
separation. Such an approach describes the system as an ensemble of individ-
ual many-body systems, each described within the one-body approximation,
that develop independently into spatially di�erent geometric con�gurations.

Unfortunately, it has not yet been possible to develop a transport model
capable of treating the con�nement transition. This would be no easy task,
since such a model would not only have to deal with trajectory branchings, as
the system is faced with a choice of a multitude of di�erent phase separation
�channels� but it must also be capable of changing its e�ective degrees of free-
dom (quarks and gluons in one phase and hadron resonances in the other).
The �rst problem is similar to that occurring in nuclear multi-fragmentation
caused by the liquid-gas phase transition and it could perhaps be treated
in a manner analogous to the Boltzmann-Langevin treatment developed for
nuclear dynamics at intermediate energies (Sect. 3.2). But the second prob-
lem would presumably require the development of an explicit description of
hadrons in terms of the basic chromodynamic degrees of freedom, a feat that
has not yet been accomplished. We shall return to this challenge in Sect. 7.4.
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Cascade models

Cascade models provide the simplest microscopic transport descriptions of
high-energy nuclear collisions. They are best justi�ed when the early violent
part of the collision event occurs so fast that only direct hard interactions
play a role and mean-�eld e�ects can be neglected.

At centre-of-mass energies of about
√
s ≥ 3 GeV, corresponding roughly

to the AGS regime of about 6 AGeV laboratory energy, strings-like modes
start to be excited. This is also the energy range where the nuclear mean
�eld becomes less important as direct elastic and inelastic collisions start to
dominate the reaction dynamics. Then a pure cascade treatment may be ap-
plicable. However, even when applied to the ultra-relativistic regime, where
the initial collision stage is dominated by binary collisions, a cascade descrip-
tion relies on the assumption that the system is already su�ciently dilute
and, furthermore, it still needs to incorporate various subtle e�ects such as
o�-shell transport of broad resonances. Finally, apart from collisional encoun-
ters a pure cascade treatment su�ers from the neglect of interactions such as
given by mean-�elds or of correlations resulting from �nal-state interactions.

2.1 Intra-nuclear cascade models

The cascade description of nuclear collisions builds on the intranuclear cas-
cade model VEGAS initially developed for proton (or pion) induced nuclear
reactions [15] and a similar code developed in Dubna [16, 17]. It represents
the nucleus as a collection of A spatially �xed individual nucleons distributed
within the nuclear volume. The incoming hadron then interacts sequentially
with those target nucleons that are encountered along its path through ran-
dom momentum changes in accordance with the free elementary cross sec-
tions. Between the scattering events all particles move classically on straight
lines. With the event of high-energy nucleus-nucleus collisions such models
were correspondingly generalised [18�21]. They were found to be fairly suc-
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cessful in reproducing the then available data in the range of bombarding
energies up to 1 AGeV. A more re�ned intranuclear cascade model devel-
oped by Cugnon et al. [22, 23] was employed extensively in the Bevalac era.

Di�erent scattering prescriptions were used [21]. The most common one is
to decide on the scattering event by means of an impact parameter criterium
related to the total cross section and to randomly change the particles' mo-
menta independent of their relative positions, however in accordance with the
di�erential cross section. The other extreme is to use a deterministic classical
prescription which relates the scattering angle to the impact parameter, e.g.
such as a hard sphere (Billiard ball) dynamics. While the former has a trivial
equation of state (EoS), namely that of a gas of non-interacting particles,
the latter implies a highly non-trivial EoS, namely that of a hard-sphere gas
(which is conceptually complicated to analytically be formulated, but easily
simulated through classical Newtonian dynamics).

The early treatments included nucleons and ∆ resonances which were al-
lowed to scatter both elastically (NN ↔ NN , N∆↔ N∆, ∆∆↔ ∆∆) and
inelastically (NN ↔ N∆, N∆↔ ∆∆), while the ∆ resonances were allowed
to decay only after all interactions had ceased. This picture had the initial
di�culty that �cross sections� had to be guessed for the ∆ resonance which
is an unstable particle with a broad spectral mass width. Initial attempts
indeed failed to respect detailed balance across the spectral width of the ∆.
The pion (and other hadronic states) were explicitly included in later exten-
sions. The Fermi momenta of the initial nucleons were usually included in the
kinematics which was particularly important for production processes near
or below threshold.

Hadronic cascade treatments have provided a very useful framework for
understanding the dynamics of relativistic nuclear collisions. However, the
relevance of these models to the CBM energy domain is limited. The collision
energy is su�ciently high to bring the underlying partonic degrees of freedom
into play early on and, moreover, the subsequent hadronic stage can now be
treated with more re�ned models.

2.2 The linear cascade model (rows-on-rows)

A simpli�ed cascade treatment called the linear cascade (or rows-on-rows)
model1 was developed by Hüfner and Knoll [4]. It used the straight line
dynamics depicted in Fig. 2.1 which leads to a decoupling of the spatial dy-
namics from that of the particle's momenta. Therefore the co-linear collision
dynamics can entirely be formulated as a sequence of processes in momentum
space describing the evolution of the momentum distribution in the course of
a relativistic nucleus-nucleus collision.

1 The model rests on the multiple scattering theory developed by Glauber [24�26].
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. . .-P 1 2 3 N

Fig. 2.1 Illustration of the straight line collision concept. A particular nucleon P from
the Lorentz contracted projectile (green) hits N target nucleons on its way through the
target (red).

Ignoring spatial correlations, the probability PB(N) that a given projec-
tile nucleon P hits N nucleons on its way through the target B is most often
assumed to be Poisson distributed with a mean value N̄ given by the inte-
grated nuclear density within a transverse area of the total nucleon-nucleon
cross section σNNtot , i.e.

2

PB(N, sB) =
1
N !
(
N̄B(sB)

)N e−N̄B(sB) with (2.1)

N̄B(sB) = σNNtot

∫
dz ρB(sB , z) .

Here sB is the impact parameter relative to the centre of the target nucleus B.
It should be noted that N̄ is a Lorentz invariant quantity. The corresponding
relations obtained by replacing B by A hold for a target nucleon being struck
byM projectile nucleons. With σNNtot in the range of 40�50 mb, the mean free
path has about the same size as the inter-nucleon distance of 1.8 fm in the
nuclear bulk region. The total cross section for a nucleon to react with the
nucleus A can be obtained by integrating over those impact parameters for
which at least one collision occurs,

σA =
∫
d2s

[
1− e−N̄A(s)

]
≈ πr20 A

2/3 , (2.2)

with r0 = 1.12 fm and similarly for σB . Nucleons that su�er at least one
collision are called participants, the others are quoted as spectators. With
σAB ≈ πr20(A

1/3 +B1/3)2 for the nucleus-nucleus reaction cross section, the
impact-parameter averaged number of participants [4] and number of colli-
sions result to the simple expressions given in (1.2).

The rows-on-rows approach was subsequently re�ned [27] and used in a
variety of studies [28�30], including in particular kaon production [13, 14].

2 Processes arising from Coulomb interactions are ignored here.



552 2 Cascade models

Equilibration in uniform matter consisting of nucleons, pions, and ∆ res-
onances was studied in a treatment that included the quantum-statistical
suppression and enhancement factors in the collision sequences [31]. Alterna-
tive extensions successfully assumed a kind of statistical equilibration within
each rows-on-rows ensemble treating it as a micro-canonical ensemble. The
required total energy and momentum results from the Fermi motion averaged
energies and momenta of the colliding nucleons [32]. Successful applications
were reported for the production of pions and hard photons in nucleus-nucleus
collisions [33�35].

In high energy physics, the concept of wounded nucleons [36] was intro-
duced along similar lines. Since these studies concentrated on production
processes, which produce at least one extra hadron, such as a pion, it is the
inelastic nucleon-nucleon cross section σNNinel that should enter in the above
expressions, rather than σNNtot . Typically half of all collisions are of production
type, though this fraction depends on the energy.

By construction the linear cascade picture is not able to deal with com-
pression e�ects arising from the equation of state. Therefore it rather serves
as a background reference supplying the trivial collision dynamics. As such
this concept was revived years later under the term LEXUS3 [37] for the
interpretation of the CERN SPS-data.

2.3 Parton cascades

Parton cascade models seek to treat the very early and most violent stage of
ultra-relativistic nuclear collisions by evolving explicitly the partonic degrees
of freedom. They are therefore mostly applied to study the initial compres-
sional and thus high density phase of ultra-relativistic heavy ion collisions
(collider energies,

√
s ≥ 200 GeV).

The parton cascade description is founded on the �eld-theoretic parton
picture of hadronic interactions within the established framework of pertur-
bative QCD. The colliding nuclei are visualised as clouds of quasi-real quarks
and gluons whose mutual inter-penetration causes a rapid materialisation.
Multiple short-range scatterings between the partons (minijet production)
together with associated QCD radiation (gluon bremsstrahlung) produce the
major part of the entropy and transverse energy. The approach is designed
for high energy collisions. Hence long-range colour forces and associated non-
perturbative e�ects are assumed to be negligible. The treatment becomes
increasingly ill-justi�ed at lower energies where most parton scatterings in-
volve momentum transfers that are too small to be described perturbatively.
An excellent review of this class of treatment was given by Geiger [38].

The parton cascade models have the following general structure:

3 LEXUS: Linear extrapolation of ultra-relativistic nucleon-nucleon scattering to nucleus-
nucleus collisions.
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1. Initialisation: The initial parton distributions are obtained on the basis
of the measured nucleon structure functions.

2. Interaction: Perturbative QCD provides the parton interactions that in
turn evolve the ensemble of partons during the violent collision stage. This
includes multiple scatterings together with associated space-like and time-
like parton emission processes before and after each scattering. However,
the scatterings are incoherent with no possibility for quantum interference
e�ects.

3. Propagation: The partons are propagated freely on straight trajectories
between interactions, without any non-perturbative e�ects.

4. Hadronization: Towards the end of the violent stage the partons are re-
combined or converted via string fragmentation into hadrons that may
or may not interact further among themselves.

In the present applications, hadronization is not implemented as a trans-
port process with proper forward and backward reactions between the two
phases (which should be governed by corresponding driving potentials).
Rather, the partons are instantaneously converted into hadrons according
to a certain criterion for the onset of hadronization. Thus, such descriptions
of the hadronization process violate detailed balance requirements, see Sect.
5.8.

2.4 String models

The majority of the dynamical models being used in energy ranges where
the partonic degrees of freedom can be excited do not explicitly treat the
partonic degrees of freedom. Rather, they invoke concepts developed for the
description of elementary collisions, such as pp, p̄p, or e+e−. The basic picture
is that of a color exchange between the virtual partons associated with the
fast-moving collision partners. So, as a result, colour charges become spatially
separated and energy is being stored into the resulting chromo-electric �eld
between the receding colour charges. This situation is phenomenologically
described by a string, cf. e.g. the Lund string model[39]. The energy stored
in the string may then subsequently create qq̄ pairs that locally neutralise the
�eld and thus fragment the string. Strings below a certain threshold energy
are then considered as hadrons. In this manner, a high-energy elementary
collision leads to a many-hadron �nal state.

Thus, phenomenological strings present a tool for taking account of the
fact that an increase in the collision energy leads to the activation of ever
more partonic degrees of freedom (quarks and gluons), without a need for ex-
plicitly treating the partonic phase. Optionally the models include collective
string e�ects such as the color-rope picture [40, 41]. They normally ignore
the associated space-time evolution and operate solely in momentum space.
Possible space-time coherence e�ects for the reaction are usually mocked up



554 2 Cascade models

by a phenomenological formation time that prevents created particles from
immediate interactions with other ones. Up to now, the string models con-
tain no �elds and reverse reactions are ignored as well. This inherent lack of
detailed balance prevent the system from equilibrating and may lead to an
over-population of phase space. Further details can be found in the model
descriptions in Sect. 3.5.



Chapter 3

Kinetic transport models

The above cascade models treat the collisions among the constituents on
a very simplistic level that ignores both mean �elds and correlations. Thus
re�ned treatments are needed. On the other hand, an exact many-body treat-
ment of the complex collision process is neither possible nor desirable. There-
fore one still must develop a suitably reduced level of description. The dy-
namics of the system will then be described in terms of certain well chosen
relevant observables that are supposed to contain the most relevant infor-
mation. Then only these are treated explicitly by the dynamics, while the
irrelevant degrees of freedom generally provide a stochastic background for
the retained variables. Typically such procedures imply a separation of scales,
mostly time scales, where the modes with fast relaxation times generally re-
sulting from higher-order correlations provide the coupling and stochastic
terms for the explicitly treated slow modes of the dynamics. Such reductions
in information generally imply a growth in an appropriately de�ned entropy.

Nuclear collisions are mostly described by simply retaining the single-
particle information. In its simplest still non-dissipative form in terms of
single-particle wave functions it leads to the time-dependent (Brueckner)
Hartree-Fock picture. The step forward towards a density-matrix description
permits the inclusion of dissipative e�ects. In the semi-classical limit, the
latter take the form of a collision term expressed in terms of the single par-
ticle distribution functions in phase-space {fa(x, p)} of the various hadronic
species {a}. In the following we shall consider just one generic nucleon specie.
The extension to several hadronic species is straightforward and yields a set
of coupled but similar equations.

Notationally we use the relativistically covariant form with the metric
gµν = diag(1,−1,−1,−1) with the convention for the units that ~ = c = 1, if
not explicitly stated di�erently. The four-coordinates and four-momenta are
x = (t,x), p = (p0,p), etc., where p0 is the energy including the rest mass m
of the particles.

555
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3.1 Potentials and mean �elds

Within one-body approaches the nucleons are assumed to move in an ef-
fective one-body �eld. Given a two-body interaction, the e�ective one-body
potential or self-energy of a given particle results from the coherent e�ect on
its forward motion due to its interaction with all the other particles in the
medium. Again tractable truncation schemes are to be used. The simplest
is the Hartree-Fock (HF) approximation which ignores all higher order cor-
relations and thus explores the interaction proportional to the density ρ of
the medium. In a relativistic formulation the interaction can be provided by
an exchange of a meson with mass ms. E.g. the exchange of a scalar boson
leads a scalar two-body potential which in its four momentum representation
becomes ṼNN (p) ∝ 1/(p2 −m2

s). In HF approximation the many-body wave
function is given by a Slater determinant of single particle states which are
propagated in the self-consistent mean �eld ΣN . The latter consists of a direct
and an exchange potential, both given by the self-consistent densities of the
system. The classical analogue to the HF approximation is the Vlasov treat-
ment (which can be characterised as the Boltzmann equation (3.4) without
the collision term). In the non-relativistic limit the interaction is considered
instantaneously and the meson-exchange potential simply becomes a function
of three momentum, hence ṼNN (q) ∝ 1/(q2 + m2

s). The exchange of other
bosons such as vector bosons would imply corresponding tensor structures.

In the nuclear case particular complications arise from the fact that real-
istic NN potentials have a strong repulsive core at short distances r, which
lead to non meaningful expressions for the HF approximation. This can be
cured by using an e�ective interaction instead of the bare two-body interac-
tion V , either �tted to a wide body of nuclear structure data or microscopi-
cally derived from V . The latter derivation includes the T -ρ approximation,
where the two-body potential V is replaced by the corresponding vacuum
two-body scattering matrix T , or its in-medium improvement, the Brückner
G matrix[42]. Modern renormalisation group approaches (RG) [43�45] con-
struct e�ective interactions through a separation in momentum scale: the
high momentum sector is eliminated by the RG method leading to a cor-
respondingly tamed two-body potential called Vlowk for the dynamics in the
low momentum sector. Alternatively the unitary correlation operator method
(UCOM)[46�48] explicitly treats the short range correlations arising from the
short range sector of the interaction by a unitary transformation and arrives
at very similar tamed potentials.

Already through the exchange Fock-term but also due to the use of ef-
fective interactions the so derived mean �eld potentials become momentum
dependent. The non-relativistic single particle Hamiltonian then reads

h =
p2

2m
+Σ(p, ρ(x)). (3.1)
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For iso-symmetric matter the relativistic Dirac mean-�eld Hamiltonian can
only contain two �elds, a scalar and a vector �eld,

hDirac = αp + β(m−ΣS) +Σ0
V , (3.2)

with Dirac matrices α, β, for the nuclear problem �rst investigated by Dürr
in 1956 [49] almost two decades prior to Walecka [50]. It should be noted that
in the relativistic case a momentum dependence arises due to Lorentz forces
generated by the vector component of the self-energy, even if the self-energies
ΣS,V do not explicitly depend on momentum. In semi-classical treatments one
alternatively uses the quasi-relativistic �Hamiltonian�

h =
√

p2 +m2 +Π(p, ρ(x)) (3.3)

with the Schrödinger-equivalent optical potential

Uopt(p, ρ) =
1

2m
Π(p, ρ) = −ΣS +

pµΣ
µ
V

m
+
Σ2
S −ΣV µΣ

µ
V

2m
.

Here we introduced the Lorentz-scalar (polarisation) function Π to be added
to the m2 term in (3.3).

The momentum dependence of the e�ective interaction causes some extra
complications for the interpretation of the calculated results. The UCOM
method for example directly explains that along with the unitary transfor-
mation of the Hamiltonian also all other operators have to be transformed
likewise to corresponding e�ective operators. This is particularly visible for
conserved currents. The simplest consequence of momentum-dependent in-
teractions is that the mass of a particle changes to an e�ective mass m∗ in
the medium. A naive interpretation would imply that the entire body of A
particles would respond to a boost with a mass Am∗ which is of course false.
Rather the elementary expressions for the conserved currents, as derived from
a microscopic Lagrangian are only valid for the full con�guration space. For
the reduced description in terms of e�ective interactions they are to be read-
justed accordingly, e.g. by direct derivation or in case of phenomenological
interactions minimum substitution methods are of help. In semi-classical de-
scriptions the corresponding back-�ow term can be furnished by extra Poisson
bracket terms beyond the ones appearing in the Boltzmann equation (3.4),
see details given in Sect. 3.3.4.

Through the optical theorem the imaginary part of the mean potential or
self-energy Σ is related to the total cross section, i.e. to all processes leading
to non-forward scattering or to inelastic processes. The latter will explicitly
be treated by the loss term of the collision term in the Boltzmann equation
(3.4). Genuine mean-�eld schemes, which are entirely governed by hermitian
one-body Hamiltonians such as time-dependent Hartree-Fock (TDHF), are
non-dissipative and conserve the entropy exactly already at the one-body
level. (This holds both for quantum and classical mean-�eld dynamics with
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zero collision term.) Nonetheless, by considering a certain limited set of ob-
servables or by performing a coarse graining in conjunction with a suitable
limit procedure, also such mean-�eld evolutions (for example for nuclear col-
lisions) display relaxation features.

3.2 Two-body collisions (Boltzmann equation)

The residual interaction omitted in the mean-�eld description may be ac-
commodated into a one-body description by means of the Stoÿzahlansatz
which approximates the two-body density as a product of one-body densi-
ties, f (2)(i, j) ≈ f (1)(i)f (1)(j) (also know as `molecular chaos'), along the
line laid out by Boltzmann. (As above, we still assume that the interaction
is of two-body form; suitable generalisations are needed for multi-particle
interactions.) By this device, the dynamical information about the system,
at any time, is given solely in terms of the one-body density, from which
most of the quantities of interest can be obtained. This continual reduction
of information generates entropy.

Conceptually, the natural implementation of this program within the quan-
tal framework is Stochastic TDHF [51], in which the residual interaction
causes the system to continually jump from one Slater determinant to an-
other. Though considerable work has been devoted to this type of model, its
practical use has been rather limited so far [52].

By contrast, the (semi-)classical framework of the Vlasov model provided
a very useful and practical calculational tool that has led to numerous sim-
ulation codes. We therefore describe this approach brie�y. In this physical
picture, individual hadrons (here nucleons) move in the self-consistent e�ec-
tive one-body �eld while experiencing direct (here Pauli-suppressed) residual
scatterings that are governed by the e�ective di�erential cross section dσ/dΩ.
The combined time evolution of the phase-space density f(X,p) is then de-
scribed by the following equation of motion,

ḟ(X,p) ≡ ∂f

∂t
+ {h[f ], f} = C[f ](X,p) = C̄[f ] + δC[f ] , (3.4)

here and in the next subsection using three-momentum notation in the sense
of the l.h.s. of (3.6). The left-hand side gives the collision-less (Vlasov) evo-
lution in the self-consistent e�ective �eld1, while the e�ect of the residual
(two-body) interaction is given by the collision term on the right.

Since the individual collisions are stochastic, the collision term C can be
decomposed into its average and �uctuating parts, C̄ and δC, respectively.

1 In case of momentum dependent potentials the Poisson-bracket term in the equation
of motion (3.4) is insu�cient, since further gradient terms have to appear in order to
recover its Galilei (Lorentz) invariance through a corresponding back-�ow term. Thus the
treatment of momentum dependent forces is non-trivial, see also Sect. 3.3.4.
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In most applications, however, only the average e�ect of the collisions is con-
sidered. Relative to the original treatment by Boltzmann, which was aimed
at dilute classical gases, suitable Pauli blocking or Bose enhancement factors
are added for applications to nuclear systems. Thus, for a gas of nucleons,
the e�ect of the average collision term C̄ is

C̄[f ](X,p1) =
∫

d3p2

(2π)3

∫
dΩ′ v12

dσ12→1′2′

dΩ′ (3.5)

×[(1− f1)(1− f2)f1′f2′︸ ︷︷ ︸
gain

− f1f2(1− f1′)(1− f2′)︸ ︷︷ ︸
loss

].

where f1 ≡ f(X,p1) etc. are the local phase-space occupancies and v12 ≡
|v1−v2| is the relative speed of the two colliding nucleons. Thus the net e�ect
on the phase-space density at (X,p1) is obtained by subtracting the loss from
scatterings with partners at X having momentum p2 from the gain resulting
from the reverse reactions, p1′p2′ → p1p2. (The loss term can directly be
associated with the imaginary part of the optical potential mentioned above.)

The quantum re�nement of the collision term (3.5) was �rst made for
electron gases by Nordheim [53] and Uehling and Uhlenbeck [54]. It was
adapted to uniform gases of nucleons, pions, and ∆ resonances about 30
years ago [31] and was subsequently augmented by the mean �eld [55] to
provide a description of collisions between �nite nuclei. The resulting nuclear
Boltzmann-Uehling-Uhlenbeck (BUU) equation exists in many implementa-
tions that di�er with respect to both the physics input (such as the types
of hadrons included, the form of their e�ective Hamiltonian, and their dif-
ferential interaction cross sections, including inelastic reactions and particle
production) and the numerical methods employed (see Sect. 3.5.2 below).
Mostly the particles were assumed to be on-shell. Furthermore, in most ap-
plications to nuclear collisions, the collision term (3.5) was taken to be local
in both, space and time, a simpli�cation that is not generally justi�ed. The
extension to the corresponding non-Markovian evolution was pioneered by
Ayik [56] and has been shown to play a signi�cant role for nuclear dynamics
in the presence of instabilities [57]. Alternatively Morawetz et al. [58] pro-
posed a space-time nonlocal collision term with �rst applications to nuclear
collisions. Besides the mean �eld part such nonlocal collision terms lead to
supplementary contributions to the equation of state due to the �nite virial.

3.2.1 Boltzmann-Langevin dynamics

It is important to recognise that the standard nuclear Boltzmann equation in-
cludes only the average e�ect C̄ of the residual collisions and therefore leads
to a deterministic time evolution of f(r,p, t) (although ensembles of �nal
states, {f(r,p, t → ∞)} may be obtained by propagating suitable ensem-
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bles of initial con�gurations, {f(r,p, ti)}). By contrast, when the �uctuating
term δC is included in (3.4) the stochastic character of the individual colli-
sions leads to a di�usive time evolution such that a single initial phase-space
density f(r,p, ti) develops into an entire ensemble of phase-space densities,
{f(r,p, t)}. Viewed in the abstract space of one-body densities, the evolution
resembles a random walk, as each distinct collision event causes a given one-
body density to branch into an entire family of densities, each one reachable
from the given density as one particular outcome of the collision event in
play. Each of these systems then undergoes its own self-consistent mean-�eld
evolution until its next two-body collision occurs. The resulting transport
description is referred to as the nuclear Boltzmann-Langevin model [59�62].

When the global dynamics is stable, the e�ect of these trajectory branch-
ings generates the appropriate statistical �uctuations around the average tra-
jectory approximately given by the standard evolution obtained without the
�uctuating collision term. While conceptually gratifying, these �uctuations
are usually not essential.

However, the situation is radically changed when the system encounters
instabilities, such as when a phase transition is present. The di�erent trajec-
tory branches may then evolve into con�gurations that are macroscopically
quite di�erent from one another. (For example, the number of �nal nuclear
fragments may di�er from one dynamical history to another, as typically hap-
pens in nuclear multi-fragmentation.) In such a situation, the single trajectory
f(r,p, t) generated by the mean Boltzmann equation becomes meaningless
and may not even resemble any of the members of the ensemble resulting
when the �uctuating term is included. (For example, if one were to simulate
thermal �ssion of a spherical nucleus by the standard Boltzmann approach,
the system would remain strictly spherical at all times and might not even be
energetically able to disintegrate, whereas the Boltzmann-Langevin equation
would yield an ensemble of regular binary events, each one displaying its own
�ssion direction.) It is thus evident that the Boltzmann-Langevin model may
be particularly well-suited for studies of phase transition dynamics.

However, it is technically rather demanding to treat the Boltzmann-
Langevin model and this has limited its practical utility. Fortunately, though,
various adequate approximate treatments were developed for nuclear dynam-
ics. In particular, the Brownian One-Body (BOB) model replaces the e�ect
of the stochastic part of the collision term by a Brownian one-body force
wherever the local conditions are inside the spinodal phase region of insta-
bility [63]. This one-body force is designed so as to emulate the growth of
the most unstable spinodal mode, which tends to become dominant, and the
resulting dynamics therefore provides a quantitative approximation to the
full Boltzmann-Langevin dynamics. The Brownian One-Body treatment has
proven particularly powerful for the understanding of the nuclear liquid-gas
phase transition and the associated multi-fragmentation phenomenon [64].

Such a re�nement level was so far achieved only for nuclear dynamics
at intermediate energies. However, nuclear collisions in the FAIR energy
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range may generate environments that are situated inside the thermodynamic
phase-coexistence region and, therefore, are inherently unstable against a
phase separation. For the corresponding dynamical treatment it is essential
to develop the transport models in a manner that is conceptually similar to
what was done at medium energies as described above. (A comprehensive
review of stochastic approaches to nuclear dynamics was given in Ref. [65].)

3.3 Transport theory with dynamical spectral functions

Already in the early days of kinetic transport descriptions of nuclear collisions
one had to deal with a problem that de�nitely lied beyond the applicability
of the standard Boltzmann equation. Namely one had to deal with broad
resonances such as the Delta-isobar resonance. Its decay width of 120 MeV
exceeds by far the mean kinetic energies of the particles in the collision sys-
tem. In order to circumvent this de�ciency recipes were invented, such as
to represent the resonances by a bunch of appropriately weighted on-shell
particles with masses distributed across the mass spectrum of the resonance.
This permitted to de�ne proper creation cross sections, while the decay of
all the mass components was treated by an exponential law in time in ac-
cordance with the nominal decay rate. It took more than a decade, namely
until the seminal work of Danielewicz and Bertsch [66], before it was real-
ized that this prescription violates detailed balance. Thus in the event of
equilibration the system would be driven towards the wrong occupations for
the resonance. The improved formulation [66] still relied on the concept of
cross sections, since this was the main input to determine the collision rates.
However such strategies based on asymptotic scattering state concepts loose
their sense for short lived �particle states�. This includes resonances which
attain their width through decays already in vacuum but also particles which
through collisions acquire a corresponding damping width (collision broad-
ening). With mean-free collision times typically below 5 fm/c, the damping
widths become comparable with the mean kinetic energies of the particles.
Thus most particles in the collision system cannot appropriately be described
by a quasi-particle ansatz of in�nite lifetime.

The basic concepts for a proper transport treatment of particles with broad
spectral widths were already laid out in the book by Kadano� and Baym
(1962) [67]. In principle, the Kadano�-Baym (KB) equations - e.g. derived in
lowest order from a two-particle irreducible (2PI) action as described below
- provide a convenient starting point. First discussions on quantum e�ects
for the collision rates evaluated in the context of the KB equations date
back to the pioneering work by Danielewicz in 1984 [5, 6]. However enor-
mous demands on computational resources deferred further progress for long
time. The KB equations may directly be solved including also non-locality
in space�time. This is a formidable task and presently intractable in its full
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scale1. Most attempts dealt with very simple theories and in simplifying ge-
ometry, such as spatial homogeneity, cf. e.g. [71]. But rarely the special issue
of broad spectral functions was addressed so far. The question arises, if fur-
ther approximations to the KB equations - like the gradient expansion - which
lead to a generalized transport treatment do perform well enough in case of
inhomogeneous systems with strong coupling. In this respect serious progress
was achieved only rather recently [72�82].

In this section we try to outline the main steps towards a transport treat-
ment with dynamical spectral functions. Since most of the published presen-
tations are rather technical we try to be more pedagogical. We shall outline
the basic steps in simple physical terms. We start from known grounds, as
the Golden Rule, in order to motivate the general form of the driving terms,
namely current-current correlation functions. The latter drive the quantum
Kadano�-Baym equations which are the basis for the derivation of the gener-
alised kinetic transport equations. In subsequent sections we further address
important special features which arise in the context of unstable particles
with broad spectral functions.

Conceptual wise one has to switch from distributions in spatial momentum
to distributions in four momentum permitting that particles can have a spec-
tral width. The link between distributions in spatial momenta p of on-shell
particles and the corresponding four-momentum expression results from

f(3)(x,p)
d3p

(2π)3
= f(4)(x, p) 2πδ(p2 −m2)︸ ︷︷ ︸

A(x,p)︸ ︷︷ ︸
F (x,p)

Θ(p0)2p0 d4p

(2π)4
(3.6)

Here the Θ-function permits only positive energies p0. This already allows to
introduce two quantities of central importance. On the one hand the spectral
function A(x, p), which here takes the trivial relativistic form for on-shell
particles, and secondly the four-momentum distribution function F (x, p).
In expression (3.6) the on-shell character of the spectral function will con-
vert the four-phase-space distribution function f(4)(x, p) on the r.h.s. to the
three-momentum distribution on the l.h.s. f(3)(x,p) (below we'll drop the
subscripts (3) or (4)). The interaction with other particles will modify the
spectral function A(x, p), both due to the real part of the mean �eld po-
tential or self energy Σ(x, p), but also due to dissipative processes that con-
tribute to the imaginary part of the self energy in form of a damping width
Γ (x, p) = −2ImΣ(x, p) for fermions or Γ (x, p) = −ImΠ(x, p)/p0 for rela-
tivistic bosons. In the latter case the polarisation function Π replaces the
self-energy. The discussion of these dynamical quantities will be the central
issues of this Chapter.

1 Recent progress in this context with applications to various branches in physics can be
found in the proceedings of workshops on the KB equations and non-equilibrium Green's
function methods[68�70].
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3.3.1 From the golden rule to the Kadano�-Baym
equations

The standard text-book transition rate e.g. for the radiation from some initial
state |i〉 with occupation ni to �nal states |f〉 given per 3-momentum p of
the emitted boson (e.g. a photon emitted through an orbital transition of an
electron in an atom, or a nucleon in a nucleus) is given by Fermi's golden
rule†

(2π)3
Wif(p)
d3kdt

=
∑
i f

ni(1− nf )
∣∣∣∣∫ d3x 〈f |φp(x)j(x) |i〉

∣∣∣∣2 2πδ(Ei − Ef − ωp)

=
∑
i f

ni(1− nf )

∣∣∣∣∣∣ 6i

f

pε6-

∣∣∣∣∣∣
2

2π δ(Ei − Ef − ωp). (3.7)

Here j(x) is the current operator that couples to the emitted boson with the
wave function φp(x) = φ0eipx where p is the boson momentum. This
formulation is limited to the concept of asymptotic states and therefore in-
appropriate for problems which deal with particles of �nite life time. One
rather has to go from the level of absolute squares of tree-level diagrams to a
two-point description. Then the very same rate can be separated into a part
that encodes the source properties times that describing the produced boson

(2π)3
Wif(p)
d3kdt

=

∫
d3xd3y

dω

2π
×

−iΠ(x,y;ω)︷ ︸︸ ︷∑
i f ni(1−nf ) 〈i| j†(x) |f〉 〈f | j(y) |i〉 2πδ(ω+Ei−Ef )

× φp(x)φ†p(y)2πδ(ω − ωp)︸ ︷︷ ︸
Ap(y,x;ω)

. (3.8)

On the two-point level it speci�es the corresponding spectral function
Ap(x,y;ω) of the boson (here given in a mixed energy�spatial-coordinate
representation). The source properties are given by the polarisation function
which results from the current-current correlator

† This was �rst derived by Dirac[83] in 1927. The �golden� part of the rule is that coming
from time-dependent perturbation theory one of the time integrations occurring in the
square of the amplitude conspires to a delta-function in energy. Similar considerations lead
to a delta-function in 3-momentum for homogeneous systems in the in�nite volume limit.
All these �tricks� are resolved by the Wigner transformation which is discussed below.
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−iΠ−+(x, y) =
∑
i f

ni(1− nf ) 〈i| j†(x) |f〉 〈f | j(y) |i〉 =
〈〈
j†(x)j(y)

〉〉
(3.9)

=

�
�

�
��

��C
CC�
��C
CC�
��C
CC�
��C
CC�
��C
CC

=

�
�

�
�

�

-
+ . . . (3.10)

now given by a set of �two-point� diagrams symbolically represented by the
hatched diagram. The lowest order term just results from a one-loop diagram.

The above steps explains the general concept. Any interacting �eld,
say φ(x), couples to a current derived from the interaction Lagrangian as
j(x) = δLint/δφ(x) and the corresponding current-current correlator de�nes
the respective gain and loss rates. The extra + and − labels at the vertices
are special and important. These sign labels denote whether a certain vertex
belongs to the time-ordered (−) or respectively the anti-time ordered sec-
tion (+) of the square of the amplitude. Together with the orientation of
the + −−→ and − +−→ propagator lines one obtains unique diagram rules for the
calculation of rates rather than amplitudes. The just mentioned propagator
lines de�ne the densities of occupied states or those of available states, re-
spectively. Therefore all standard diagrammatic rules can be used again. One
simply has to extend those rules to the two types of vertices with marks −
and + and the corresponding 4 propagators, the usual time-ordered prop-
agator − −−→ between two − vertices, the anti-time-ordered one + +−→ between
two + vertices and the mixed + −−→ or − +−→ ones with �xed operator order-
ing (Wightman-functions) as densities of occupied and available states. For
details‡ we refer to the textbook of Lifshitz and Pitaevski [84].

The rate-diagram in the example case (3.10) given by a current-current
correlation function has the diagram topology of a self-energy Σ non-
relativistically or a polarisation diagram Π in the relativistic case, here that
of a boson. This is a general concept that the special −+ or +− components
of the self energies or polarisation functions de�ne the gain and loss terms in
transport problems, cf. Sect. 3.3.2 below.

The advantage of the formulation in terms of such �correlation� diagrams
is that it no longer refers to amplitudes but directly to physical observables
such as rates. The latter are no longer restricted to the concept of asymptotic
states. Rather all internal lines, also the ones which originally referred to the
�in� or �out� states are now treated on equal footing. Therefore now one
can deal with �states� which have a broad mass spectrum. The corresponding
Wigner densities + −−→ or − +−→ are then no longer limited to on-shell δ-functions
in energy (on-mass shell) but rather may acquire a width, as we shall discuss

‡ We prefer to use −+ notation over the >< notation used by Kadano� and Baym for two-
point functions. The reason is that the former directly amends to formulate all equations
of motion as matrix equation and it can likewise be used for multi-point functions.
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in more detail. Furthermore formulation (3.8) determines the exact transition
rates even in case of non-perturbative couplings.

t0

t-�

�
∞t+y

t−x

ss
Fig. 3.1 Closed real-time contour C with two external points x, y on the contour.

Indeed non-equilibrium many-body or �eld theory is based on the strat-
egy to marry the time-ordered evolution inherent in the amplitude with the
anti-time ordered evolution pertaining to the conjugate complex amplitude.
Thus, rather than only considering the time-ordered products of operators
as in standard (zero temperature) many-body or scattering theory one gen-
eralises the concept to a so called time contour C, cf. Fig. 3.1. It joins the
time evolution with vertices marked by a − sign with a subsequent anti-time
evolution with vertices marked by a + sign.

The Dyson equation for the two-point Green's functions can then ac-
cordingly be formulated as time contour functions. This was the concep-
tual starting point used by Kadano� and Baym [67]. They reformulated the
non-equilibrium Dyson equations in such a form that amends to describe the
evolution of the special {−+} and {−+} components of the propagators. This
way one comes to equations that directly determine the space-time changes of
occupied states as just discussed. For relativistic bosons the Kadano�-Baym
(KB) equations then read§(

G−1
0 (−i∂x) − G−1

0 (−i∂y)
)
G(x−, y+)

=
∫
C
dz
(
Π(x−, z)G(z, y+)−G(x−, z)Π(z, y+)

)
(3.11)

where G−1
0 (p) = p2 −m2 for relativistic bosons. (3.12)

Thereby the time-part of the folding integral on the r.h.s goes over the time-
contour C given in Fig. 3.1. Interchange of x− with y+ gives the equation
for G+−, i.e. for the �density� of available states. Thereby the driving ker-
nel of these dynamical equations of motion as given by the current-current
correlation function Π, cf. Eq. (3.9), is restricted to one-particle irreducible
(1PI) diagrams¶, since the KB (or Dyson) equations of motion generate the

§ Notational wise using synonymously F ij(x, y) = F (xi, yj) where with i, j ∈ {−+}
the xi, yj are the space-time contour coordinates on C, while x, y are the corresponding
physical coordinates.
¶ These are diagrams, which upon cutting a single propagator line do not split into two
disconnected pieces.
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reducible pieces. These KB equations constitute the basis for all transport
theory formulations on the one-particle distribution level.

For slightly inhomogeneous and slowly evolving systems, the degrees of
freedom can be subdivided into rapid and slow ones. Any kinetic approxi-
mation is essentially based on this assumption. Then for any two-point func-
tion F (x1, x2), one separates the variable ξ = (t1 − t2,x1 − x2), which re-
lates to the rapid and short-ranged microscopic processes, and the variable
x = 1

2 (t1 + t2,x1 + x2), which refers to the slow and long-ranged collective
motions. The Wigner transformation, i.e. the Fourier transformation in four-
space di�erence ξ = x1 − x2 to four-momentum p of the components of any
two-point function

F ij(x, p) =
∫

dξeipξF ij (x+ ξ/2, x− ξ/2) , where i, j ∈ {−+} (3.13)

leads to a (co-variant) four phase-space formulation of two-point functions.
It is helpful to avoid cumbersome notations in terms of Green's functions

and use quantities which have a straight physical interpretation analogously
to the terms in the Boltzmann equation. As already suggested in (3.6) we
de�ne the four-phase space distribution functions (4 dim. Wigner functions)
as

F (x, p) = f(x, p)A(x, p) = ∓iG−+(x, p) (3.14)

F̃ (x, p) = [1∓ f(x, p)]A(x, p) = iG+−(x, p)

with the corresponding Fermi/Bose occupation functions f(x, p) and [1 ∓
f(x, p)]. Here and below upper signs factors relate to fermion quantities,
whereas lower signs refer to boson quantities.

The key quantity that contains the spectral mass distributions is the
spectral function A(x, p). Formally it relates to the imaginary part of the
retarded Green's function

A(x, p) ≡ −2ImGR(x, p) = F̃ ± F. (3.15)

According to the retarded relations between Green's functions Gij , only
two real functions, e.g. f and A, are required for a complete dynamical de-
scription. Basically the spectral function A contains the information on how
the single particle modes with a given momentum are distributed in energy,
while f determine the actual occupation of these modes. As the dimension of
the �eld operators and likewise the propagators depends on the type of parti-
cle, the physical meaning of the distribution and spectral functions, F and A,
changes depending on, whether one deals with non-relativistic Schrödinger or
relativistic Dirac particles on the one side or relativistic Klein-Gordon bosons
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which have second order time derivatives in the �eld equations of motion. For
instance the vector current densities are alternatively given as

jµ(x) =
∫

d4p

(2π)4
vµFnon−rel(x, p)

{
for non-rel. particles
where v = (1,v) (3.16)

jµ(x) =
∫

d4p

(2π)4
2pµFrel(x, p) for relativistic bosons. (3.17)

Correspondingly the Kadano�-Baym and retarded equations given below take
di�erent forms.

The steps towards a derivation of general transport equations is to describe
the dynamics by a set of coupled Dyson equations which one then uses in its
Kadano��Baym (KB) form (3.11). Through the Wigner transformation one
directly obtains the space-time changes of the distribution functions F

vµ∂µ i G−+(x, p)︸ ︷︷ ︸
F (x,p)

= {G⊗Σ}−+
(x,p) − {Σ ⊗G}

−+
(x,p) (non-rel.) (3.18)

2pµ∂µ i G−+(x, p)︸ ︷︷ ︸
F (x,p)

= {G⊗Π}−+
(x,p) − {Π ⊗G}

−+
(x,p) (rel. bosons) (3.19)

and similar equations for F̃ = iG+−. On the r.h.s. the Wigner transformed
contour convolutions (abbreviated by ⊗) is a-priory a complicated formal ex-
pression. However, in the limit of negligible space-time variations it becomes
a simple product of the corresponding Winger-transformed quantities. For-
mally these steps are still exact, provided one uses the exact set of Dyson
equations.

Practical applications do require a truncation of the hierarchy which im-
plies to work with approximate correlations functions Σ or Π which are
then self-consistently expressed through the propagators G. Such truncations
should be done in such a way that they assure conservation laws, detailed
balance for the rates and thermodynamic consistence for the equilibrium
limit[85]. In order to approximate the r.h.s. the standard steps towards a
derivation of transport equations then usually involve two further approxi-
mations: (i) the gradient expansion for the slow degrees of freedom, as well as
(ii) the quasi-particle approximation for the rapid ones. We intend to avoid
the latter approximation and will solely deal with the gradient approximation
for slow collective motions by performing a systematic gradient expansion of
the coupled Kadano��Baym equations (3.18). Its r.h.s. then conspires to a
collision term containing gain and loss parts and 1st-order gradient correc-
tions, cf. Sect. 3.3.2. For a detailed derivation and the extensions to include
the coupling to classical �eld equations we further refer to refs. [75, 78, 86].

In the limit of smooth space-time behaviours the retarded propagator and
thus the spectral function can be obtained simply algebraically from the self-
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energies or the polarisation functions. For non-relativistic particles (bosons
or fermions) one obtains

GR(x, p) =
1

p0 −m− p2/(2m)−ΣR(x, p)
for non-rel. particles, where

A(x, p) =
Γ (x, p)

(p0 −m− p2/(2m)− ReΣR(x, p))2 + Γ (x, p)2/4
and

Γ (x, p) = −2ImΣR(x, p). (3.20)

Here A is the spectral function with local damping width Γ at four momen-
tum p. Accounting for intrinsic quantum numbers such as spin or iso-spin or
in the relativistic Dirac case these relations are corresponding matrix rela-
tions. In the case of relativistic bosons the corresponding relations read

GR(x, p) =
1

p2 −m2 −ΠR(x, p)
for relativistic bosons, where

A(x, p) =
2p0Γ (x, p)

(p2 −m2 − ReΠR(x, p))2 + p2
0Γ

2(x, p)
and (3.21)

Γ (x, p) = −ImΠR(x, p)/p0. (3.22)

For vector mesons these forms become corresponding Lorentz-tensor rela-
tions. According to (3.22) all rates become Lorentz time-delayed by a factor√
s/p0. Though generally valid also for particles with broad damping width,

this fact is immediately obvious in vacuum where the polarisation function
Π is solely a function of the invariant mass s = p2 = p2

0 − p 2.
As further shown in Ref. [86] mean �elds and condensates, i.e. non-

vanishing expectation values of one-point functions can also be included.
In local thermal equilibrium quite some simpli�cations among the kinetic

quantities result. The Kubo-Martin-Schwinger condition determines the dis-
tribution functions to be of Fermi-Dirac or Bose-Einstein type, respectively,
known as Jüttner functions.They are then simply a function of energy with
respect to the co-moving �uid cell

floc−eq(x, p) = 1/ (exp ((pµuµ(x)− µ(x))/T (x))± 1) . (3.23)

Here uµ(x) is the local �uid velocity, while µ(x) and T (x) are the local chem-
ical potential and temperature, respectively. The corresponding forms of the
spectral functions (3.20) and (3.21) are rigorous through the four-momentum
p = (p0,p) dependence of the retarded self-energy or polarisation function.
In the non-equilibrium case all quantities become functions of the space-time
coordinates x and, of course, the distribution functions f(x, p) generally also
depend on the four momentum p.
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3.3.2 Generalised transport equations with dynamical
spectral functions

From now on we con�ne the presentation to the case of relativistic bosons
in order to also discuss dilatation e�ects arising from relativistic kinemat-
ics. A systematic �rst order gradient approximation [73, 75, 76, 78] to the
corresponding Kadano�-Baym Equations [67], cf. Eq. (3.19), provides a gen-
eralised transport equation which determines the space-time changes of the
four-phase-space distribution function F (x, p) = f(x, p)A(x, p) for relativistic
bosons‖ as

2pµ∂µF (x, p)− {Re ΠR, F}+ {Πgain,Re GR} = Cloc. (3.24)

with Πgain = ±iΠ−+ plus a similar equation for F̃ = (1 ∓ f(x, p))A(x, p).
The local collision term Cloc will be explained below. In �rst order gradient
approximation the spectral function is given by the imaginary part of the
retarded propagator, according to the algebraic expressions (3.20) or (3.21).

The simultaneous adjustment of the spectral function to the local real and
imaginary parts of the polarisation function, i.e. mass shift and total width,
among others restores unitarity as will be discussed below in Sect. 3.3.6.
The above set of equations generalises the on-shell scheme of the standard
Boltzmann equation (3.4).

In thermal equilibrium f(x, p) becomes a Fermi-Dirac or Bose-Einstein
distribution (3.23) in the particles' energy p0. The evolution of F is governed
by the generalised transport Eq. (3.24). Together with the retarded equation
(3.20) or (3.21) this de�nes a generalised quantum transport scheme which
is void of the usual quasi-particle assumption. The space-time evolution is
completely determined by the initial values of the Green's functions at an
initial time for each space point. Thus the evolution is �Markovian�. Within
its validity range this transport scheme is capable to describe slow space-time
evolutions of particles with broad damping width, such as resonances, within
a transport dynamics, now necessarily formulated in the four-dimensional
phase-space.

3.3.3 Generalised collision term Cloc

Coming from the usual on-shell Boltzmann or Boltzmann-Uehling-Uhlenbeck
collision term (3.5), each occurring three-momentum distribution function

‖ The non-relativistic generalised transport equation can simply be obtained by replacing
everywhere Π(x, p) by 2mΣ(x, p) in (3.24) and on the l.h.s p0 by the mass m, and
switching to the proper non-relativistic determination, cf. (3.20) of the retarded propagator
and the spectral function.
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together with its momentum integration is simply to be replaced by its four-
momentum analogue in the sense of Eq. (3.6). Thus

f(x,p)
d3p

(2π)3
=⇒ F (x, p)

d4p

(2π)4
= f(x, p)A(x, p)

d4p

(2π)4
. (3.25)

Alongside the normally occurring two-body cross-sections have to be replaced
by the corresponding T -matrix expressions providing proper o�-shell exten-
sions. For genuine momentum dependent T -matrices the collision term has a
�nite virial (Sect. 3.3.5) due to the interactions at �nite distances and there-
fore the collision term contributes to the conservation laws and therefore
to the EoS in a non-trivial fashion (cf. the discussion in Sect. 1.4). Within
�eld theory or many-body theory one has to evaluate the corresponding self-
energies or polarisation functions for the collision term, which then reads

Cloc = Πgain(x, p)(A(x, p)∓ F (x, p))︸ ︷︷ ︸
gain

− F (x, p)Π loss(x, p)︸ ︷︷ ︸
loss

(3.26)

= Πgain(x, p)A(x, p)− 2p0Γ (x, p)F (x, p). (3.27)

Here form (3.26) generalises the standard Boltzmann collision term, while
form (3.27) display its damping properties with the local damping rate
given by Γ = (Π loss ± Πgain)/(2p0). Thereby the Πgain,loss(x, p) (alias
−iΠ±∓(x, p) = −iΠ><(x, p)) are the current-current correlation functions,
cf. (3.9), which determine the gain and loss rates. In case of local couplings
the local collision term does not contribute to the conservation laws.

In local equilibrium the collision term vanishes and one infers from (3.23)
the standard Kubo-Martin-Schwinger relations for the gain and loss rates

Πgain(x, p) = ±iΠ−+(x, p) = floc−eq(x, p)2p0Γ (x, p) (3.28)

Π loss(x, p) = −iΠ+−(x, p) = (1∓ floc−eq(x, p))2p0Γ (x, p). (3.29)

3.3.4 Gradient terms

More subtle than the collision term are the �rst order gradient terms encoded
in the two Poisson brackets of the quantum kinetic Eq. (3.24). Indeed both
contribute to the conservation laws, and this way also de�ne the underlying
equation of state (EoS). Thereby the �rst Poisson bracket furnishes the so-
called drag-�ow. In the quasi-particle limit it accounts for the dressing of the
particles by the dragged matter cloud as to form a quasi-particle with a non-
trivial dispersion relation with a corresponding in-medium group velocity that
can be expressed by an e�ective mass. This change in �ow is just compensated
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by the second Poisson bracket through the polarisation of the medium. The
latter therefore forms a back-�ow component. Only the coherent play of both
Poisson brackets restores the conserved Noether currents and thus recovers
e.g. Galilei (Lorentz) invariance [78]. Thus for a uniform boost of a system
of N particles it acquires a total mass of M = Nm rather than N times the
e�ective mass!

Since the �rst Poisson bracket involves space-time and momentum gradi-
ents directly acting on the distribution function F this term has an easy clas-
sical interpretation, where the motion of the corresponding (quasi-) particle
is subjected to a force which generally is momentum dependent. It generalises
the Vlasov or Hartree-Fock term discussed in Sect. 3.1. A generalisation of
this concept to the four-momentum picture is straight forward, since it just
amounts to establish the corresponding characteristic curves of the homoge-
neous �rst-order partial di�erential equation. For the second Poisson bracket
term on the other hand the derivatives of the distribution function appear
only implicitly through the self-energy with the result that they a�ect mo-
menta other than the momentum externally entering the l.h.s. of the trans-
port equation (3.24). This has to be such, since the discussed term describes
the reaction of the surrounding matter on the particle moving through the
matter. However this term escapes an immediate description in terms of test
particles (cf. Sect. 3.5.2), such that an appropriate simulation algorithm could
not yet be established for the exact quantum kinetic equation (3.24).

Guided by equilibrium relations Botermans and Mal�iet [87] suggested a
simpli�cation of this second Poisson term, cf. [73, 75, 76]

{Πgain,Re GR}=⇒
BM

{f(x, p)2p0Γ (x, p),Re GR} (3.30)

with Γ = −ImΠR/p0, formally valid up to second order gradient terms. Here
the distribution function f(x, p) directly appears, while Γ is the damping
width. The advantage of this substitution is that now the Poisson-bracket
derivatives directly act on the distribution function f and the term amends
a test-particle simulation[73, 76]. The price to be payed is that then the
conservation laws are modi�ed, since instead of the spectral function A rather
the entropy-spectral function As = 1

2AΓ
2, as introduced in Ref. [88], enters

the conserved current expression

JµBM(x) = e

∫
d4p

(2π)4
2pµf(x, p)As(x, p)(x, p) (3.31)

The BM-substitution accounts for part of the back-�ow. In the quasi-
particle limit both spectral functions converge to the same δ-function at the
quasi-particle energy [75, 88]. A further merit of the BM-substitution is that
for certain collision terms an entropy current can be derived which ful�ls an
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exact H-theorem, for details see Ref. [75]. Recent �rst numerical applications
with this substitution [73, 76, 80, 81] were performed.

Once one starts to include the real part of the self-energies in particular
beyond mean-�eld approximations, one has to face the problem of renor-
malisation in the context of self-consistent schemes. This was an unsettled
problem for decades. Recent progress in this context was achieved by the
work of van Hees and Knoll [89�91] and follow-up work by Blaizot et al. [92].

3.3.5 The virial limit

An interesting simplifying case is provided by the low density limit, i.e. the
virial limit. Since Beth-Uhlenbeck (1937) [93] it is known that the corrections
to the level density are given by the asymptotic properties of binary scattering
processes, i.e. in a partial wave decomposition by means of phase shifts, see
also [94�96] . The reasoning can be summarised as follows. While for any
pair the c.m. motion remains unaltered the relative motion is a�ected by
the mutual two-body interaction. Considering a large quantisation volume of
radius R and a partial wave of angular momentum j, the levels follow the
quantisation condition

ψj(r) −→ sin(kr + δj(E))

|
R
⇒ kR+ δj(E) = nπ. (3.32)

Here δj(E) is the phase shift of this partial wave at invariant c.m. energy E =√
s, while n is an integer counting the levels. Thereby the kR term accounts

for the free part of the relative motion. The corresponding corrections to
both, to the level density and thermodynamic partition sum, in this partial
wave are then given by

ρj = (2j + 1)
dn
dE

=
dρfree

dE
+

2j + 1
π

dδj
dE

(3.33)

Zj =
∑
i

e−Ei/T =
∫

dE
dρj
dE

e−E/T (3.34)

Since Z determines the equation of state (EoS), its low density limit is
uniquely given by the scattering phase shifts. The phase shifts of resonance
scattering, cf. Fig. 3.2 for the ∆33 resonance in πN scattering, behave ex-
actly as in the case of a driven harmonic oscillator with damping: at low or
high frequencies, respectively, oscillator and external frequency are in phase
or opposite (180◦) phase, while at resonance condition the phase is 90◦. The
advance of a phase shift by a value range of π across a certain energy window
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Fig. 3.2 Top: Model �t [97] to the
πN scattering phase shifts in the 33
channel from Ref. [98]; bottom: Result-
ing level density function B(Ecm) (full
line) compared to the corresponding
spectral function A(Ecm) of the ∆33

resonance (dashed line). Figure from
[97].
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Fig. 3.3 Real (full line) and imaginary
part (dashed) of the pion optical potential
Uopt (3.36) arising from the πN∆ interac-
tion at a density of ρN = 0.4ρ0 used in the
�t of Fig. 3.4, where ρ0 = 0.16 fm−3 is the
nuclear saturation density.

adds one state to the level density and points towards an s-channel reso-
nance. The energy derivative of the phase shifts has a dimension of a time
and indeed de�nes the extra time, called delay time,

B(E) =
1
~
τdelay = 2

∂δ(E)
∂E

(3.35)

spent in the interaction region compared to the free motion case [99]. The
function B(E) related to the time delays has similar but not quite the same
properties as the spectral function of the resonance, Fig. 3.2. Attractive po-
tentials and resonance scattering lead to positive delay times, whereas repul-
sive potentials generally shorten the scattering path and thus lead to negative
delay times. Due to such delays the scattered particle reaches less or more
frequently the borders e.g. of a con�ning vessel, implying the pressure to de-
or increase with the above discussed consequence for the level densities. While
transition rates are given by the absolute square of the transition matrix ele-
ment, the delay times result from the energy behaviour of the complex phase
of the amplitude. For resonances the time delay culminates at resonance con-
dition to τdelay(Eres ≈ 4~/Γ (Eres) = 4τdamping and drops to zero far away
from resonance. One recognises the signi�cantly di�erent threshold behaviour
of the level density function B(E) = ∂δ(E)/∂E compared to spectral func-
tion A(E), Fig. 3.2. This di�erence is discussed in detail by Weinhold and
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Friman [97] within a thermal freeze-out model applied to pion production
data of the TAPS collaboration [100], Fig. 3.4. The di�erence between the
virial treatment of the level density and the simple resonance recipe, where
a gas of free pions is supplemented by those pions resulting from incoherent
∆ decays, results from πN correlations.

Alternatively, Ivanov et al. [86] discussed this e�ect in terms of the pion op-
tical potential, Fig. 3.3, resulting to lowest virial order in the nucleon density
ρN from the scattering phase shifts δ33 as

Uopt(x, p) = ΠR(x, p)/(2p0)

ΠR(x, p) = −4πFπN (0)ρN (x) = −4
3

2π
|p|

ρN (x)2eiδ
33

sin δ33. (3.36)

Here FπN (0) is the zero degree πN scattering amplitude. The real part of the
resulting optical potential is attractive below resonance shifting the levels
downwards and repulsive above the resonance energy. For a detailed discus-
sion of freeze-out concepts we refer to Sect. 5.8 on decoupling and freeze-out.

In cases, where the resonance solely couples to one asymptotic channel,
the corresponding phase shifts relate to the vacuum spectral function Aj(s)
of that resonance via

4 |Tin,out|2 =


Γin(s)Γout(s)

(
√
s−mR(s))2 + Γ 2

tot(s)/4
non-relativistic

4sΓin(s)Γout(s)

(s−m2
R(s))2 + sΓ 2

tot(s)
relativistic bosons

(3.37)

= 4 sin2 δj(s) = Aj(s,p = 0)×
{
Γtot(s) non-rel.
2
√
sΓtot(s) rel. bosons

(3.38)
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the latter valid for a single channel. In the virial limit only vacuum proper-
ties enter which are solely a function of the invariant Mandelstamm-variable
s = (pπ+ + pπ+)2. Thus partial and total decay rates entering the relativistic
boson case in (3.37) are the intrinsic decay rates of the resonance, i.e. at
vanishing total momentum p. If the resonance is moving the rates transform
according to p0Γ (s,p) =

√
s Γ (s,p = 0). In (3.37) Tin,out is the correspond-

ing T -matrix element. While this relation is correct also in the case where
many channels couple to the same resonance, relation (3.38) only holds for
the single channel case, where Γin = Γout = Γtot. Relation (3.38) illustrates
that in the single channel case the vacuum spectral functions of resonances
can almost model-independently be deduced from phase-shift information. In
the case of the ρ-meson additional information is provided by the pion form
factor. Also in the case of two channels coupling to a resonance the energy
dependence of phase shifts of the two scattering channels together with the
inelasticity coe�cient provide stringent constraints for the spectral function
of the resonance.

The above discussed time delays can also explicitly be treated by �nite
space-time corrections to the Boltzmann collision term as proposed in Ref.
[101], where then the non-local collision term leads to the corresponding virial
corrections of the underlying EoS.

3.3.6 Non-additivity of perturbative rates

In the case of broad spectral functions the treatment of partial rates is subtle.
As an example let us discuss the properties of the ρ-meson and the conse-
quences for the decay into dileptons. The exact dielectron production rate
at total 4-momentum P can be obtained by the corresponding golden rule
expression ∗∗

dNe+e−

d4Pdtd3x
=
∫

d4p+

(2π)4
d4p−
(2π)4

∣∣∣∣∣∣∣ �� ��r r�

ρ
������������������������
γ∗

��
	

@@
I

e+

e−

r ∣∣∣∣∣∣∣
2

δ4(P − p+ − p−)

= − 1
6π3

α2L(M)
M2

iΠ−+
el

µ

µ
(x, P ) (McLerran-Toimela). (3.39)

The latter known as the McLerran-Toimela formula [102] results from the in-
tegration over the lepton momenta p+, p−, keeping their total four-momentum

∗∗ Here keeping explicitly the ~ dependences; further L(M) = (1 +
2m2/M2)

p
1− 4m2/M2 denotes the lepton factor at invariant mass M2 = P 2

resulting from the integration over the �nal state momenta of electron and positron under
the assumption that Πµνel is transversal, i.e. PµΠ

µν
el = 0, whileMρ, m, and α = e2/(4π)

denote the masses of rho-meson, electron or positron, and the �ne-structure constant,
respectively.
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P �xed. In straight analogy to the photon case, discussed around Eq. (3.9)
in Sect. 3.3.1, also here Π−+

el

µν
is the electromagnetic current-current corre-

lator of the source. In the vector dominance picture it directly relates to the
phase-space abundance Fρ of the ρ-meson via [103, 104]

−iΠ−+
el

µν
(x, P ) =

(
m2
ρ

gρ

)2

Fµνρ (x, P ) (3.40)

such that

(2π)4
dNe+e−

d4Pdtd3x
=

8π
3
α2L(M)

M2
gµν

−iΠ−+
el

µν
(x,P )︷ ︸︸ ︷

m4
ρ

g2
ρ

Fµνρ (x, P ) . (3.41)︸ ︷︷ ︸
−iΠ+−

ρ→e+e−
(M2)

The under-braced part of this formula permits an alternative interpretation.
Namely from detailed balance arguments this rate is identical to the partial
lepton-pair decay rate of the rho-meson as given by the Kadano�-Baym rate
(3.19) in the quasi homogeneous limit, where (omitting the tensor indices µν)

(2π)4
dNe+e−

d4Pdtd3x
= −2Pµ∂µδFρ(x, P ) = −iΠ+−

ρ→e+e−(M2)︸ ︷︷ ︸
2P0Γρ→e+e−

(P )

Fρ(x, P )︸ ︷︷ ︸
f(x,P )Aρ(x,P )

(3.42)

Here δFρ(x, P ) speci�es that partial fraction of Fρ(x, P ) which decays into
electron pairs. Given by vacuum properties

−iΠ+−
ρ→e+e−(M2) = −2ImΠR

ρ→e+e−(M2) = ������������������������
γ∗

�� �
e−

e+s s− +− +������������������������
γ∗

=
8π
3
α2 L(M)

M2

m4
ρ

g2
ρ

= 2 M Γ proper
ρ→e+e−(M) (3.43)

= 2P0 Γρ→e+e−(P )

determines the mass-dependent electromagnetic decay rate Γρ→e+e−(P ) of
the ρ-meson via the virtual photon into the di-electron channel. As usual this
rate is time dilated by a factor M/P0 compared to the proper decay rate
Γ proper(M) de�ned with respect to the rho-meson rest frame. The phase-
space distribution fρ(x, P ) and the spectral function Aρ(x, P ) de�ne the
properties of the ρ-meson at space-time point x = (t,x). Both quantities are
in principle to be determined dynamically by an appropriate transport model.
For simplicity the subsequent discussion refers to the equilibrium situation.
In this context it is not aimed to compete with by far more sophisticated
equilibrium calculations such as those discussed in e.g. [105�109] and also
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presented in detail in Part II of this book on �In-medium E�ects�. Rather
we try to give a clarifying analysis in simple terms with the aim to discuss
the consequences for the implementation of such resonance processes into
dynamical transport simulation codes.

As an illustration we present the model case discussed in Knoll's Erice
lectures [72]. There it is assumed that the ρ-meson just strongly couples to two
channels: naturally to the π+π− channel which determines the vacuum decay
properties and secondly to the πN ↔ ρN channel relevant at �nite nuclear
densities. The latter component is representative for all channels contributing
to the so-called direct ρ in transport codes.

Both considered processes add to the total width of the ρ-meson

Γtot(m,p) = Γρ→π+π−(m,p) + Γρ→πNN−1(m,p). (3.44)

The equilibrium spectral function then results from the cuts†† of the two
diagrams

Aρ(m,p) = �� ��r r� �� ��r r�
�
�

�
�

�

�

π+

π−
��

��

��
+ �� ��r r� �� ��r r�� �

� �-

�

N−1

π

N

�

��

��

��
(3.45)

=
2p0

(
Γρ π+π− + Γρ πNN−1

)(
m2 −m2

ρ − ReΠ
)2 + p2

0Γ
2
tot

.

In principle both diagrams have to be calculated by fully self consistent
propagators, i.e. with corresponding widths for all particles involved. This
formidable task has not been done yet. Using micro-reversibility and the
properties of thermal distributions the two terms in (3.45) contributing
to the di-lepton yield (3.39) can indeed approximately be reformulated as
the thermal average of a π+π− → ρ → e+e−-annihilation process and a
πN → ρN → e+e−N -scattering process, i.e.

dne+e−

dmdt
∝
〈
fπ+fπ− vππ σ(π+π− → ρ→ e+e−) (3.46)

+fπfN vπN σ(πN → ρN → e+e−N)
〉
T

with partial cross sections resulting from (3.37). However, the important fact
to be noticed is that in order to preserve unitarity the corresponding cross
sections are no longer the free ones, as given by the vacuum decay width in
the denominator, but rather involve the medium dependent total width (3.44).
This illustrates in simple terms that rates of broad resonances can not simply
be added in a perturbative way. Since it concerns a coupled channel problem
there is a cross talk between the di�erent channels to the extent that the
common resonance propagator attains the total width arising from all partial

†† The cut here meant in separating time ordered (−) from anti-time ordered (+) vertices
in the context of the time-contour in Fig. 3.1.
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1 GeV 1 GeV

Di-lepton rates from thermal ρ-mesons (T = 110 MeV)

mπ 2mπ mρ mπ 2mπ mρ

Γtot = Γfree full Γtot

Fig. 3.5 e+e− rates (arb. units) as a function of the invariant pair mass m at T = 110
MeV from π+π− annihilation (dotted line) and direct ρ-meson contribution (dashed line),
the full line gives the sum of both contributions. Left part: using the free cross section
recipe, i.e. with Γtot = Γρ π+π− ; right part for the correct partial rates (3.45). The
calculation are done with Γρ↔ππ(mρ) = 150 MeV and Γρ↔πNN−1(mρ) = 70 MeV.
Figure taken from Ref. [72].

widths feeding and depopulating the resonance. While a perturbative treat-
ment with free cross sections in (3.46) would enhance the yield at resonance,
p2 = m2

ρ, if a channel is added, cf. Fig. 3.5 left part, the correct treatment
(3.45) even inverts the trend and indeed depletes the yield at resonance, right
part in Fig. 3.5. Furthermore one sees that only the total yield involves the
spectral function, while any partial cross section only refers to that partial
term with the corresponding partial width in the numerator. All these e�ects
are accounted for in the presented resonance transport scheme.

Compared to the spectral function which is relatively symmetric around
the nominal resonance mass mρ the di-lepton rates in Fig. 3.5 show a signi�-
cant enhancement on the low mass side and a strong depletion at high masses
due to the statistical weight f ∝ exp(−p0/T ) in the rate (3.39). Similar ef-
fects also arise in genuine non-equilibrium processes due to the truncation of
phase space at increasing energy.

3.3.7 Physical processes in dense matter

The extension towards a dynamical treatment of the spectral functions in
transport implies to deal with �dressed� propagators. Many processes which
in a quasi-particle picture appear only at higher orders are then already
implicitly included at a lower order (loop) level. This has a couple of physical
and conceptual consequences.
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Fig. 3.6 Left panel: di�erent physical processes contributing to the ππ loop of Πρ. Right
panel: di-electron spectrum resulting from the ρ-meson spectral function decomposed with
respect to the di�erent physical process arising from the ππ loop (left panel) and the
corresponding process from the πω loop. Thereby (D) denote the ω Dalitz decay: ω →
πρ→ πe+e−, while (F) denotes the fusion: πω → ρ. Figure taken from the self-consistent
calculations at T = 120 MeV and normal nuclear density given in [110].

While the processes discussed in Fig. 3.5 were still calculated with on-shell
particles in the loops and therefore show a threshold behaviour, for loops with
dressed propagators all thresholds disappear. Thus, each particle in the dense
environment has non vanishing spectral strength for all four momenta p. This
also includes spectral strength in the space-like region, where p2 < 0. While
strength localises in the time-like region describes propagating �broadened�
particles or resonances, strength in the space-like region is associated with a
virtual particle exchanged through scattering processes. Permitting particles
and anti-particles in the loop, a single loop contribution to the self-energy
or polarisation function implies three di�erent processes. This explained in
the left part of Fig. 3.6 for the processes obtained from cutting the ππ loop
of Πρ. Process (A) is the standard π+π− annihilation process, which exists
already in vacuum. The Bremsstrahlung process (B) contributes only in mat-
ter, and there in the one-loop calculations only, if the particles in the loop
have spectral width. For scattering process (Sπ) the vertical pion line rep-
resents a space-like (virtual) pion induced through the scattering e.g. on a
nucleon.

The r.h. part of Fig. 3.6 shows a typical di-electron spectrum resulting from
the ρ-meson decay in a self-consistent equilibrium calculation [110] of an in-
teracting {N,∆, π, ρ, ω} system. Thereby it was assumed that the ρ solely
couples to mesonic currents. The quantitative level of the di�erent contribu-
tion may vary depending on the model assumptions, the general features are
essentially generic. The resulting total spectrum emerges pretty featureless,
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namely steeply falling with the invariant pair mass, the signal of the ρ solely
appearing as a knee in the curve. Above 200 MeV it is essentially coined by
the annihilation process (A), while below 200 MeV the main contribution
results from Bremsstrahlung (B).

The collision rate of production Γ (or absorption) processes sets a scale
which divides soft from hard processes. While hard processes proceed rel-
atively unaltered in dense matter compared to the quasi-free scatter pre-
scription, soft processes are signi�cantly a�ected by the presence of a dense
medium [111]. The latter, known as the Landau-Pommeranchuk-Migdal ef-
fect (LPM) [112, 113], essentially arises from the fact that soft processes
coherently watch the collision system during a time τ ≈ 1/ω, where ω is the
typical energy scale, which is much longer than the time τcoll ≈ 1/Γ between
collisions. Thus individual collisions are not resolved and the net result is
that generally the rates are reduced compared to the quasi-free prescription
[111]. In part the here discussed dynamical spectral function picture accounts
for the LPM e�ect, as the spectral functions know about the damping width.
However, coherence e�ects between successive collisions, as discussed in the
context of the LPM e�ect and which modify the suppression, are largely ig-
nored. For a detailed discussion in this context involving ladder resummation
techniques we refer to [111]. In transport codes the LPM e�ect is mostly ac-
commodated by the concept of a �formation time�, which has the e�ect that
the created particles only appear after a certain time typically chosen to be of
the order of 1 fm/c. This however is a very crude mock-up and work around
for the subtle destructive interference phenomenon.

3.3.8 Detailed balance and two-particle irreducible (2PI)
method

Detailed balance is guaranteed if all self-energies and polarisation functions
of the di�erent particles are generated from a given set of so called closed
or vacuum diagrams. These are diagrams expressed in terms of bare vertices
and �full� propagators, where all extremities of each vertex are either linked
to a propagator line or to a classical �eld. The exact generating functional
is then build up by the sum over all closed diagrams which are two-particle
irreducible (2PI). The latter property implies, that these diagrams still remain
connected if two di�erent propagator lines are cut. According to the name
given by Baym [85] in his pioneering work the so constructed generating
function is called Φ-functional or in �eld theory CJT-functional following the
initials of the authors of Ref. [114] who reformulated the original approach
by [115] in terms of path integrals. By opening a single propagator line of
the closed Φ diagrams produces diagrams with two open legs, i.e. with the
topology of proper self-energy or polarisation diagrams. Since the Dyson or
Kadano�-Baym equations iterate each self-energy insertion to in�nite order
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the 2PI property of Φ precisely prevents double counting. The Φ-functional
further permits truncations at any level, e.g. by considering only a few or even
only one diagram, without loosing a number of desired properties for the so
de�ned self-consistent approximation schemes of coupled Dyson equations
[85, 86]. Such Φ-derivable approximations then guarantee

a. detailed balance for the collision term
b. thermodynamic consistence
c. conserved currents arising from the gradient terms (see below)
d. to avoid double counting for multi-particle processes (see below).

These properties even hold after the gradient approximation [78] which de-
�nes the quantum transport equations (3.24) discussed above.

As an illustrative example [86, 97] we discuss the scattering of pions (blue
dotted line) on nucleons (full black line) through an intermediate Delta (1232)
resonance (double line). Here the scattering amplitude

TπN = (3.47)

is formulated by a phenomenological πN∆ vertex. To lowest order the cor-
responding closed 2PI diagram de�ning the Φ-functional is given by

Φ =
1
2

(3.48)

Here all three lines denote full self-consistent propagators. The respective
self-energies of nucleon and Delta resonance and polarisation functions of the
pion are obtained by opening a corresponding propagator line, i.e.

−iΣ∆ = ; −iΣN = ; −iΠπ = . (3.49)

The example is non-trivial with respect to the on-shell Boltzmann con-
cept as it replaces the binary πN -scattering by creation and decay of an
intermediate resonance, which itself is treated dynamically within the gener-
alised transport equation (3.24). Cutting these diagrams vertically visualises
the squares of the corresponding tree-level transition amplitudes entering the
collision terms for the three species.

The concept to deal with dynamical, i.e. non-on-shell spectral functions,
further avoids singular or even mathematically pathological terms which no-
toriously appear in higher order perturbative expressions (cf. section 3.4).
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3.4 Beyond binary collisions

With increasing energy inelastic processes open which lead to the creation
of new particles, either through a kind of bremsstrahlung process, like
NN → NNγ or NN → NNπ or other production mechanisms, like p̄p→ 5π.
Such processes were phenomenologically introduced into transport schemes
on the basis of measured cross-sections. However the inclusion of the appropri-
ate backward reaction caused problems and they were commonly neglected.
Recently arguments were given in the context of anti-particle production
[116, 117] which indeed date back to the time of Planck, when he wrote down
his radiation law. They state that the equilibration rate is determined by
the fastest rate. Hence, if the forward rate is strong also the backward rates
should become strong as to furnish the proper equilibrium within the equi-
libration time set by the forward rate. Thus processes of the type "3 to 2"
or even "5 to 2" particles can become important and have to be included
[116�119].

There are several suggestions to properly include such �beyond binary�
processes. Not all of them lead to a consistent picture.

3.4.1 Phenomenological quasi-free ansatz for
multi-particle processes

One option is to ignore the internal dynamics of the multi-particle production
process itself and to assume that it happens at space-time scales shorter
than relevant for the description of the dynamics. Thus, the multi-particle
interaction vertex is assumed to be essentially point-like and the picture is
that of a quasi-free collision process. Then the multi-particle process rate
can be described by Fermi's golden rule with a transition-matrix T for the
process, e.g. extracted from a measured cross-section for a binary entrance
channel, or given by the point-like transition vertex from the corresponding
lowest order self-energy diagram [66, 117�120]. Detailed balance can then be
enforced by the 2PI-method described above in Sect. 3.3.8, just by closing
the self-energy diagram with the external line this way producing a diagram
of the Φ-functional. Upon opening any other particle's line one obtains the
self-energies for the other particles involved in the process.

This method
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a) rests on measured cross-section which in part are scarcely available or
based on theoretical guesses;

b) obeys detailed balance by construction;
c) enables the calculation of composite particle production [66];
d) is mostly limited to on-shell particles;
e) cannot properly describe the production of soft particles, particles

that are soft on the scale of the collision rate, where the Landau-
Pommeranchuk e�ect suppresses the particle production compared to
the quasi-free production prescription [111].

3.4.2 Intermediate resonances

A further option is to describe multi-particle process in a sequential scheme
where in a �rst step an intermediate resonance is formed which then subse-
quently decays. This is for instances used in most treatments of pion produc-
tion which essentially runs across the ∆33 resonance: NN ↔ N∆; ∆↔ Nπ.

This makes the following improvements possible:

a) treatment of broad resonances in a dynamical way;
b) inclusion of decay processes ("1 to 2") of otherwise on-shell particles

even if they are kinematically forbidden under on-shell conditions as
well as their inverse fusion processes ("2 to 1");

c) �tting to measured cross-sections within this picture.

Such strategies obey detailed balance, if all processes are described by
self-energies derived from closed diagrams within the 2PI method.

3.4.3 Transport with dynamical spectral functions

The intermediate resonance picture can directly be generalised to a general
transport with dynamical spectral functions concept. This has the advantage
that through the o�-shellness of normally stable particles the bremsstrahlung
(and its inverse) are automatically included (e.g. through aN → Nγ process).
This strategy approximately also accounts for the Landau-Pommeranchuk
suppression which in this picture arises from the damping widths (e.g. colli-
sion rate) of the particles.
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3.4.4 Inclusion of many-body collisions in transport
simulations

At the densities reached in nuclear collisions at high energies, the standard
assumption of isolated two-body collisions is not well justi�ed. To remedy
this problem, Batko et al. [121] developed a general model for inclusion of
multi-particle scattering within the framework of BUU transport simulations.
In that model, the occurrence of a collision is determined as usual on the basis
of the energy-dependent binary cross section but the particular collision is
assumed to involve all those particles that happen to be situated within
the associated interaction range at the time of the collision. The combined
energy of these participating particles is then shared micro-canonically among
the resulting particles. This procedure provides a general treatment of both
eleastic and inelastic many-body scattering that can be easily incorporated
into standard BUU-type transport codes.

The model was applied to symmetric nuclear collisions at bombarding en-
ergies of 200-1000 MeV per nucleon and a variety of observables were stuided,
including anisotropy, �ow angle, sidewards momentum, and backwards yield,
as well as certain particle production processes. Generally, the results of the
standard BUU dynamical simulations are not appreciably a�ected by this in-
corporation of many-body collisions. While this feature lends support to the
use of the BUU model as a quantitative tool for relativistic nuclear collisions,
it should be emphasised that those studies were based on the assumption of
perfect equipartition within each collision cluster.

In order to elucidate the importance of the equipartition approximation,
the same authors made a detailed study of the simplest many-body case,
namely elastic scattering of three nucleons by means of pion exchange, with
an o�-shell intermediate baryon between the two pion exchanges [121]. At all
energies, the resulting angular distribution is always anisotropic, in contrast
to the two-body scattering which remains isotropic up to about 400 MeV
per nucleon. The associated evolution in momentum was studied in uniform
matter starting from two interstreaming Fermi distributions having a veloc-
ity separation given by the collision energy of interest. As one might expect,
scattering to the backward direction is enhanced in the three-body scenario,
but only at early times; subsequent collisions quickly drive the momentum
distribution towards the associated equilibrium, which is independent of the
speci�c collision mechanism employed. But equilibrium is reached much faster
with three-body scattering, particularly at higher energies. This result pro-
vides some support for the adopted equipartition assumption for the general
treatment of many-body scattering.

Subsequently, the model was further developed for the calculation of the
energy spectra of kaons produced in relativistic nuclear collisions and the
e�ect of many-body collisions on subthreshold kaon production was studied
especially [122]. Generally speaking, the kaon yields are enhanced only rather
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little which is understood as a result of the statistical sharing of the energy
between the produced kaon and the baryons involved in its productions. How-
ever, as one would expect, the enhancement grows with the kaon energy and
becomes relatively signi�cant in the regions of very small yields.

3.4.5 Higher-order processes within the quasi-particle
picture

Attempts to construct higher order collision terms within the quasi-particle
approximation merely by adding some perturbative diagrams of higher order
for the self-energies run into serious conceptual di�culties. The problem is
very subtle and plagued with mathematically ill de�ned singular expressions
which notoriously appear in perturbation theory at higher orders.

To be speci�c: For the construction of the collision term the imaginary
parts of the self-energies are the key quantities. If a higher-order diagram has
genuine lower-order self-energy insertions, one de�nitely encounters expres-
sions containing the absolute square(!) of the retarded quasi-particle propa-
gators (i.e. propagators with zero damping width). If then the correspond-
ing self-energy insertion does not vanish at that on-shell condition, the ex-
pression contains squares of singular distribution functions (i.e. squares of
delta- and principle-value-functions) which are mathematically ill de�ned and
which through the integration within the collision term thus lead to diverg-
ing collision rates! A well known example case is the �scattering� process of
a N∆ → ∆N (u-channel) via the exchange of a pion. This pion can be on-
shell, which provides an in�nite �cross section� in such descriptions. It is well
known that (a) such problems cannot be solved within perturbation theory,
but (b) rather require special partial resummation techniques to in�nite or-
der, in order to come to regular and physically meaningful expressions. One
then has to deal with rates rather than with the limited concept of scattering
cross sections.

Indeed the problem is tightly connected with the irreducibility features
required for the kernel or driving term of a dynamical equation of motion.
The transport equations are self-consistent dynamical equations to the ex-
tent that the dynamical quantities calculated in one time step enter as input
for the next time step. Thus, the solution of such equations generates higher
order terms out of its kernel, namely the collision term (and also the driving
self-energies in the Poisson brackets). Therefore the collision term by itself
has to obey speci�c irreducibility criteria: it has to be void of any process
that can implicitly be generated through the solution of the transport equa-
tion! Restricted to the quasi-particle limit these are precisely the processes,
namely intermediate on-shell propagations, that lead to the above stated
mathematical di�culties.



586 3 Kinetic transport models

Let us add a general note on the irreducibility concept. It is readily through
the formulation of equations of motion with irreducible kernels that one avoids
such singular structures. Therefore this issue is indeed completely settled for
the case of the self-consistent solutions of the Dyson (or Kadano�-Baym)
equations, when the proper self-energy is entirely a functional of the self-
consistent propagator. There the precise rule is that the kernel of the Dyson
equation, i.e. the self-energy, has to be derived from a 2-particle irreducible
(2PI) functional [85, 115], i.e. it has to be void of any self-energy insertion.
The step towards transport is achieved by a consistent gradient approxima-
tion of the Kadano�-Baym equations, cf. [78]. Still then the 2PI-rule applies.

If, however, as frequently addressed, one tries to restrict the dynamical
description to on-shell (or better quasi-)particles, one may seriously spoils
the 2PI irreducibility concept. Then one carefully has to separate self-energy
terms that are treated explicitly from those implicitly generated by the kernel
through terms of lower order. This implies the necessity of so-called z-factors
for the quasi-particle strength on the one hand and an implicit treatment of
the complementary background terms. As yet there is no formulation in the
literature where such a separation was thoroughly addressed for the higher
order terms such that (a) the irreducibility properties are appropriately for-
mulated for the quasi-particle picture, while (b) at the same time physically
meaningful and non-singular expressions emerge.

3.4.6 Recent progress and challenges

In principle, the Kadano�-Baym equations - derived in lowest order from the
two-particle irreducible (2PI) action - provide a convenient starting point to
treat particles with broad spectral distributions. However they are presently
only tractable in very simpli�ed cases. The question arises, if further approx-
imations to these equations - like the gradient expansion - do perform well
enough in case of inhomogeneous systems with strong coupling. Furthermore,
is the Botermans-Mal�iet (BM) substitution [87] for the back�ow-term accu-
rate enough to allow for a convenient test-particle simulation of the transport
equations?

Some of these questions were already addressed in Refs. [80�82] for the case
of a scalar relativistic �eld theory with strong coupling. Here the numerical
studies on a �xed momentum grid have shown that the gradient expansion
in time is a 'reasonable' approximation even for large coupling. This goes in
line with the experience in transport studies in the quasi-particle limit which
involves also a �rst order gradient expansion in space-time. Furthermore, the
BM approximation for the back�ow-term was found to hold very well in case
of the scalar Φ4-theory [81]. Consequently, the Φ4 model example allows for
a convenient test-particle solution - including dynamical spectral functions -
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when allowing for 1 ↔ 3 transition rates (cf. [118]) apart from the conven-
tional 2↔ 2 scattering processes to achieve proper chemical equilibrium[82].

This progress on the frontier should not hide the fact that most of the
transport models still treat broad resonances rather crude. On the collision
term level the resonance rates are mostly implemented in some approximate
way, either indirectly through resonance cross sections excluding the explicit
dynamics of resonances or approximately in some perturbative way. Also the
propagation in between collisions (or decays) is then dealt with as if each
mass component is an on-shell particle. Furthermore many particles which
are known to su�er strong changes in their spectral behaviour in dense matter
such as e.g. the pion are still treated as on-shell particles with nominal masses.
Improvements in this respect are vital though admittedly very tedious and
in part beyond present compute capabilities.

And there are further challenges. The 2PI Φ-functional provides an exact
approach of the �eld theoretical equations of motion and the thermodynamic
potential. However, on the truncated level of self consistent Dyson schemes
- limited to two-point functions - certain conceptual di�culties arise. While
as a positive achievement Noether currentsare conserved on the expectation
value level, such currents are no longer conserved on the higher order cor-
relator level [123, 124] . This comes about due to the partial resummation
implied by solving the dynamical equations of motion, be it on the Schwinger-
Dyson or Kadano�-Baym level or the here discussed transport scheme with
dynamical spectral functions, which lead to a violation of Ward-Takahashi
identities. A famous example is the violation of the Goldstone theorem in the
spontaneously broken phase, where the self-consistent Hartree-Fock approx-
imation leads to propagators for the Goldstone-bosons which have a non-
vanishing mass! Other problems concern the polarisation tensor of vector
mesons, which, if coupled to conserved currents, should befour-transverse.
However the self-consistent 2PI scheme violates this condition. Cure can be
obtained from higher order vertex equations such as the Bethe-Salpeterladder
resummations. Such extensions are i) numerically such demanding that they
are presently intractable and ii) they spoil the self-consistent concept, where
one expects all dynamical quantities to be determined self-consistently. In-
deed the symmetry preserving self-energies resulting from higher order ver-
tex equations do not in�uence the self-consistent Dyson scheme. Partial cure
can come from symmetry restoring correction terms to the Φ-functional re-
cently suggested in the context of Nambu-Goldstone modes [125, 126] or from
projection methods [123, 127] for restoring the four-transversality of vector
mesons. The latter, however, led to other di�culties in form of kinemati-
cal singularities, either at energy zero or on the light cone [110]. These led
to spurious (infra-red) modes which seriously corrupt the self-consistent dy-
namics. The tensor representation of vector bosons discussed in [128] though
provides an alternative option to maintain their four-transversality through-
out the self-consistent scheme. Thus, the treatment of vector mesons or even



588 3 Kinetic transport models

gauge bosons in self-consistent schemes is still relatively unsettled and re-
quires serious conceptual e�orts before one comes to reliable schemes.

For test-particle implementations a further problem arises in case of low-
mass quanta with a large spectral width. This comes about as follows: The
energy integral of the spectral function is normalised, since it is directly con-
nected to the equal-time commutator of the �elds which provides the quan-
tisation of the theory and the particle interpretation accordingly. In case
of a large spectral width the spectral function A(p) is non-vanishing also
for space-like invariant mass squared (p2 < 0); this fraction of the spectral
function physically describes t-channel scattering processes whereas the time-
like sector corresponds to s-channel particle propagation processes. Thereby
space-like parts of the spectral function do not violate micro-causality for
the exact KB equations while they partially do in �rst order gradient ap-
proximation. Consequently a particle interpretation has to be attributed to
'�eld quanta' that (depending on the environment (e.g. temperature)) may
change from t- to s-channel processes, cf. the discussion of time and space-like
processes given in Ref. [129]. So far it is not known how to realize this in trans-
port descriptions with dynamical spectral functions, where presently[80, 81]
only s-channel processes, i.e. the time-like parts of the spectral function are
treated dynamically. However, promissing progress concerning these issues
has recently been reported by Cassing [82].

Also the production of soft quanta cannot appropriately be described by
incoherent quasi-free scattering processes (the standard concept in transport
treatments). This comes about due to destructive coherence e�ects which es-
sentially lead to a suppression of the production rates of soft quanta known
as the Landau-Pomeranchuk-Migdal (LPM) e�ect [112, 113], cf. in the con-
text of transport [111, 130]. In dealing with dynamical spectral functions the
singular behaviour in the soft limit is cured and part of the LPM e�ect is
properly accounted for due to the �nite life time of the particles. However
the coherent action of many successive scatterings as discussed in Ref. [111]
is still lacking.

There is growing evidence from lattice QCD calculations [131] that the
�avors in the decon�ned phase are carried by independent (but possibly
medium-modi�ed) quarks, thus giving the system the character of a gas
of weakly interacting quasi-particles in a mean �eld. This important in-
sight was �rst gained from consideration of the correlations between baryon
number B (or charge Q) and strangeness S, σBS = 〈BS〉 − 〈B〉〈S〉 and
σQS = 〈QS〉 − 〈Q〉〈S〉 which are simply related to the mixed-�avor suscepti-
bilities χus and χds [132]. The system is more complicated in the transition
region, where it appears more as a strongly coupled liquid (sQGP). There a
�nite spectral function might not necessarily arise from a well-de�ned pole
structure. Apart from the gauge-�xing problem it is also not clear how to
deal with partially con�ned quanta, i.e. with 'parton propagators' which do
not necessarily posses a positive de�nite spectral function [133].
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3.5 Speci�c implementations

In this section we collect brief descriptions of di�erent one-body models that
have extensively been applied to high-energy nuclear collisions. These de-
scriptions provided by the main developers and/or practitioners summarise
those features that they they deem to be special and noteworthy about their
numerical scheme. Before that we start with some general features.

3.5.1 Initialization

In one-body simulations of nuclear collisions, the nuclei are generally pre-
pared in their respective rest frames and then boosted to the calculational
frame, usually the centre-of-mass frame. The lower the collision energy is the
more care must be taken with the initialisation. In its rest frame, an initial
nucleus is represented as a collection of individual nucleons (or test particles)
that are distributed in space according to a realistic density pro�le, such as
a Saxon-Woods distribution, while the momenta are sampled from within
the associated Fermi sphere. It should be noted that these samplings are
performed in an uncorrelated manner and, consequently, the resulting phase-
space distribution is endowed with an unrealistic degree of irregularity.

3.5.2 Solution methods

A large number of codes have been developed for the solution of the nuclear
Boltzmann equation. They di�er in many details of the physical input as well
as with regard to the basic numerical technique employed. We describe below
the most common classes of solution methods.

• Phase-space lattice
The conceptually most straightforward method consists in representing

f(X,p) on a lattice in phase space. The collision term can then be calculated
at each spatial location separately, leading to a modi�cation in the local mo-
mentum distribution, and the collisionless propagation can be performed by
standard methods (for example a simple leap-frog propagation which also
works even when the interaction is momentum dependent). Obviously, this
discretization method yields an ever more accurate solution as the lattice
is made ever �ner. However, the number of lattice points required is pro-
hibitively large for most realistic applications and this method has so far
been most useful for lower-dimensional studies.
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• Pseudo-particles
In the pseudo-particle method, the phase-space density of each physical

particle is represented by a large number of pseudo- or test-particles, N ,
each carrying a correspondingly reduced weight of 1/N . Furthermore, their
interaction cross sections are scaled by the factor 1/

√
N in order to leave

the transport properties unchanged. An advantage of this method is that it
converges towards the exact solution of the Boltzmann equation as N →∞.
But the computational e�ort scales as N 2, although this problem can be
largely mitigated by use of suitable indexing.

The residual interactions are usually limited to binary scatterings, but
the pseudo-particle method makes it readily possible to make scatterings ac-
cording to the local phase-space occupations, thus allowing the inclusion of
non-trivial e�ects, such as �nite spectral width s and multi-particle collisions
(see below).

• Parallel ensembles
The parallel-ensemble method was developed in order to ensure that the

numerical e�ort scales only linearly with N . For this purpose, the system is
represented by an ensemble of N separate systems. The particles in a given
system scatters only with particles from that system, but the e�ective one-
body �eld is obtained by averaging over all these N individual systems in
the ensemble. This method is very convenient, both numerically and for the
purpose of generating a sample of events. But, although it also converges as
N →∞, the limit is generally not identical to the solution of the Boltzmann
equation. This is related to the fact that the residual interaction has a �nite
range proportional to the square root of the cross section. Thus, depending on
the scattering prescription the collision term may contribute to the pressure
contrary to the two methods above.

On the other hand, the method goes beyond the one-body level of the
Boltzmann treatment and makes it readily possible to calculate also corre-
lation quantities. In fact, the parallel-ensemble method is practically very
similar to N -body molecular dynamics (see Sect. 4), the only di�erence be-
ing that the mean �eld is averaged at each time step.

• Treatment of rare processes
The numerical treatment of processes that occur only rarely presents a

special computational problem, since their direct simulation is highly ine�-
cient. A familiar example is the production of particles at collision energies
near the production threshold. A general and e�cient technique for treating
such processes was developed in connection with kaon production in rela-
tivistic nuclear collisions [13]. The method utilizes the fact that the small
production cross section permits a perturbative treatment in which numer-
ous potential production processes may be followed in parallel.
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For example, for the original case of near-threshold kaon production, each
baryon-baryon encounter may produce a kaon with a small probability given
by the appropriate partial cross section. These probabilities may then be
accumulated in the course of the entire collision process without modifying
the original collision dynamics. Thus, rather than producing a large number
of simulations to obtain just a single kaon, one obtains many kaons from each
individual nuclear collision event. Consequently, this perturbative technique
provides a very powerful way to access rare processes in dynamical simulation.

Furthermore, since the production of the particle is so rare, one may study
its dynamical fate by actually introducing it into the system where it then
propagates in the unmodi�ed collision environment [14]. In this manner, it
is possible not only to obtain the total production cross section but also the
e�ects of residual collisions on the produced particle through rescattering or
secondary production processes.

3.5.3 Boltzmann-equation model BEM (MSU,
East-Lansing)

Simulations of nuclear reactions within the MSU Boltzmann-Equation Model
(BEM) [66, 120] are based on solving a set of Boltzmann equations for the
quasiparticle phase-space distributions, within a relativistic version of the
Landau theory. The quasiparticles in BEM include nucleons, deuterons, tri-
tons, helions, pions, deltas and N∗'s. Their quasiparticle energies are given
in terms of functional derivatives of an energy functional with respect to the
phase-space distributions. The nuclear part of this functional is constructed
[120] in the local rest frame of matter, with the main part of the energy den-
sity taken in a local form and with range e�ects accounted for in terms of
gradient corrections. The functional is constrained by the established nuclear
properties, thereby in particular accounting for the momentum dependence
of nucleonic optical potentials at normal density.

Composite-particle production in BEM takes place in few-nucleon colli-
sions, in processes that are inverse to composite-particle break-up. The break-
up cross-sections, and the corresponding formation rates are constrained us-
ing available data on composite break-up. For the dynamics of broad baryon
resonances within BEM, the adiabatic limit is adopted [66], where within the
mean-�eld dynamics the quasiparticles representing a resonance retain the
mass di�erence relative to centroid of the resonance. Compared to preceding
approaches, a detailed balance relation has been introduced in BEM [66]. It
links the cross sections for resonance production to the absorption rate, such
that they are balanced in equilibrium. This improved the transport schemes
such that e.g. for pion yields they produce results that are compatible with
reqirements from thermodynamic and with the observed reaction data.
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The phase-space distributions are represented in BEM in terms of test-
particles. For integrating the mean-�eld part of the Boltzmann equation,
the conserving lattice Hamiltonian method of Lenk and Pandharipande [134]
is used. For the collision integral the traditional method combining cross-
section size and distance of closest approach is replaced by a novel method
[66], where collision partners are randomly chosen from within lattice cells.
That new method is instrumental for the feasibility of integrating the contri-
butions of few-nucleon collisions to the collision integral. The con�gurations
of the incident nuclei are consistently prepared by solving the correspond-
ing Thomas-Fermi equations that produce phase-space distributions which
minimize the assumed energy functional for the BEM dynamics. Among oth-
ers this prevents otherwise occurring giant monopole oscillations during the
approach phase of the two nuclei.

3.5.4 GiBUU (Giessen)

The Giessen BUU model (GiBUU) [135�138] explicitly propagates 9N∗ and 9
∆ resonances with mass below 2 GeV. Apart from that, the model propagates
the S = −1 baryons Y = Λ, Σ and 19 Y ∗ resonances. Also the cascades and
charmed baryons are included. In the mesonic sector, the following particles
are propagated: π, η, ρ, σ, ω, η′, φ, ηc, J/ψ, K, K̄, K∗, K̄∗. The baryon-
baryon (meson-baryon) collisions below

√
s = 2.6 (2) GeV are treated within

the resonance scenario, while at higher invariant energies the string model
is applied. The model includes optionally (at SIS energies) the nucleon and
kaon mean �elds. In the local rest frame (l.r.f.) of nuclear matter the nucleon
potential has a Skyrme-like form with a momentum dependent part added
separately. The nucleon energy in the l.r.f. is then represented in the Lorentz
invariant way by keeping only the scalar potential. The actual calculation
of the scalar potential is performed self-consistently, since the nucleon po-
tential in the l.r.f. depends on its momentum. The mean �eld potentials of
the nonstrange baryonic resonances are put equal to the nucleon mean �eld,
while the hyperonic potentials are rescaled by a factor of 2/3 according to the
fraction of the nonstrange quarks. The GiBUU model contains a larger set of
the baryonic resonances than other transport models (excepting the Tübin-
gen QMD model) and consequently leads to higher pion numbers in vacuum.
Medium corrections to the cross sections NN ↔ NR and NN ↔ NNπ
reduce the pion number in medium. The in-medium reduced cross sections
are implemented (optionally) in GiBUU. They are computed with the Dirac
masses from the NL2 model [139]. In particular, the NN ↔ N∆ matrix ele-
ment is given by the one-pion exchange model � same as in the calculations
of Dmitriev et al. [140], but with replacement of the vacuum ∆ and nucleon
masses by the Dirac ones. This leads to a strong in-medium reduction of
the cross section [137]. The GiBUU model is suitable not only for heavy-ion
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collisions and hadron-nucleus reactions, but also for photon-, electron- and
neutrino-induced reactions. This gives the possibility to test the same dy-
namical part of the model with various physical initial conditions. A new
numerical realization of the model [141] is currently being tested. The results
presented here are based on the old version described in [135�138].

3.5.5 BRoBUU (Budapest/ Rossendorf)

The BRoBUU computer code [142] for heavy-ion collisions is developed in a
Budapest-Rossendorf cooperation. This code solves the Boltzmann-Ühling-
Uhlenbeck equation in the quasi-particle limit [143]

∂f

∂t
+
∂H

∂p
∂f

∂x
− ∂H

∂x
∂f

∂p
= C, H =

√
(m0 + Us(p,x))2 + p2

for the one-body distribution function f(x,p, t) of a certain hadron species.
This equation is applied to the motion of the di�erent hadrons, each with
mass m0 in a momentum and density dependent mean �eld U . This scalar
mean �eld Us is chosen in such away that the Hamiltonian H equals
H =

√
m2

0 + p2 + Unr with the potential Unr calculated in the usual non-
relativistic manner (see Eq. (3.1). Di�erent particles species (each described
by a corresponding distribution F ) are coupled by the collision integral C
which also contains the Ühling-Uhlenbeck terms responsible for Pauli block-
ing and Bose enhancement in the collision and particle creation and annihi-
lation processes. The coupled set of Boltzmann-Ühling-Uhlenbeck equations
is solved by using the parallel-ensemble test-particle method. This method
transforms the partial di�erential�integro equations into a set of ordinary
di�erential equations for a large number of test particles simulating the en-
semble averaging process for the respective function f .

Recently theoretical progress has been made in describing the in-medium
properties of particles. In the medium particles have a �nite life time which is
described by the width Γ in the spectral function of the particles. The spectral
function can signi�cantly change during the heavy-ion collision process and
can be simulated by an ensemble of test particles with di�erent masses. The
change of the spectral function is given by time variation of the test particle
mass m [73, 76]. For bosons this additional equation reads

dm2

dt
≈ δ

δt
ReΣret +

m2 −m2
0 −ReΣret

Γ

δ

δt
Γ ,

where ReΣ is related to the mean �eld U , and δ/δt stands for the comoving
time derivation. This equation ensures that resonances are propagated to-
wards their vacuum spectral functions at freeze-out. In particular, this tech-
nique, allowing for a consistent propagation of broad resonances, is applied in
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the BRoBUU code for calculating the di-electron emission of ω and ρ mesons
in the 1 GeV region.

The BRoBUU code propagates 24 ∆ and N∗ resonances in the baryon
sector together with the π, η, σ, ω and ρ mesons. In addition, the strange par-
ticles Λ, Σ and K± are propagated, however their production processes are
treated by a perturbative method so that they do not e�ect the dynamics
of the collision. Baryons propagate in the mean �eld. Strange baryons feel
2/3 of the baryon �eld. Nonstrange mesons are not e�ected by a potential,
but a potential may be easily added if needed. Various sets of mean �elds
for kaons are available [144]. The nonstrange mesons are produced via res-
onance decays. This means that the reactions NN ↔ NR and mN ↔ R
are implemented in the code (with R denoting any baryon resonance and m
denoting any meson). Parameters are best �tted to available data [145]. For
K+ production and φ meson production cross sections parameters are taken
from [146] and [147], respectively. Production and absorption cross section of
K− mesons are measured to a large extent, but for NY ↔ NNK− processes
one has to rely on theoretical predictions [148].

3.5.6 Relativistic BUU (Texas A&M/ Stony Brook)

The Relativistic Boltzmann-Uehling-Uhlenbeck (RBUU) approach has been
used by several groups to develop transport models for the intermediate rel-
ativistic energy regime.

The RBUU model developed by the Texas A&M and Stony Brook groups
is a covariant microscopic transport model for heavy ion collisions at SIS/GSI
energies [149�156]. This model includes simultaneously the e�ects of mean
�eld, two-body collisions, and the Pauli blocking for fermions. The covariant
RBUU transport equation is solved by the test-particle method and the one-
body phase space distributions are represented by point-like test-particles.
In this model, only the nucleon, ∆(1232) resonance, and pion are treated
explicitly and the isospin dependence is neglected.. Besides undergoing elastic
and inelastic two-body scatterings, these particles also propagate in mean-
�eld potentials. For nucleons, their potential is taken from the nonlinear
Walecka model used in Ref. [149] or the e�ective chiral Lagrangian of Ref.
[157]. The ∆ resonance is assumed to have the same mean-�eld potential as
the nucleon, while the mean-�eld potential for the pion is neglected.

This RBUU model allows to consistently investigate the medium e�ects
on hadron properties through the change of the scalar and vector potential.
Kaons together with its partners (hyperons or antikaons) are produced in
this model from pion-baryon and baryon-baryon reactions, i.e., πB → KY
and BB → BYK. Antikaons are produced not only from pion-baryon and
baryon-baryon reactions, i.e., πB → KK̄B and BB → BBKK̄, but also from
the pion-hyperon reactions πY → K̄N [158], where Y denotes either Λ or Σ.
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Their cross sections are taken either from predictions of the boson-exchange
model or from the empirical values as given in Ref. [154]. Annihilation of
produced antikaons is included via the inverse reactions of pion-hyperon re-
actions, i.e., K̄N → πY , as other absorption reactions involve the rarely pro-
duced kaons and are thus unimportant. However, the annihilation of kaons is
neglected as it has little e�ect on kaon production [159]. Because of the small
production probabilities of kaons, hyperons, and antikaons in heavy-ion colli-
sions at SIS energies, the above discussed reactions are treated perturbatively.
For Λ and Σ, their mean-�eld potentials are taken to be 2/3 of the nucleon
potential according to their light quark content. For kaon and antikaon, their
mean-�eld potentials are obtained from a chiral Lagrangian including both
scalar and vector interactions [154]. Recently, this perturbative method was
extended to also investigate the subthreshold production of the multistrange
baryon Ξ [160].

3.5.7 Relativistic BUU (Catania/ Munich/ Tübingen)

The RBUU model developed by the Catania-Munich-Tübingen groups is a
fully covariant transport model for heavy ion collisions at SIS/GSI energies. In
contrast to most other BUU models this model is based on a representation of
the one-body phase space distributions by covariant Gaussian distributions
[161] instead of point-like test-particles. The collision integral incorporates
elastic and inelastic channels (∆ and N∗ resonance production with 1- and
2-pion �nal channels). The baryon resonances feels the same mean �eld po-
tential as the nucleons, while the pions are propagated under the in�uence
of the Coulomb potential and they also strongly interact with the hadronic
environment via re-absorption processes. In the strangeness sector, only the
positively charged (K+) kaons were considered in the same way as given in
Ref. [12]. The RBUU approach was recently extended towards an appropriate
description of the isovector part of the nuclear equation of state [162, 163].
Thereby the fully covariant formulation is essential for the understanding of
the Lorentz structure of the symmetry energy at supra-normal densities [162�
165]. In particular one can directly probe the interplay of di�erent isovector
mesons such as the competition between an isovector, vector repulsive ρ and
an isovector, scalar attractive δ �eld, as recently suggested [166, 167]. Com-
pared to other transport codes where only the relativistic kinematics is in-
cluded, this codes cares about the following genuine relativistic e�ects:

• It accounts for new structures due to the contributions of the vector
and scalar Lorentz components to the self-energies of protons, neutrons
and of the various isospin states of other baryons such as (∆±,0,++,
N+,0, Λ,Σ±,0). This implies an important modi�cation of the standard
numerical treatment of the collision term when inelastic processes are in-
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cluded, in particular with respect to the energy conservation. A detailed
discussion is given in [165].

• The Lorentz e�ect of the vector �eld contributes to the �magnetic force�
acting on the baryons. In Ref. [162] it was clearly shown that in neutron-
rich systems this e�ect will lead to large di�erences in neutron/proton
�ows at high transverse momenta.

3.5.8 A Relativistic Transport ART (Texas A&M)

ART is a hadronic transport model which was particularly designed for the
AGS energy range [168, 169]. It consists of a hadronic cascade supplemented
by a Skyrme type mean �eld. Particle production is not described via string
excitations but by an explicit treatment of the various hadronic reaction
channels. Cross sections are based on parametrisations of available data or
determined within a resonance production model.

The ART model includes baryon-baryon, baryon-meson, and meson-meson
elastic and inelastic scatterings. It treats explicitly the isospin degrees of
freedom for most particle species and their interactions, which permits to
study isospin e�ects in heavy ion collisions [170]. Since it includes mean-
�eld potentials for nucleons and kaons, the ART model can also be used to
investigate e�ects arising from the hadronic equation of state. Resonances
such as ρ and ∆ are formed from pion-pion and pion-nucleon scattering,
respectively, with cross sections given by the standard Breit-Wigner form
with mass dependent width which also govern their decays. The masses and
widths of resonances are taken to be their values in the vacuum, i.e., e�ects
due to possible modi�cations in dense hadronic matter are neglected.

For baryon-baryon scatterings, the ART model includes the following
inelastic channels: NN ↔ N(∆N∗), NN ↔ ∆(∆N∗(1440)), NN ↔
NN(πρω), (N∆)∆ ↔ NN∗, and ∆N∗(1440) ↔ NN∗(1535). In the above,
N∗ denotes either N∗(1440) or N∗(1535), where the bracket symbol (∆N∗)
denotes a choice, here of ∆ or N∗. Also included are reaction channels rele-
vant for kaon production, i.e. (N∆N∗)(N∆N∗)→ (N∆)(ΛΣ)K. For meson-
baryon scatterings, the ART model includes the following reaction channels
for the formation and decay of resonances: πN ↔ (∆N∗(1440) N∗(1535)),
and ηN ↔ N∗(1535). Furthermore it accounts for elastic scatterings such as
(πρ) on (N∆N∗). As an example, the cross section for the elastic scattering
of π0N is evaluated by including heavier baryon resonances with masses up to
2.0 GeV/c2 as intermediate states of Breit-Wigner form but neglecting inter-
ferences between the amplitudes from di�erent resonances [168]. The ART
model further includes inelastic reaction channels such as πN ↔ (πρη)∆
and kaon production channels such as (πρωη)(N∆N∗)↔ K(ΛΣ). Kaon and
antikaon elastic scatterings with nucleons as well as inelastic channels for an-
tikaons, such as K̄(N∆N∗)↔ π(ΛΣ), are included [171] using parametrized
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experimental data [172]. Also included are kaon production channels involv-
ing three-body �nal states, (πρω)(N∆N∗) → KK̄N [171]. Because of the
di�culty associated with the three-body kinematics, the inverse kaon anni-
hilation reactions of the above channels are neglected.

For meson-meson interactions, the ART model includes both elastic and
inelastic ππ interactions, with the elastic cross section consisting of ρ meson
formation and the remaining part treated as elastic scattering. Kaon produc-
tion from inelastic scatterings of light mesons is included via the the reactions
(πη)(πη) ↔ KK̄ and (ρω)(ρω) ↔ KK̄. Kaon or antikaon elastic scatterings
with mesons in the SU(2) multiplets except the pion are included using a
constant cross section of 10 mb [168], while the kaon-pion elastic scattering
is modelled through the K∗ resonance.

3.5.9 A Multi-Phase Transport AMPT (Texas A&M)

The AMPT [173] is a Monte Carlo model for heavy ion collisions at relativistic
energies. It uses minijet partons from hard processes and strings from soft
processes in the Heavy Ion Jet Interaction Generator (HIJING) [174] as the
initial conditions. In the default version of AMPT [175, 176], time evolution of
the minijet partons is described by Zhang's Parton Cascade (ZPC) [177] with
parton scattering cross sections derived from the lowest-order Born diagrams
where magnitude and angular distribution are �xed by treating the gluon
screening mass as a parameter. After minijet partons stop interacting, they
are combined with their parent strings to fragment into hadrons using the
Lund string fragmentation model as implemented in the PYTHIA program
[178]. The �nal-state hadronic scatterings are modelled by A Relativistic
Transport (ART) model [168, 169]. In the string melting version of AMPT
[179], those hadrons potentially being produced from string fragmentation
are rather converted to their valence quarks and/or antiquarks. Interactions
among quarks and antiquarks are described by ZPC with same scattering
cross sections as in the default model [177]. Once all scatterings are stopped,
quarks and antiquarks are converted to hadrons via a simple coalescence
model, which combines two nearest quark and antiquark into mesons and
three nearest quarks or antiquarks into such baryons or anti-baryons that are
close to their invariant masses. Final-state scatterings of produced hadrons
are again modelled by the ART model.

The code is posted at
http://nt3.phys.columbia.edu/people/zlin/AMPT/
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3.5.10 Hadron String Dynamics HSD (Giessen/
Frankfurt)

The Hadron-String Dynamics (HSD) transport approach is a covariant micro-
scopic transport model developed to simulate relativistic heavy-ion collisions,
proton-nucleus reactions and pion-nucleus reactions in the energy range from
SIS to RHIC.
The HSD transport approach [180�182] provides the numerical test-particle
solution of a coupled set of relativistic transport equations for particles with
in-medium self-energies. It is based on quark, diquark, string and hadronic
degrees of freedom. On the hadronic side it treats explicitly the familiar
baryon octet and decuplet and selected higher resonances as well as their
antiparticles. On the meson side it includes the pseudo-scalar and vector me-
son nonets as well as some higher meson states (a1 etc.). Hadrons of even
higher mass are treated as 'strings' that re�ect the continuum excitation spec-
trum of hadrons. Dileptons (e+e−, µ+µ−), open and hidden charm mesons
(D,D∗, Ds, D

∗
s , J/Ψ, χc, Ψ

′) as well as high pT hadrons are treated pertur-
batively [183�185]. The baryons are propagated explicitly with momentum-
dependent scalar and vector self-energies [186]; baryons with a strange quark
have self-energies reduced by a factor of 2/3 and baryons with two strange
quarks are evolved in time with 1/3 of the scalar and vector potentials by
default. All mesons can optionally be propagated with in-medium potentials,
too.

High-energy inelastic hadron-hadron collisions in HSD are described by the
FRITIOF string model [187] (including PYTHIA [178]) whereas low energy
hadron-hadron collisions are modelled on the basis of experimental cross sec-
tions (when available) or OBE calculations whenever no data exist. The trans-
port approach is matched to reproduce the nucleon-nucleon, meson-nucleon
and meson-meson cross section data in wide kinematic ranges. HSD takes
into account the formation and multiple rescattering of leading pre-hadrons
and hadrons with cross sections in line with the additive quark model. Op-
tionally multi-meson fusion channels for baryon-antibaryon production can
be included as well as the o�-shell propagation of particles as described by
Juchem and Cassing in Ref. [76]. The major aim of HSD is - within a single
transport model - to gain an understanding about the nuclear dynamics, the
creation of dense and hot hadronic matter and the modi�cation of hadron
properties in a medium.

More recently an extended version of HSD was developed which is denoted
as PHSD (Parton-Hadron-String Dynamics) [188]. Additionally it includes an
early partonic phase. Here the equation-of-state is taken from lattice QCD
and the quasi-particle properties for quarks, antiquarks and gluons are ob-
tained from �ts to lattice results [189�191]. Due to the large damping width
of the partonic degrees of freedom an o�-shell propagation is implemented
by default. Partonic elastic and inelastic reactions are included (qq ↔ qq,
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qq̄ ↔ qq̄, gg ↔ gg, gg ↔ g, qq̄ ↔ g etc.) with non-perturbative cross sections
taken from Ref. [189] or of Breit-Wigner form which are �xed by the quasi-
particle spectral functions. The transition from partonic degrees of freedom
to hadronic resonant states is performed with the help of transition matrix
elements that strongly peak at an energy density of about 1 GeV/fm3. In
all reactions 'detailed balance' is implemented in the partonic sector and
energy-momentum conservation strictly holds in the parton-hadron transi-
tion. Furthermore, the conservation of �avor currents is exactly ful�lled. The
PHSD approach is presently tested in a wide dynamical regime up to LHC
energies.

The code is posted at
http://www.th.physik.uni-frankfurt.de/∼brat/hsd.html.

3.5.11 Quark-Gluon String Model QGSM

An alternative string model realisation is the Quark-Gluon String Model
(QGSM) [192�197]. It incorporates partonic and hadronic degrees of freedom
and is based on Gribov-Regge theory (GRT) [198, 199] accomplished by a
string phenomenology of particle production in inelastic hadron-hadron colli-
sions. To describe hadron-hadron, hadron-nucleus and nucleus-nucleus colli-
sions the cascade procedure of multiple secondary interactions of hadrons was
implemented. The QGSM incorporates the string fragmentation, formation
of resonances, and rescattering of hadrons, but simpli�es the nuclear e�ects
neglecting, e.g., the mean �elds or multi-particle interactions. As indepen-
dent degrees of freedom the QGSM includes octet and decuplet baryons,
octet and nonet vector and pseudoscalar mesons, and their antiparticles.
The momenta and positions of nucleons inside the nuclei are generated in
accordance with the Fermi momentum distribution and the Woods-Saxon
density distribution, respectively. Pauli blocking of occupied �nal states is
taken into account. Strings in the QGSM can be produced as a result of the
colour exchange mechanism or, like in di�ractive scattering, due to momen-
tum transfer. The Pomeron, which is a pole with an intercept αP (0) > 1
in the GRT, corresponds to the cylinder-type diagrams. The s-channel dis-
continuities of the diagrams, representing the exchange by n-Pomerons, are
related to the process of 2k (k ≤ n) string production. If the contributions
of all n-Pomeron exchanges to the forward elastic scattering amplitude are
known, the Abramovskii-Gribov-Kancheli (AGK) cutting rules [200] enable
one to determine the cross sections for 2k-strings. Hard gluon-gluon scat-
tering and semi-hard processes with quark and gluon interactions are also
incorporated in the model [201]. The inclusive spectra in the QGSM have
automatically the correct triple-Regge limit for the Feynman variable x→ 1,
double-Regge limit for x→ 0, and satisfy all conservation laws. The particular
stages of the collision model, namely (i) initialisation of interacting projectile
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and target nuclei, (ii) string formation via inelastic nucleon-nucleon (hadron-
hadron) interaction, (iii) string fragmentation, i.e. hadronization, and (iv)
hadron-hadron rescattering, are solved basically by Monte Carlo simulation
techniques.



Chapter 4

Many-body models

Molecular dynamics is a widely applied technique for simulating many-body
systems and it provides a very convenient framework for studies of nuclear
dynamics.

In the simplest approach, one considers the classical evolution of A nucle-
ons that are subject to a given two-body interaction which generally consists
of a short-range repulsion and a long-range attraction so that the resulting
nuclear matter equation of state has a Van der Waals form. The early work
by Lenk and Pandharipande [202, 203] provides a good illustration of this
type of model.

Although molecular dynamics is entirely deterministic, the evolution gen-
erally has a chaotic character so that small di�erences in the initial states may
lead to quite di�erent �nal states. Furthermore, the treatment has the virtue
of retaining all the orders of many-body correlations (at the classical level),
contrary to the one-body treatments discussed earlier. While many important
properties of the nuclear many-body quantum system cannot be reproduced
in a model based on classical particles (see below), classical molecular dy-
namics has nevertheless yielded useful insight into the evolution of nuclear
collisions, including the general features of fragmenting �nite systems, such
as critical phenomena [204], phase evolution [205], the caloric curve [206] and
isoscaling [207].

One of the central problems associated with attempts to describe nuclear
systems in terms of classical particles is the lack of Fermi motion. Indeed, in
the ground state of the classical Hamiltonian H all particles have vanishing
velocities. Furthermore, the absence of the Fermi pressure causes the inter-
nucleon distances to be too small at low temperatures. This inherent problem
makes it hard to emulate the most basic features of nuclear systems.

One partial remedy for this problem is the introduction of a so called Pauli
potential, a momentum-dependent repulsion that serves to emulate the ex-
clusion principle, as �rst proposed by Wilets et al. [208, 209]. This approach
was pursued in more detail by Dorso et al. [210] with a Gaussian repulsion
depending on the phase-space separation sij , with s2ij = r2ij/q

2
0 + p2

ij/p
2
0.
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They �rst demonstrated that such a repulsion leads to a reasonable emula-
tion of the Fermi-Dirac momentum distribution in thermal equilibrium, over
a broad energy range of interest [210]. Furthermore, when augmented by a
Lennard-Jones potential, the model yields a reasonable reproduction of the
nuclear equation of state and hence appears to be suitable for instructive sim-
ulations of nuclear collisions [211]. Indeed, a �rst application to an initially
compressed and heated nucleus allowed the extraction of its thermodynamic
phase evolution, showing that the spinodal region was entered, and the re-
sulting fragmentation exhibited characteristic signs of �lamentation [205].
The Pauli potential was also employed for the study of clustering in nuclear
matter at subsaturation densities [212].

4.1 Molecular dynamics with phase-space smearing

The most extensively employed class of many-body simulation models seeks
to remedy the most basic short-comings of the classical framework by repre-
senting each particle as a Gaussian density distribution in phase space. The
latter obeys the uncertainty principle and is therefore frequently referred to
as a wave packet although the treatment is still entirely classical. The essen-
tial e�ect is the generation of an additional smearing in the calculation of the
interparticle forces, resulting in a much smoother behaviour. In fact, interac-
tions void of a repulsive core lead to forces similar to those associated with
the mean �elds employed in the one-body approaches. It is thus possible to
e�ectively obtain a mean �eld for each individual A-body system without the
use of partial (test) particles or parallel ensembles methods, as required in the
Boltzmann treatment. Because the phase-space smearing e�ectively produces
a mean �eld, the model is supplemented by direct collisions, representing the
short-range repulsion omitted in the calculation of the �eld, This part is en-
tirely similar to what is done in the Boltzmann treatments, but it has a key
advantage that through the wave packets allows to calculate the required
local phase-space occupancies in each individual collision event, in spite of
the rather low phase-space density of physical particles. Numerically sta-
ble results can thus be obtained for the quantum-statistical (Pauli-blocking
or Bose-enhancement) factors. Because of their ability to treat this basic
quantum feature, these models are usually referred to as QMD: Quantum
Molecular Dynamics [213�217] (even though the actual equations of motion
for the centroids of the wave packets are still of purely classical form). The
ability of QMD to simulate individual collision events signi�cantly facilitates
the contact with actual collision experiments and was (and still is) the main
reason for its extensive usage.

Molecular dynamics can readily accommodate a variety of di�erent species
and reactions between them. Furthermore, extensions to relativistic kine-
matics were made, most notably Relativistic Quantum Molecular Dynamics
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(RQMD) [218, 219] and further extension towards ultrarelativistic collisions
(named UrQMD) have widely been applied to relativistic nuclear collisions
with considerable success in reproducing many aspects of the data. To ac-
count for high energetic binary collisions strings were included into RQMD
and UrQMD.

The initial A-body state is usually generated by a phase-space sampling
similar to the one employed in the one-body simulations. This initialisation
ensures that the initial distribution of the nucleons in the one-body phase
space is realistic (i.e. it resembles results obtained with Hartree-Fock cal-
culations, for example), whereas a minimization of the Hamiltonian would
usually lead to too compact con�gurations and the nucleons would all be
at rest, as mentioned above. Even though such initial �nuclei� are unstable
against emission and collapse, the time scale for this exceeds that of interest
in the context of nuclear collisions. On the other hand, the composite objects
formed at the end of a collision su�er from this problem and causes the anal-
ysis of the multifragment �nal state to be somewhat problematic, an issue,
however, of less importance in the present context.

Alternatively, one may add a suitable Pauli-potential and then perform a
minimization to obtain a suitable initial nucleus. The presence of the Pauli po-
tential has the advantage that the �nal composite objects have a much larger
resemblance with actual nuclei, especially with regard to size and binding
energy. However, while this re�nement yielded some instructive results [212],
it did not become part of the standard QMD treatment.

Many versions of the QMD approach have been developed, most (but far
from all) of them being rooted in the code originally developed by Aiche-
lin and coworkers [214]. Here we mention several extensions relevant in the
present context. Results obtained with these models will be presented in
Chap. 6.

4.1.1 IQMD: Isospin Quantum Molecular Dynamics:

The Isospin Quantum Molecular Dynamics model (IQMD) [217] represents
an extension of the original QMD model (or code) developed by Aichelin and
coworkers [214]. The basic QMD concepts remain the same, but the treatment
was somewhat re�ned, in particular with respect to the isospin dependence
of the nuclear forces determining the mean �eld and the cross sections for the
binary scatterings. Furthermore, in addition to the two nucleons (neutrons
and protons), the four charge states of ∆ resonances and the three ones of the
pion are now included. Thus the model is by design suitable for an application
in the SIS energy range, i.e. up to beam kinetic energies of about two AGeV.

The code is posted at
http://www-subatech.in2p3.fr/theo/qmd.
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4.1.2 Relativistic Quantum Molecular Dynamics

Relativistic Quantum Molecular Dynamics (RQMD), as originally developed
by Sorge et al. [218], represents a fully covariant description of a classical N -
particle system based on Dirac`s Constrained Hamilton Dynamics [220, 221].
The N -body Hamiltonian is thereby expressed by 2N − 1 constraints φi,

H =
2N−1∑
i=1

λiφi . (4.1)

where the �rst N constraints are given by the mass-shell conditions Ki =
p2
i −m2

i −Vi = 0 . In contrast to the vacuum case the mass-shell constraints
are now modi�ed by the presence of a potential which is a covariant extension
of the standard Skyrme interaction, Vi = 1

2

∑
j 6=i V

Sk
ij (qTij), depending on

the transverse relative inter-particle separation qTij . The remaining N − 1
constraints serve to �x the world lines of the particles, i.e. to ensure world line
invariance, causality, and cluster separability. Their explicit form is motivated
by studies of singular Lagrangians. A �nal time constraint which does not
enter the Hamiltonian �xes an overall evolution time of the system.

The complete set of 2N −1 constraints generates the equations of motions
for canonically conjugate coordinates and momenta,

dqµi /dτ = {H, qµi } , dpµi /dτ = {H, pµi } . (4.2)

where {·, ·} denotes the Poisson bracket. To compute the evolution of the
system, i.e. integrating the set of above equations of motion (4.2), one must
determine the unknown Lagrange multipliers λi(τ). This di�cult task is sim-
pli�ed when Dirac's �rst class condition is ful�lled, {Ki,Kj} = 0, since in
that case the Hamiltonian can be reduced to the simpler form. While Hamil-
ton Constrained Dynamics provides the most exact solution toward the rela-
tivistic N -body problem the numerical e�ort is prohibitively large since the
computational time scales with N3. Thus in many cases additional approxi-
mations were introduced in order to reduce the numerical e�ort [218].

The Frankfurt group has extended the RQMD code developed by Sorge et
al. [218] towards ultrarelativistic collisions by the inclusion of strings which
account for high energetic binary collisions [222]. This model has been exten-
sively applied to nuclear collisions from AGS up to RHIC energies [222�226].
A further development of the RQMD is UrQMD (described below). While in
these versions (RQMD and UrQMD) employ nuclear forces that are solely
based on Skyrme interactions, an alternative model, (R)QMD, also based on
Constrained Hamiltonian Dynamics, was developed in Tübingen [219] and ex-
tended for the application to relativistic dynamics through scalar and vector
type interactions [227].

The Tübingen (Relativistic) QuantumMolecular Dynamics (R)QMD trans-
port code [228] is in principle similar to the IQMD model. It uses relativistic
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kinematics (but is not formulated covariantly like the RQMD model based on
Hamilton Constrained Dynamics described above). The only mesons included
dynamically in the (R)QMD and IQMD models are the pions, while heavier
mesons (K, η, ρ, ω, . . . ) are treated perturbatively. These models in partic-
ular are suited for studies of subthreshold meson production at SIS energies.
They were extensively applied to kaon production at subthreshold energies
[12, 229] and used for vector meson and dilepton production [230]. For the
latter application, the Tübingen model was extended to include all nuclear
resonances with masses below 2 GeV, in total 11 N∗ and 10 ∆ resonances
[230].

In all cases elastic and inelastic binary collisions as well as particle produc-
tion and absorption processes are accounted for in a way similar to the Cas-
cade models, however including Pauli-blocking and Bose-enhancement factors
in the collisions terms, though these are of relatively little importance at rel-
ativistic energies.

4.1.3 UrQMD: Ultra-relativistic Quantum Molecular
Dynamics

The Ultra-relativistic Quantum Molecular Dynamics model [231, 232] devel-
oped by the Frankfurt group represents the most stringent extension of the
QMD concept towards relativistic and ultra-relativistic energies. Concerning
the nuclear forces, UrQMD uses the usual QMD Hamiltonian but the num-
ber of baryons and mesons included has been signi�cantly enlarged over the
last two decades. Thus the model is applicable to (ultra)relativistic nuclear
collisions in the energy range from the BEVALAC and SIS up to AGS, SPS
and RHIC.

The UrQMD collision term contains 55 di�erent baryon species (including
nucleon, Delta and hyperon resonances with masses up to 2.25 GeV/c2) and
32 di�erent meson species (including strange meson resonances), which are
supplemented by their corresponding antiparticle and all isospin-projected
states. The hadrons and hadron-resonances, which can be populated in
UrQMD are listed in table 7.1. For details see Ref. [231]. The states listed can
either be produced in string decays, s-channel collisions or resonance decays.
For excitations with masses higher than 2 GeV/c2 a string picture is used.
Full baryon/antibaryon symmetry is included with antibaryon-antibaryon in-
teraction inferred from baryon-baryon interaction cross sections. Elementary
cross sections are �tted to available proton-proton or pion-proton data. When
possible isospin symmetry is used in order to reduce the number of individual
cross sections to be parametrized or tabulated.

In the UrQMD model hadron-hadron collisions are performed stochasti-
cally, in a way similar to the original cascade models. Particle production in
UrQMD either takes place via the decay of a meson or baryon resonance or
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via a string excitation and fragmentation. Up to incident beam energies of
8 - 10 A GeV particle production is dominated by resonance decays. Produc-
tion cross sections for the excitation of individual resonances can be calculated
in the framework of OPE or OBE models [233]. Due to the large pion-nucleon
cross section at low c.m. energies, resonant meson-baryon and meson-meson
cross sections are among the most important in UrQMD. Up to c.m. energies
of 2.2 GeV meson-baryon and meson-meson interactions in UrQMD are dom-
inated by resonance scattering, i.e. the formation of intermediate resonances.

The hadron-hadron interactions at high energies are simulated in three
stages. The type of interaction is determined according to the cross sections:
elastic, inelastic, antibaryon-baryon annihilation, etc. In the case of inelastic
collisions with string excitation the kinematical characteristics of strings are
modelled in the following way: the hadron momentum transfer pT is simulated
according to a Gaussian distribution. The other interacting hadron gets the
same momentum transfer but in the opposite direction. The excited strings
have a continuous mass distribution f(M) ∝ 1/M2 with the masses M lim-
ited by the total collision energy

√
s:M1+M2 ≤

√
s. The remaining energy is

then equally distributed between the longitudinal momenta of two produced
strings. The longitudinal momenta of the constituent quarks are chosen ac-
cording to the structure functions of hadrons, f(xq) = f0(xq)α−1(1−xq)β−1,
with α = 0.5 and β = 2.5 for valence quarks in nucleons. Their transverse
distributions follow the same Gaussian distribution as for the momentum
transfer, leaving the remaining diquark with a transverse momentum which
is the same in magnitude, but of opposite direction. The second stage of h-h
interactions is connected with string fragmentation for which UrQMD uses
the Field-Feynman fragmentation procedure [234], where the strings decay in-
dependently from both ends. The procedure accounts for energy, momentum
and quantum number conservation and includes the possibility of converting
diquarks into mesons via diquark breaking.

The code is posted at
http://th/physik.uni-frankfurt.de/∼urqmd/.

4.2 Quantum many-body approaches

In recent years, a variety of true quantum many-body approaches to the
simulation of nuclear dynamics were developed. These all represent the state
of the system as Slater determinants but di�er with respect to the degrees of
freedom considered and the form of their dynamical evolution. While these
treatments are on much better ground from basic theory, they are relatively
complicated to apply and, as a result, their applicability is considerably more
limited compared to the range of observables calculated within the Boltzmann
and QMD approaches.
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4.2.1 Fermionic molecular dynamics

Fermionic molecular dynamics (FMD) [235�239] is a true quantum treatment
that represents the many-body state as antisymmetrized Slater determinants
composed of single particle wave functions of Gaussian form

ϕi(r, t) ∼ exp[−νi(t)[r− Zi(t)]2] |χi(t)〉 |ξi(t)〉 . (4.3)

The wave packet centroids {Zi} and widths {νi} are complex dynamical
variables (parameters) whose equations of motion are derived from the time-
dependent variational principle. The concept explicitly includes spin |χi(t)〉
and isospin degrees of freedom |ξi(t)〉. All physical observables, such as posi-
tions, momenta or the total energy, are then obtained as expectation values of
the corresponding quantum operators with the FMD many-body wave func-
tion. The latter makes the FMD to a genuine quantum many-body approach.

If limited to a single Slater determinant, FMD is a constrained form of
TDHF with nonorthogonal single-particle states for which the overlap matrix
〈ϕi|ϕj〉 should be properly considered. This non-orthogonality implies that
the physical mean position and momentum of a given nucleon are not at all
simply related to the associated centroid parameters, a feature also re�ected
by the fact that due to anti-symmetrization {Zi,Z∗i } or {νi,ν∗i } are generally
not canonical variables. Only for su�ciently dilute con�gurations the Pauli
e�ects cease and the equations of motion take on the classical form [239].

In its original form, FMD employs just a single Slater determinant with
single wave packets for each nucleon. With such a restriction it thus does
not o�er the possibility of dynamical bifurcations, an feature important in
collisions already at moderate energies[239]. An important practical example
is the emission of a nucleon from an excited nucleus. In the course of a
given time interval this happens with a certain probability while with the
complementary probability the nucleon remains in the source. In a quantum
picture this process would be described by a wave function that splits in two
parts, one for the emitted component which spreads in space, and one for
the still bound component which remains localized within the nucleus. This
phenomenon is clearly beyond the capabilities of a description with a single
Slater determinant built from one Gaussian wave packet per nucleon. The
example shows that this restriction leads to a severe suppression of quantum
branching. The introduction of appropriate branching processes within some
suitable stochasticity in the dynamics is discussed in Secs. 4.2.2 and 4.2.3).

There were several other works based on molecular dynamics with dy-
namical wave packet widths. It was found that the inclusion of a dynamical
width improves the agreement with data in some cases, such as fusion cross
section above the Coulomb barrier [240]. Kiderlen et al. [241] studied the
fragmentation of excited systems. In response to the initial pressure, the ex-
cited system begins to expand but clusters were not produced even though
Gaussian wave packets with many-body correlations were employed. When
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the excited system expands, the widths of wave packets grow and then, in
turn, the interaction between the packets weakens. The mean �eld for such
a con�guration is very shallow and smooth and there is then little chance
for clusters to appear. This feature con�icts with the general expectation
that clusters should appear in such situations. Similarly, studies of spinodal
instability [242] showed that the zero sound is signi�cantly a�ected when
the width of the wave packets become large and this spatial spreading then
inhibits the formation of clusters.

On the other hand FMD provides genuine quantum features such as the
proper speci�c heat of a fermion system. By enclosing the system in a large
harmonic oscillator potential well and coupling the system weakly to a virtual
thermometer while examining its long-time behavior, it was possible to study
the thermodynamic properties of FMD [243]. The model was shown to exhibit
a liquid-gas phase transition (Sect. 2.2.3.4 in Part I) and the associated caloric
curves were extracted. They are similar to those obtained experimentally,
with a low-temperature Fermi-liquid like region (E ∝ T 2), an intermediate
plateau associated with the coexistence region, and a high-temperature gas-
like region.

Originally developed as a quantum mechanically consistent molecular dy-
namics model [244], where quantum uncertainty and Fermi motion are treated
by antisymmetrized wave packets, over the years the FMD approach has
been evolved into a very successful model for nuclear structure [245�247].
As regards the nuclear Hamiltonian it should be noted that a satisfactory
description of the diverse nuclear structure properties can only be achieved
when using an e�ective Hamiltonian based on realistic NN-forces like those
obtained by the Unitary Correlation Operator Method (UCOM)[46, 47]. Sim-
pli�ed forces without e.g. momentum dependence or spin-orbit terms are not
su�cient.

Many quantal or classical molecular dynamics models that retain many-
body correlations have shown that in multifragmentation the correlations
leading to the formation of the �nal clusters can be traced back far in time
even to the initial state. An obvious example for these correlations is the ob-
served cluster structure of light nuclei, especially close to the breakup thresh-
old. In 12C or 16O resonant states exist which undergo multifragmentation
into α-particles. FMD decribes these states in a fully microscopic quantal pic-
ture by admixing to single-particle shell-model like states antisymmetrized
products of α-clusters at various relative positions [245].

Another exotic phenomenon, the formation of halos, occurs at the limit of
stability, where nucleons are about to escape from the nucleus, but their en-
ergy is not quite su�cient. This corresponds to particle evaporation at higher
energies. Again FMD describes this successfully by employing superpositions
of narrow and broad gaussians.

These are two example cases of precursors of quantum branching or cor-
relations which are implemented in the stationary version of FMD but still
await proper treatment in the time-dependent case in order to overcome the
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various spurious e�ects caused by the restriction to the evolution of single
Slater determinants.

4.2.2 Antisymmetrized molecular dynamics

Antisymmetrized molecular dynamics (AMD) [248�250] is similar to FMD in
that the system is represented by a Slater determinant and that a part of the
equation of motion is derived from the time-dependent variational principle.
An important di�erence to FMD is that stochastic terms were added to the
equation of motion so that many con�gurations can appear during the course
of the reaction dynamics.

On the other hand, AMD usually treats the width parameters {νi} of
the single-particle wave packets as a constant parameter common to all the
nucleons. This simpli�cation reduces the computational burden but limits the
�exibility of the description, compared to the FMD description, as long as
the stochastic extension terms are ignored. Nevertheless, the constant width
parameter guarantees that there is no spurious coupling of the internal motion
and the center-of-mass motion of a cluster or a nucleus. Furthermore, the
presence of trajectory branching due to the stochasticity avoids the creation
of spurious correlations in the wave function. For example, for the nucleon
emission process, channels with and without nucleon emission will appear
as separate branches and therefore avoid to be mingled into a single Slater
determinant.

Recent versions of AMD [251�253] seek to also account for the dynamics
of the width and thus the shape of the wave packets by splitting them into
several components. Here one uses a stochastic term derived from the single-
particle motion in the mean �eld. It assumes that the coherence of the single-
particle wave function is lost and it branches into incoherent Gaussian wave
packets at a certain time due to many-body e�ects. This quantum branching
process provides the coexistence between the single-particle dynamics in the
mean �eld and e.g. the fragment formation, which requires spatial localization
and the emergence of many con�gurations. The resulting extended AMD may
be regarded as a speci�c case of the stochastic mean �eld equation ( 3.4) in
Sect. 3.2 now with the �uctuations of the collision term δC[f ] designed in
such a way that Gaussian wave packets appear.

When the wave packet branching is included by means of a stochastic term,
the resulting state must be adjusted such as to ensure energy conservation.
This is achieved by means of a dissipative term in the equation of motion.
Although carefully constructed in order to obtain a reasonable time evolution,
this dissipative term was not derived from a basic principle.

The implementation of two-nucleon collisions is similar to QMD (Sec. 4.1),
with some di�erences described below. The antisymmetrization implies that
the wave packet centroids {Zi} cannot be interpreted as the positions and
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momenta of nucleons. Rather, the physical coordinates are given as non-
linear functions of the centroids [249] and the two-nucleon collisions are
performed by using these physical coordinates. There then appear Pauli-
forbidden phase-space regions into which the physical coordinates will never
be able to enter. These regions are regarded as Pauli-blocked and not allowed
as a �nal state of a collision.

With a conventional e�ective interaction and a reasonable choice of the
width parameter AMD is capable of providing a quite good description of
not only the basic properties of ground state nuclei but also of many detailed
structure features. With some extensions such as the parity and angular mo-
mentum projections this includes the excitation level spectra of light nuclei
[254]. The equilibrium properties of AMD were studied by solving the long
time evolution of a many-nucleon system in a container in order to obtain a
micro-canonical ensemble. When the liquid phase, in the form of a nucleus,
is embedded in a nucleon gas of temperature T , the characteristic quantum
relation E∗liq ∼ T 2 was obtained [255] and the resulting caloric curves show
that AMD is consistent with the liquid-gas phase transition [256�258]. The
wave packet branching plays an essential role in this respect. Although not
yet studied very carefully, this success suggests that the statistical nucleon
emission from an excited fragment may also be qualitatively quite well de-
scribed within AMD. But a quantitative description would require the model
to also give the correct value for the nuclear level density parameter a.

AMD was also successfully applied to fragmentation reactions, such as
central collisions in the energy region of several tens of MeV/nucleon for
light and heavy systems [251, 259]. The fragment iso-spin composition ob-
tained in dynamical collisions is consistent with statistical predictions, such
as the iso-scaling relation and the dependence on the symmetry energy term
of the e�ective force [260, 261]. These results are consistent with the idea
that the fragment iso-spin composition is determined when the density is low
(ρ ≈ 1

2ρ0) and re�ects the symmetry energy of dilute nuclear matter. At
higher energies (Ebeam & 50 A MeV) the multiplicity of nucleons is strongly
overestimated in AMD. This shows the lack of few-body correlations, which
probably should be treated more quantum mechanically than by the acciden-
tal merging of randomly distributed wave packets.

4.2.3 Quantal Langevin dynamics

A more formal development of trajectory branching in wave packet dynamics
has led to the Quantal Langevin (QL) model [262, 263]. The motivation for
this work lies in the fact that the nuclear liquid-gas phase transition di�ers
signi�cantly from the usual liquid-gas phase transition in macroscopic matter
primarily in the role played by quantum statistics. For usual macroscopic
matter, the total energies are to a good approximation linear functions of the
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temperature in both the liquid and gas phases. Thus the e�ective number
of degrees of freedom is essentially constant in each phase. In contrast to
this familiar situation, the liquid phase of a nucleus exhibits an increase in
the number of activated degrees of freedom as the temperature is raised. In
particular, the excitation energy of a nucleus at low temperature increases like
E∗ = aT 2 (with a ≈ A/(8 MeV)), which is a typical quantal behavior, while
the gas phase is characterized by the usual classical relation E∗/A = 3

2T . The
two curves intersect at T ≈ 12 MeV, which is much higher than the transition
temperature suggested by experimental data. This indicates that the quantal
statistical nature of the nuclear system plays an important role for the phase
transition and, presumably, for the associated nuclear multifragmentation
processes.

Part of the reason for the persistent shortcoming of wave-packet dynamics
for the description of multifragmentation (see above) may be found in the fact
that the equation of motion for the wave-packet centroids is not consistent
with the quantal statistical nature, because quantum �uctuations inherent
in the wave packets are neglected. The presence of quantum �uctuations is
signalled by the fact that a given wave packet is a superposition of many
energy eigenstates. Therefore the �uctuations should be taken into account
in such a way that the di�erent components are properly explored in the
course of time.

This fundamental problem can be clearly brought out by making a cu-
mulant expansion of the canonical weight of a given wave packet, at the
temperature T = 1/β [264],

lnWβ = ln〈exp(−βĤ)〉 = −βH+ 1
2β

2σ2
H +O(β3) . (4.4)

Here H ≡ 〈Ĥ〉 is the usual expectation value of the energy in the given wave
packet and it is evident that the weight Wβ is a�ected by its energy spread
σH . Truncation of the cumulant expansion at second order, corresponding to
a Poisson energy distribution in each packet (as a Gaussian would have) leads
to a much improved global description of the quantum-statistical properties
of the many-body system.

This approach was extended to dynamical scenarios by the introduction
of a Langevin force emulating the transitions between the wave packets
[262, 263]. The corresponding transport process in wave packet space can
be described as a Langevin process and the general form of the associated
transport coe�cients was derived. The ensuing di�usive wave packet evolu-
tion exhibits appealing physical properties, including relaxation towards the
appropriate micro-canonical quantum-statistical equilibrium distribution in
the course of the time evolution. Speci�c expressions for the transport coef-
�cients were subsequently derived on the basis of Fermi's golden rule and it
was veri�ed that they satisfy the associated �uctuation-dissipation theorem.

This approach is not speci�c to nuclear dynamics but has general applica-
bility. For example, it was used to study the e�ect of quantum �uctuations
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on the critical properties of noble gases [265]. In nuclear physics it was ap-
plied to hyperfragment formation from Ξ− absorption on 12C where it was
found that quantum �uctuations a�ect the outcome qualitatively [266, 267]
and to multifragmentation [268] which is of particular interest here and will
be brie�y summarized below.

The Langevin force enables the wave packet system to explore its entire en-
ergy spectral distribution, rather than being restricted to its average value.
This leads to a much improved description of the quantum statistical fea-
tures. In particular, the resulting speci�c heat now exhibits the characteristic
evolution from a quantum �uid towards a classical gas as a function of tem-
perature [264], in contrast to the behavior emerging with the usual treatment.
Since a change of a fragment's speci�c heat is associated with a change in its
statistical weight, the e�ect is clearly relevant for the fragment production
problem.

The key new features of the results obtained with the quantal Langevin
model are the occurrence of larger �uctuations and an enhancement of sta-
ble con�gurations, such as bound fragments, as a result of the need to take
account of the spectral distortion of the wave packets. The former feature
arises from the fact that the wave packet parameter of each nucleon is popu-
lated according to the strength of the eigen components for the given energy
expectation value, and therefore the wave packet parameter can have larger
�uctuations than when the energy is �xed to the expectation value. On the
other hand, in order to project out the appropriate energy component from
the wave packet, it is necessary to take account of its internal distortion.
The combination of these two basic features then enhances the average mul-
tiplicity of intermediate mass fragments IMF at the �nal stage, especially in
central collisions, as was demonstrated for Au+Au at 100-400 MeV/nucleon
[268]. While the larger �uctuations allow the system to explore more con�gu-
rations and thus enhances the yield of primary fragments, the latter stabilizes
the fragments, since the compensation for the quantum distortion e�ectively
acts as a cooling mechanism.

These studies suggest that the underlying quantal nature of the nuclear
many-body system may indeed play a signi�cant role in fragmentation reac-
tions.



Chapter 5

Fluid dynamics

Fluid dynamics approaches provide the most direct access to the bulk mat-
ter properties of the system. They describe the evolution of the system at a
macroscopic level where only the local densities and currents enter. The mi-
croscopic structure of the underlying system is then encoded via the equation
of state (EoS) and, in dissipative dynamics, appropriate transport coe�cients.

5.1 General framework

Ideal �uid dynamics is based on the assumption of instantaneous local equili-
bration. The system is then characterized by its local energy density ε(x), the
local pressure p(x), and the local �ow velocity v(x), plus one density ρa(x)
for each conserved �charge� a, all functions of the four-coordinate x = (t,x).
The local energy-momentum tensor then takes the form

Tµν(x) = [ε(x) + p(x)]uµ(x)uν(x)− gµνp(x) (5.1)

with four-velocity uµ = γ(1,v) and Lorentz factor γ(x) = (1− v2)−1/2. The
equations of motion then follow from energy-momentum conservation and,
when applicable, charge conservation,

∂µT
µν(x) = 0 , ∂µj

µ
a (x) = 0 , (5.2)

where the four-current density for the charge a is jµa = ρau
µ = γ(ρa, ρav)

with ρa(x) being the density in the rest frame of the �uid cell at x.
For N conserved charges (baryon number, electric charge, strangeness, ...)

there are thus 5 + N dynamical variables (ε, p, v, and {ρa}) whereas there
are 4+N conservation laws and, correspondingly, 4+N equations of motion.
Closure is obtained by the EoS p0(ε, {ρa}) which gives the local pressure in
terms of the local energy and charge densities, p(x) = p0(ε(x), {ρa(x)}).

613
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In the ideal �uid approximation, the EoS is the only input to the equa-
tions of motion that relates to the speci�c properties of the matter under
consideration and there is thus a relatively close connection between this key
quantity and the dynamical evolution of the system.

In the present context it is important to recognize that along with the
conserved charges a ideal �uid dynamics also conserves entropy. Indeed, it
readily follows from the above equations of motion (5.2) that the entropy
density σ = (p+ ε−

∑
a µaρa)/T satis�es a continuity equation,

∂µσ
µ(x) = 0 , (5.3)

where σµ = σuµ is the entropy current density. It also follows that the local
ratio between the various charge densities remains constant, uµ∂µ(ρa/ρb) = 0
and that the entropy per net charge also remains constant in the local �ow
frame, uµ∂µ(σ/ρa) = 0. Therefore ideal �uid dynamics is best suited for
isentropic processes, for which δρa/ρa = δε/(p + ε), and it may therefore
be appropriate for the expansion dynamics occurring after the compression
phase of a nuclear collision.

5.2 One-�uid hydrodynamics

The �rst suggestions and actual calculations of �uid dynamical e�ects [269,
270] date back to the early days of relativistic nuclear collisions and are later
followed by various developments, e.g. in Refs. [271�286]. Improvements con-
cerned the numerical algorithms, the switch from initially cylinder geometry
to full 3 dimensional codes as well as the change towards a fully relativis-
tic treatment. Due to the condition of instantaneous local equilibration and
the implied zero range space-time scales there are dynamical constellations
where the one-�uid picture (cf. Fig. 5.1) is less or even not at all applicable.

Fig. 5.1 A semi-central collision of two gold nuclei at a laboratory bombarding energy
of 10 AGeV as calculated in one-�uid hydrodynamics (V.N. Russkikh, privat communi-
cation). The density contours and the local �ow (arrows) are shown soon after the initial
encounter (left) and somewhat later (right).
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These concern e.g. the initial stage as well as the �nal dilute stage, but also
rapid processes during a phase-transition dynamics that lead to dynamical
instabilities.

With the character more of two interstreaming gases the initial stage of
energetic nuclear collisions cannot be well described by a single �uid. If one
still would insist on keeping the one �uid picture, it would lead to the for-
mation of discontinuities in form of shock fronts with a heated contact zone
and the infalling matter at the outer side of the shock fronts. In this limit the
entropy is generated through the shock fronts. While interesting as a limiting
case with various physical phenomena as the formation of Mach cones [269],
the true �nite transport or dissipative space-time scale may signi�cantly blur
the picture and smoothen the shock fronts.

At the very late stage the system becomes so dilute, see Fig. 5.1 right
frame, the microscopic collision rates so low, that local equilibrium can no
longer be maintained and the particles freeze out, cf. Sect. 5.8.

The use of ideal �uid dynamics may also become questionable, when a
�rst-order phase transition is present, since it is only applicable to adiabatic
(i.e. slow) evolutions. However, a fast phase transition enforced through the
expansion of the system may induce noticeable dissipative e�ects. Further
limitations of the perfect, i.e. non-viscous �uid picture are discussed in Sect.
5.5 on viscous hydrodynamics.

To circumvent the above short comings, various strategies have been de-
veloped. For example the initial state of the �reball can be constructed from
either kinetic simulations [287, 288] or from a multi-�uid scheme, cf. Sect. 5.3,
or from some general (but model-dependent) assumptions (see Refs. [289�
296]).

As a consequence various hybrid models, cf. Sect. 5.6, were developed,
which appropriately link e.g. a microscopic kinetic transport with the macro-
scopic one-�uid dynamics, where the latter usually is only restricted to de-
scribe the expansion stage of the reaction after an approximately equilibrated
�reball was formed.

5.3 Multi-�uid hydrodynamics

As the collision energy is raised, the assumption of instant local equilibration
in the collision zone becomes increasingly unrealistic. In order to address this
problem, models were developed that consider several distinct �uids that
interpenetrate and exchange both four-momentum and conserved charges.
In particular during the initial inter-penetrating phase of the reaction such
approaches are esteemed to be much more appropriate than viscous hydrody-
namics (Sect. 5.5). In such multi-�uid descriptions the above ideal conditions
hold within each �uid α, while additional source terms describe the transport
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among the di�erent �uids. The equations of motion then take the following
form

∂µT
µν
α (x) = F να(x) , ∂µj

µ
a,α = Ca,α(x) , (5.4)

where the friction forces Fµα result from the exchanges of energy and momen-
tum between the �uid α and the other �uids, while the �uxes Ca,α describe
the associated exchanges of the charge a. There is thus generally no overall
local equilibrium in the multi-�uid system and so certain non-equilibrium
phenomena can be described, such as partial stopping, under-cooling and
super-heating associated with phase transformations, and delayed chemical
reactions. Generally the di�erent �uids attain di�erent values of their local
�ow velocities, temperatures, and chemical potentials.

Already during the early days of low energy nuclear collisions the �rst two-
�uid model calculations were performed [297] and later further developed for
higher energies [272, 284]. However, towards relativistic collision energies the
inclusion of a third �uid of the created particles became important.

5.3.1 Three-�uid model

In view of the two counter streaming nuclei in the initial phase and the formed
�reball due to collisions a three �uid scenario seems to be the most adequate
to description of the nuclear collision dynamics in macro-dynamical terms.
Experimental rapidity distributions observed in nucleus�nucleus collisions be-
tween a few up to 200A GeV support this counter-streaming behaviour.

In the following we therefore focus here on the three-�uid models as de-
veloped in [1, 284, 298�300]. They are in active use and under further de-
velopment. The basic idea is that at each space-time point x = (t,x) the
baryon-rich matter, can be represented as a sum of two distinct contribu-
tions,

fbaryon(x, p) = fp(x, p) + ft(x, p),

initially associated with constituent nucleons of the projectile (p) and target
(t) nuclei. In addition, newly produced particles, populating the mid-rapidity
region, are associated with a �reball (f) �uid described by the distribution
function ff(x, p). Therefore, the three-�uid approximation is a minimal way
to simulate the �nite stopping power at high incident energies. Note that
both, the baryon-rich and �reball �uids may consist of any type of hadrons
and/or partons (quarks and gluons), rather than e.g. only nucleons and pions.

To justify the term ��uids� it is assumed that constituents within each dis-
tribution are locally equilibrated, both thermodynamically and chemically.
This assumption relies on the fact that intra-�uid collisions are much more
e�cient in driving a system to equilibrium than inter-�uid interactions. As
applied to the �reball �uid, this assumption requires some additional com-
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ments, related to the concept of a �nite formation time. During the proper
formation time τ after production, the �reball �uid propagates freely, in-
teracting neither with itself nor with the baryon-rich �uids. After this time
interval, the �reball matter starts to interact with both itself and the baryon-
rich �uids and, as a result, thermalizes locally.

The main unknowns of the present approach can be brie�y summarised
as follows: the EoS and the coupling terms in (5.4). The EoS is an external
input to the calculation and thus can be varied with the goal to �nd an EoS
which in the best way reproduces the largest body of available observables. The
coupling terms are equally important. They determine friction forces between
�uids and hence the nuclear stopping power. In principle, friction forces are
EoS dependent, because medium modi�cations, providing a nontrivial EoS,
also modify cross sections, and should be externally supplied together with
the EoS. However, presently there are only rough estimates of the friction
forces [301] based on experimental inclusive proton�proton cross sections.
Therefore the friction forces have to be �tted to the stopping power observed
in proton rapidity distributions.

The hydrodynamic treatment of nuclear collisions is a promising alterna-
tive to kinetic simulations with its advantages and disadvantages. Lacking the
microscopic feature of kinetic simulations, it overcomes their basic assump-
tion, i.e. the assumption of binary collisions, which is quite unrealistic with
growing matter densities. The scheme directly addresses the nuclear EoS that
is of prime interest in this research. The three �uid construction accommo-
dates the �nite stopping power naturally in terms of friction coe�cients such
that one does not rely on some modelling for the initial phase of a single �uid
approach (Sect. 5.2 above). The three-�uid initialisation is straightforward:
in their respective rest frames, the colliding nuclei are represented by two
spherical pieces of cold nuclear matter which are then accordingly boosted
to the center-of-mass frame of the reaction. Due to the employed Maxwell
construction for the phase-coexistence the model has still some de�ciencies
for an appropriate treatment of phase transitions.

First model results of the Moscow-GSI group were presented in [1, 299,
302�304]. See also Sect. 6.1. The code is posted at

http://theory.gsi.de/∼mfd/.

5.3.2 Phase conversion within non-equilibrium
chemistry

In this section we report on a special multi-component hydrodynamic model
proposed in 1988 by Barz. et al. [305, 306] under the name Flavour Kinetics.
In the context of nuclear collisions for the �rst time and so far still unique
this model deals with the phase conversion problem using driving potentials,
that depending on the thermodynamic conditions drive the system towards
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the stable phase. Its formulation is transport theoretically sound, it provides
a growing entropy and is free from such �never come back� concepts for the
hadronisation transition as e.g. implied by the string fragmentation mecha-
nism.

The �avour kinetic model rests on a two-phase concept within a �rst order
phase transition scenario. Each phase consists of a number of constituents,
the quarks and gluons in the QGP-phase and of baryons and mesons in the
hadronic phase.A bag-model EoS is assumed for the QGP, while the hadronic
phase is described by free mesons and a Walecka-type EoS [49, 50] for the
baryons. The resulting repulsion is important in order to furnish a proper
phase transition at high baryon densities[307]. In order to simplify the dy-
namics global thermal and pressure equilibrium in an isotropically expanding
�reball model is assumed. It accounts for radial �ow with a linear (Hubble
like) radial velocity pro�le, c.f. Sect. 5.7. The radial expansion generated self-
consistently through the pressure led to a predicted �ow velocity of 0.5 c [306]
prior to experimental data. The core of the model are chemical rate equations
which take the generic form

〈rate〉 = 〈forward rate〉 [1− e(µr−µl)/T ]. (5.5)

Here µr and µl denote the sum of the chemical potentials of the particles
on the right, respectively left side of a rate balance. E.g. for q + q̄ 
 π + π
one has µl = µq + µq̄ and µr = 2µπ (note that µq + µq̄ vanishes only in
equilibrium). These rates are generic, since they also include the standard
Boltzmann collision term for free particles, if integrated over the particle
momenta. The actual calculations within the Flavour Kinetic Model included
close to hundred di�erent chemical reactions.

These rates describe the density changes of the di�erent constituents, both
due to collisions and through phase-conversion rates. Within each phase stan-
dard binary collision and decay rates determine the forward rate for each
process, while for the phase-transition rates assumptions lent from the string
fragmentation are taken to determine the forward rates. The rate equations
fully comply with detailed balance, they are generic, since the rate is deter-
mined by the o�-set in chemical potentials, which for each particle follow from
its density and the underlying EoS. If the chemical potentials become dis-
favoured in one phase relative to the other, the system is driven to the other
phase. In the event of constant conditions the rates drive the system towards
chemical equilibrium. Thereby it is important to use appropriate EoS for the
two phases in order to comply with con�nement. E.g. if both phases solely
deal with free particles the system would rather be driven to a free gas of
partons rather than hadrons in the low density limit according to the law of
mass action, just like in very dilute inter stellar gases where atomic hydrogen
prevails relative to hydrogen molecules. Thus the action of con�nement can
not be described by the mass action law, but rather requires a description in
the form (5.5) with non-trivial EoS dependent chemical potentials.
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Fig. 5.2 Left panel: Three trajectories in the phase-diagram plane of density versus tem-
perature. Dashed line: baryon poor case with initial µB = 100MeV ; full line: baryon rich
case with initial µB = 600MeV and a strong phase-conversion rate; dotted line: same
as before for a slow phase-conversion rate. The hashed area shows the coexistence phase.
Right panel: Time evolution for various species in the system for the baryon rich scenario.

The model accounts for radial �ow, and permits delayed conversion rates
between the two phases and this way super-cooling e�ects. The generic results
of this study are the following. Due to the latent heat released during the
transition and accompanying strong reduction of the speci�c entropy density
from about 40 degrees of freedom in the QGP phase to essentially three
degrees of freedom (3 pion states) in the hadron phase the following happens,
cf. Fig. 5.2:

• the phase conversion takes time (about 6 - 10 fm/c depending on system
size)

• the drop in entropy density during the transition is compensated by three
means:

� the volume increases roughly by a factor of �ve;
� the system is steadily heated compensating the usual drop in tempera-

ture such that the temperature drop essentially ceases during the tran-
sition;

� new constituents are created.

The three types of process contribute about equally to keep the entropy
slightly rising during the transition. With respect to the chemical rates one
�nds that independent of the detailed assumptions �nally the conversion rates
become large during the phase transition due to the occurrence of instabil-
ities. Thus, after phase-conversion the system �nds itself in near chemical
equilibrium, c.f. also the discussion on decoupling phenomena [308] in Sect.
5.8. Besides conservation law constraints the �nal composition is found to be
blind with respect to detailed composition within the plasma phase, e.g. to
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the ratio of strange to non-strange quarks. These �ndings remain qualitatively
true also for a second order phase transition or for �nite system sizes, where
though more smoothly the system still exhibits signi�cant changes in energy
and entropy density over a small temperature range. In the Flavour Kinetic
Model chemical freeze-out emerges automatically through the rate equations
and was predicted to occur slightly below the phase-transition temperature
which those days was assumed to be around 160 MeV.

The empirical results that the abundance of the di�erent particles pro-
duced in the nuclear collisions at the CERN SPS can very precisely be ex-
plained within chemical equilibrium models, see Part I, Sect. 4.1, was one of
the key arguments given that in such experiments the quark-gluon plasma
was actually formed during the early phase of such reactions. Particularly for
the strangeness sector it was claimed, that solely hadronic reactions do not
su�ce for reaching chemical equilibrium on such short time scales.

5.4 Collective modes

In the context of phase transitions and dynamical instabilities, it is of special
importance to understand how �uid dynamics responds to local disturbances
in the densities. To elucidate this central feature, we assume for simplicity
that there are no conserved charges and consider a small disturbance away
from a static uniform system with energy density ε̄ and pressure p̄ = p0(ε̄),

ε(x) = ε̄+ δε(x) , p(x) = p̄+ δp(x) , v(x)� 1 . (5.6)

Note that the perturbative character of the disturbance implies the local
�ow velocity v(x) to be small, v(x)� 1. Therefore, to leading order, we may
ignore v2 and thus put γ to unity. The equations of motion then simplify,

0 = ∂µT
µ0 = ∂tδε+ (ε̄+ p̄)∂ivi , (5.7)

0 = ∂µT
µi = (ε̄+ p̄)∂tvi + ∂iδp . (5.8)

Using δp(x) = ∂εp0(ε(x))δε(x) = v2
sδε(x), where v

2
s ≡ ∂εp0(ε) is the square

of the sound speed, we then obtain the usual form of the equation for sound
wave propagation,

∂2
t δε(x) = ∂i∂

iδp(x) = v2
s(ε̄) ∂i∂

i δε(x) ⇒ ω2
k = v2

sk
2 . (5.9)

The right-hand side is the dispersion relation for disturbances of harmonic
form, δε ∼ exp(ik · r− iωkt).

The above dispersion relation reveals a generic problem with ideal �uid
dynamics: The frequency is strictly proportional to the magnitude of the wave
number, ωk ∼ k. Thus the shorter the spatial scale of the density disturbance,
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the faster the system responds. Fortunately, this problem is not essential in
the mechanically stable region of the phase plane, because the rapid oscilla-
tion of the �ne density ripples has negligible import on the overall dynamics.
However, inside the spinodal phase region, where v2

s < 0 and uniform mat-
ter is mechanically unstable, the frequency is imaginary so the disturbance
acquires an exponential time development, exp(−iωkt) = exp(γkt), where
γk ≡ Im(ωk) is the growth rate. This feature is disastrous, because it leads
to ever faster ampli�cation of ever shorter irregularities, thus rendering the
problem mathematically meaningless as well as numerically intractable.

Because of this inherent divergence, which is due to the absence of a nat-
ural length scale in ideal �uid dynamics, this treatment is not applicable in
the spinodal part of the phase coexistence region, and there is a need for
developing suitable re�nements. A re�ned treatment should lead to a disper-
sion relation for the unstable sound modes that has a qualitative appearance
similar to what is usually found, namely a growth rate γk that displays a
maximum value at some optimal wave number k0 and then falls o� to zero
as k is increased further. For a discussion of this issue in the context of the
nuclear liquid-gas phase transition, see Ref. [64], and for the QCD transisition
see e.g. [309].

The above analysis was carried out for the simplest case of no conserved
charges. Though more complicated, similar considerations apply when con-
served charges are present in the system. A further problem with ideal �uid
dynamics in connection with phase transitions is related to the fact that the
dynamical instability region is smaller because of the requirement of entropy
conservation: the isentropic spinodal region generally lies inside the region
enclosed by the isothermal spinodals.

5.5 Viscous �uid dynamics

Ideal �uid dynamics holds in the limit where the mean free path of the con-
stituents is su�cently small to guarantee e�ectively instantaneous local equi-
libration. (When several species are present, it is also required that the reac-
tion rates be su�ciently fast to maintain local chemical equilibrium.) When
this idealization is violated, as it usually is to some degree in nuclear collision
dynamics, the local equilibrium can no longer be perfectly maintained as the
constituents continually transport their momentum (and charges) to other
parts of the system. To leading order, this complication can be incorporated
into the �uid dynamic treatment by means of additional dissipative terms.

This can be done in a variety of ways (see for example Refs. [310�312] and
references therein). The departure from the equilibrium form of the stress-
energy tensor as given by the pressure p is normally formulated by the Navier-
Stokes ansatz,
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Tij = δij(p− ζ∇v)− η(∂ivj + ∂jvi − 2
3δij∇v), (5.10)

where η is the shear viscosity coe�cient and ζ is the bulk viscosity coe�cient.
Formally, these transport coe�cients are given by the Kubo formulae through
correlation functions of the stress-energy tensor [313],

η = − i

20

∫
d3r dt t 〈Tij(0, 0)Tij(r, t)〉 , (5.11)

ζ = − i
2

∫
d3r dt t 〈δT (0, 0)δT (r, t)〉 , (5.12)

δT ≡ Tii − p− v2
s(T00 − 〈T00〉), (5.13)

where vs is the speed of sound. Naturally, the presence of viscosity produces
entropy, σ̇ ≡ ∂µσµ = ∂µσu

µ > 0.
The most signi�cant dissipative agency is usually the shear viscosity, which

seeks to reduce the shear stress and and thus counteracts the build-up of
elliptic �ow, for example. On the other hand, the spinodal phase separation
process, which is primarily a local condensation, is a�ected by both η and ζ,
σ̇ ∼ 4

3η + ζ; the viscosity suppresses the growth rates at large wave numbers
so that they approach a constant (but the region of instability is una�ected)
[314].

Refs. [315, 316] list a number of physical reasons why the stress-energy
tensor Tij (the spatial part of Tµν in the local rest frame) might depart from
its equilibrium form in rapidly expanding systems. They are brie�y as follows:

• Local kinetic distributions become anisotropic due to anisotropic �ows
which leads to the shear viscosity proportional to the mean free path.

• Interactions and correlations extending over a �nite range lead to transport
at �nite distances and contribute to both shear and bulk viscosities [317].

• Near Tc, mean �elds may �nd it di�cult to adjust to rapidly changing
equilibrium value, leading to peaks in the bulk viscosity near Tc [318].

• Chemical populations, especially for massive particles, fall out of equilib-
rium for rapidly expanding systems, resulting in fugacities. These e�ects
can be incorporated either by explicitly treating the unequilibrated popu-
lations as dynamical charges, or as a bulk viscosity.

• The system may not have relaxed from initial conditions. Most notably, at
early times the stress-energy tensor might be dominated by longitudinal
colour �elds [317, 319], which are characterised by large transverse compo-
nents of Tij and a small, perhaps even negative, longitudinal component.

The Navier-Stokes formulation is not free from conceptual di�culties. Be-
sides a violation of causality, its time locality causes modes of short wave
length to be unstable. In order to overcome these di�culties Israel and Stew-
art [320, 321] suggested a relaxation time concept, where the non-equilibrium



5.6 Hybrid models 623

part of Tij will relax towards the Navier-Stokes values. Thereby two micro-
scopically determined relaxation times govern the relaxation, both for the
trace part Tii responsible for the bulk viscosity and for the traceless part of
Tij governing the shear viscosity. The ansatz results from a linear response
derivation and ensures entropy growth.

The general di�culty for �uid dynamics to treat short spatial scales can
be largely remedied by employing an EoS having a �nite range [322]. In
particular, such a re�nement adds a quartic term in the collective dispersion
relation and thus ensures that the spinodal growth rate drops to zero at a
�nite wave number, as occurs for other substances. This has recently been
done by means of a gradient term in the energy functional [309, 314].

Viscosity has become a central issue in RHIC physics due to the success of
ideal �uid dynamics in reproducing the bulk part of the �ow, in particular the
observed v2, see Fig. 6.16. The so derived very low viscosity coined the notion
of a strongly coupled quark-gluon plasma (sQGP), c.f. Sect. 4.8 of Part I. An
important question is how large the viscosity can be without con�icting with
the data. Therefore viscous hydrodynamic approaches, in particular of the
Israel-Stewart type, have recently been applied to RHIC collisions [311, 323�
328]. Such approaches may also become useful for the description of the phase-
transition dynamics in the CBM energy regime, since it avoids the problems
associated with the change in degrees of freedom and the incorporation of
driving potentials that plague the kinetic transport models.

5.6 Hybrid models

Hybrid approaches [296, 329�338] are regarded as the state-of-the-art models
to describe the evolution of the nuclear collision dynamics. They combine
the advantages of transport approaches that are well suited to deal with the
non-equilibrium initial and �nal states, with those of an intermediate hy-
drodynamic evolution, where the equation of state(EoS) is an explicit input
and phase transitions can be treated properly. Although microscopic trans-
port approaches, cf. Sect. 3.5, provide the full space-time dynamics of all
particles, it is presently not clear how to describe the phase transition and
hadronization within such an approach.

In order to overcome the restrictions in each case, hybrid models gener-
ally schedule three dynamical stages: during the initial stage a microscopic
transport scheme carries the incidentally colliding nuclei towards a locally
equilibrated ��reball� that subsequently is followed by a hydrodynamic evo-
lution until the description is handed over to a �nal-state kinetic transport
description. While the �rst stage determines the initial conditions for the rel-
ativistic hydrodynamic equations of motion, the latter stage automatically
furnishes a continuous freeze-out processes, an important improvement com-
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pared to the else wise employed prescription of an instantaneous freeze-out
(see Sect. 5.8).

The hand shake between the subsequent schemes has to occur under well
matched conditions such that both schemes are still applicable and do agree
in their local macro dynamical properties. This implies that near local equilib-
rium conditions have to be met for the �rst conceptual transition. Moreover
the stochastic nature of the transport simulations generates initial conditions
for the hydrodynamic stage that �uctuate from event to event. The latter can
cause a signi�cant spread in the subsequent hydrodynamic evolution due to
the occurrence of dynamical instabilities, much as discussed in Sect. 5.4. The
�nal conceptual transfer back to a kinetic scheme has to occur well before
the hydrodynamic description ceases to be valid. As the macroscopic dynam-
ics does not resolve the internal composition of the medium, the resulting
abundances of the produced hadrons and composite nuclei have to be in-
ferred through a well tuned thermal model from the (local) hydrodynamic
�elds. The so obtained phase-space distributions of the hadrons are then sub-
sequently further propagated by the kinetic transport equations. The later
then includes rescattering and �nal state interactions like resonance decays
and provides a separation of chemical and kinetic freeze-out. The thereby
resulting long freeze-out durations, cf. Fig. 5.5 p. 631, are well in line with
the general freeze-out considerations presented in Sect. 5.8. They are seen
to even comply with HBT observations for the �radii� of the emitting source
[335, 339], for details see Sect. 5.9.

During the last years various hybrid models of the above kind have been
developed. E.g. for the NEXSpheRIO approach the initial stage is calculated
within the non-equilibrium model (NEXUS) [331, 340], Toneev et al. [341] use
the Quark-Gluon-String model (QGSM), cf. Sect. 3.5.11, while other groups,
e.g., Teaney et al. [342], Hirano et al. [332, 343], Bass/Nonaka [333], rely
on smooth Glauber or Color-Glass-Condensate initial conditions. The Frank-
furt group [338] uses the Ultra-relativistic Quantum Molecular Dynamics
(UrQMD) transport approach [232, 344, 345] for both kinetic regimes. The
latter model is applicable to the broad energy range from Elab = 2−160AGeV
and therefore covers well that of the planned CBM experiment at FAIR.

Compared to treatments solely throughout by kinetic transport, as e.g.
by UrQMD, such hybrid strategies provide a well pronounced sensitivity of
the transverse �ow on the hydrodynamic part of the evolution and its EoS
[336, 346�349]. Among others they further enhance the production of strange
particles (by about 20% for the CERN SPS experiments) and signi�cantly
increase the elliptic �ow towards collider energies [337] as indeed observed
at RHIC. The latter has suggested that the created matter behaves like a
perfect �uid, i.e. with very low viscosity, cf. the discussion in the context of
Fig. 6.16 on p. 659.

While preserving the feature of exploring di�erent equations of state, hy-
brid approaches also allow to constrain the initial and the �nal state pre-
scriptions, since, besides the impact of the EoS on the collision dynamics,
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the treatment of the initial-state �uctuations and the �nal decoupling are of
major importance for a sound interpretation of the experimental data.

5.7 Fluid dynamics inspired models

Already very early on the severe numerical complications associated with
solving the �uid-dynamical equations of motion motivated work towards the
development of simpli�ed approximation schemes. Though inspired by hy-
drodynamics, they mostly rely on geometrical simpli�cations for the overall
dynamics. Prominent examples in this respect are a) the spherical expansion
models and b) for the application to collider energies the boost invariant
scenario suggested by Bjorken [350]. For hadronic observables the details of
the expansion dynamics barely matter, since up to freeze-out the system is
relatively opaque for such probes, Sect. 5.8. Thus all that matters is the dis-
tribution of �ow velocities and temperatures at freeze-out. There are many
freeze-out studies in this respect, the blast wave model of Siemens and Ras-
mussen [351] assuming a spherical expansion is the earliest concept in this
context. We have devoted an entire section on these matters in Part I, Sect.
4.1 of this book. For penetrating probes such as photons or dileptons the
entire �reball evolution matters and one has to consider the corresponding
course of the reaction.

In the spherical expansion models one assumes a radial velocity pro�le.
Most prominent is the Hubble-like∗ scenario [352], where in a relativistic
formulation the collective four velocity u = γv of a �uid cell scales with the
radial distance from the origin, R, i.e. u = HR with Hubble constantH. Note
that u2 = 1 and for particles with mass M one has < p >≈M u. Assuming
a universal temperature T for the whole volume, then simply a description
of the �reball radius R(t) in its time evolution is required. This can either
suitably be parametrised or inferred self-consistently by the averaged �uid
dynamical equations of motion, i.e. by the conservation laws. For example,
the �avor-kinetic model [306] described in the preceding section 5.3.2 just
used such a simpli�cation in order to leave computationally room for the
complicated chemical rate equations.

For central collisions with extreme collision energies Bjorken [350] assumed
that the expansion transverse to the beam direction can be neglected. Thus
after collision of the extreme Lorentz contracted nuclei the system solely ex-
pands in longitudinal direction. The corresponding solution of the relativistic
hydrodynamical equations of motion then become very simple. They imply
boost invariance, which means the spatial rapidity η of a �uid cell at space-
time position x = (t, x, y, z) is identical to its local �ow rapidity y, i.e.

∗ Such a scaling expansion is analogous to the Hubble expansion of the universe.



626 5 Fluid dynamics

η(x) = y(x), where (5.14)

η(x) = 1
2 ln t+z

t−z
y(x) = 1

2 ln u0(x)+uz(x)
u0(x)−uz(x)

}
or

uz

u0
=
z

t
, (5.15)

and u(x) is the local four velocity. Boost invariance implies that �uid cells
viewed from their local rest frame look the same at same proper times τ =√
t2 − z2. Thus, a freeze-out condition posed at a characteristic freeze-out

temperature or energy density then de�nes a freeze-out hyperbola in the
z − t plane. In case of massless constituents the only scale in the system are
the proper time τ and the constant transverse area S leading to a volume
V = Sτ . Thus from entropy conservation and dimensional arguments entropy
density s(x) and temperature T have to scale like

s(x) ∝ T 3 ∝ S−2τ−1 for a gas of massless particles. (5.16)

The �rst proportionality coincides with the Stefan-Boltzmann law, while the
last proportionally results from entropy conservation applied to the locally
expanding �uid cell. With TV κ−1 the corresponding adiabatic index results
to κ = 4

3 . For mass dominated non-relativistic systems with particle density
ρ(x), on the other hand, one has

s(x) ∝ −ρ(x) ln(ρ(x)(MT )−3/2) ∝ S−2τ−1

T ∝ ρ(x)2/3 ∝ (S2τ)−2/3

}
(for M � T ), (5.17)

where the last relation results from also imposing particle number conserva-
tion, where ρ(x) ∝ S−2τ−1. Here the adiabatic index is κ = 5

3 .

5.8 Decoupling and freeze-out

Common to all �uid-dynamical approaches describing the expansion of the
collision system into a very dilute gas of non-interacting (i.e. freely moving)
particles is that the �uid-dynamical stage must be terminated by a decoupling
or freeze-out procedure. Although such procedures were originally applied to
high-energy physics already almost 50 years ago [353�355], there are still
open issues under active discussion. While intuitively clear and easily appli-
cable, the original method su�ered from violation of energy conservation. To
remedy the situation, Cooper and Frye [356] proposed a modi�ed procedure,
which complies with the conservation laws. The freeze-out then takes place
on a speci�ed freeze-out hypersurface. Depending on the character of its nor-
mal vector, the freeze-out hypersurface is either time-like or space-like. For
time-like hypersurfaces, which describe a freeze-out due to a global dilution
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of the system, the Cooper-Frye formulation complies with energy-momentum
and particle number conservation, i.e. ∂µ jµ = 0. For space-like hypersurfaces
which describe the emission from a spatial surface into vacuum (such as the
emission of photons from the sun), however, this recipe includes negative
contributions to the particle spectrum, the latter arising from particles mov-
ing inwards. Various further remedies were then discussed in the literature
[357�360] but all su�er from certain de�ciencies. Thus, the transition from
the highly collisional dynamics to the collision-free stage is still challenging.

There are two main problems with the instantaneous freeze-out formula-
tion (a recent discussion of this issue was given in Ref. [304]). First, such
decoupling processes are continuous and therefore proceed during a certain
time-span [308, 334, 361�364]. Second, the drain of particles and energy-
momentum of the frozen out matter is mostly not coupled back to the �uid
dynamic equations governing the matter in the interior[365]. Thereby the
freeze-out of a certain species occurs during (or after) its last interaction
with an other particle in the medium. This last interaction for example puts
particles which are o�-shell in the medium, e.g. due to collision broaden-
ing, asymptotically on-shell. Such processes involve certain space-time scales
which in the case of strong interactions are typically quite above a few fm/c,
as we shall see.

For strongly interacting probes one must account for the degradation of the
�ux of the particles on their way through the matter along with the de�ections
and accelerations due to the mean �eld of the source. In the following we fol-
low recent considerations by Knoll [308]. Similar consideration were given by
Sinyukov [364] within a gas-kinetic picture. Employing a �nal state Kadanof-
Baym formulation which leads to distorted wave techniques (c.f. [366]) to-
gether with semi-classical approximations [367] one arrives at a microscopic
derivation of the decoupling process [308, 368]. Besides a source term en-
coded in the corresponding current-current correlator it accounts for the �ux
degradation for the decoupled particles on their way out of the source. The
corresponding local o�-shell decoupling rates as a function of four-momentum
p then emerge as [308]

(2π)4
dNa(x, p)
d4pd4x

= Πgain
a (x, p)Aa(x, p) e−

R∞
t
dt′ Γa(x(t

′),p(t′)) (5.18)

with Aa(x, p) =
2p0Γa(x, p)

(p2 −m2
a − ReΠR

a (x, p))2 + (p0Γa(x, p))2
,

a formula that can rigorously be derived in the small-width limit, which sug-
gestively (but not yet proven) may also apply to cases with broader spectral
widths. Here the �rst two factors on the r.h.s. of the rate exactly comprise
the standard gain part of the four-phase-space collision term (3.26) of the
gradient expanded Kadano�-Baym equations (3.18). The corresponding loss
term is integrated out and compiled into the third factor which de�nes the
corresponding escape probability. For the latter the attenuation integral (or
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optical depth) in the exponent is to be integrated along the classical escape
path x(t′), p(t′) from the space-time source point x with momentum p. As a
central relation Eq. (5.18) generalises the instantaneous Cooper-Frye formula
to the continuous decoupling case. It also permits applications to the case of
particles with a broad spectral distribution A(x, p) such as resonances which
subsequently competitively decay e.g. into hadrons and dileptons [369]. The
special case of weakly interacting and thus penetrating probes (cf. Eq. (3.42))
is simply obtained from (5.18) in the limit of vanishing �nal state distor-
tions and thus entirely given by the correlation function Πgain

a , since then∫
t
dt′Γ (t′) = 0 together with A = 2πδ(p2 −m2) for on-shell particles.
As the escape probability involves the vision on the future, Eq. (5.18) is

a retrospective relations. However, given that the Γ (x, p) is already known
in its complete space-time evolution†, this relation precisely determines the
instant rates of all particles which from then can freely escape (except for
mean-�eld accelerations). This also includes those particles which decouple
strongly. The latter in�uence the �uid system due to the corresponding drains
in particle number and energy and a recoil momentum via the re-coupling
terms,

∂µj
µ
α,fluid(x) = −

∑
a

eaα

∫
d4p

dNa(x, p)
d4pdtd3x

, (5.19)

∂µT
µν
fluid = −

∑
a

∫
d4p pν

dNa(x, p)
d4pdtd3x

, (5.20)

in the corresponding �uid cells of the source given by the corresponding inte-
grals over the gain part of collision term. Here α denotes a conserved current
and eaα the corresponding charge of particle a. These coupling terms have the
same form as in the multi-�uid case (5.4) [304]. A complete treatment of the
decoupling rates (5.18) together with the �uid drain terms (5.19) provides an
overall conserving scheme. Such re-couplings, though unimportant for per-
turbative probes, lead to a gradual fading of the �uid phase upon creating
the freely streaming particle phase.

In thermal equilibrium the source function can directly be expressed as

Πgain
a (x, p) = fth(p0) ImΠR

a (x, p) = fth(p0) 2p0 Γa(x, p). (5.21)

This property leads to quite some important compensation e�ect. Namely for
large source extensions the Γ -dependent factors in (5.18) de�ne a visibility
probability Pt. It indeed integrates to unity along the classical paths leading
from a completely opaque interior to the outside

† This may require an iterative procedure between �uid dynamic evolution and the decou-
pling rates, in order to overcome the lacking vision into the future.
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∫ ∞

−∞
dt Γ (t) exp{−

∫∞
t
dt′Γ (t′)}︸ ︷︷ ︸

= Pt(t)

= 1. (5.22)

Thereby Pt(t) achieves its maximum at[
Γ̇ (t) + Γ 2(t)

]
tmax

= 0, with value Pt(tmax) ≈
1
e
Γ (tmax), (5.23)

the dot denoting the time derivative along the corresponding classical path.
The corresponding mean decoupling time approximately follows from the
normalisation to

∆tdec ≈
1

Pt(tmax)
≈ e
Γ (tmax)

. (5.24)

The importance of the above relations can be seen upon collecting all rates
along the bundle of classical trajectories leading to the detector with mea-
sured three momentum pA. The corresponding detector yield then becomes

(2π)4
dNa(pA)
d3pA

(5.25)

=
∫
d3σµ dx

µ︸ ︷︷ ︸
=d4x

dp0 2p0fth(p0)Γa(x, p)︸ ︷︷ ︸
≈Πgain

J Aa(x, p) e−
R∞
t
dt′ Γa(x

′,p)

=⇒
inst lim

∫
σCFP(p)

d3σµ 2pµ dp0J fth(p0) Aa(x, p) (5.26)

(Cooper-Frye-Planck)

Here J = (∂(pA(p, x))/∂(p))−1 de�nes the Jacobian of the mapping of
the local three-momentum to the detector momentum‡ due to de�ections
and accelerations induced by the real part of the optical potential (ReΠR).
The hypersurfaces σ in (5.25) may be de�ned through constant values of
Γa(x, p). Thereby p0dxµ = pµdt de�nes the local world line direction of
the path towards the detector with momentum pA. Further d3σµ denotes
the 3-dimensional surface element of the hypersurfaces encoded as a vector
�perpendicular� to the hypersurface such that the four-volume becomes the
covariant scalar product d4x = d3σµdx

µ.
In the opaque limit of the matter and as long as the matter properties such

as the temperature do not signi�cantly change across the decoupling process
this permits us to replace the continuous emission formulation (5.25) by an
instantaneous recipe. It provides an improved Cooper-Frye-Planck decoupling
rate (5.26) now corrected for the partial escape probability given by the

‡ With the understanding that J = 0, if the detector momentum cannot be reached from
that source point.
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Fig. 5.3 Decoupling probability Pt(t) as
a function of time for chemical and ther-
mal freeze-out for the schematic freeze-out
scenarios discussed in [308].
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Fig. 5.4 The resulting temperature pro-
�les PT (T ) for an adiabatically expanding
homogeneous �reball with adiabatic index
κ = 1.5 (full lines) and κ = 4/3 (dashed
lines).

optical depth. The latter leads to the momentum dependence of the emitting
hypersurface σCFP(p) in (5.26) [364], which for each observed momentum pA
can be determined from the space-time points of highest brilliance, c.f. Fig.
5.3, as given by (5.23) to[

pµ∂µΓ (x, p) + p0 Γ 2(x, p)
]
x∈σCFP(p)

= 0. (5.27)

Thus the simplistic assumption by Cooper-Frye and others [357�360] of an
overall freeze-out for all particles is physically not tenable§. Rather the decou-
pling happens only partially and individually for each particle as a function of
its momentum. Thereby the process has to be balanced by the corresponding
�uid loss rates (5.19) in order to preserve the over all conservation laws.

In Ref. [308] various consequences of the continuous decoupling formalism
(5.25) are discussed. As an illustration we consider the competition between
chemical and kinetic (thermal) freeze-out of slow particles escaping from a
spherically expanding uniform �reball. The emission is than essentially from
a time-like hypersurface. Both processes go with a di�erent pace as a function
of density and/or temperature during the expansion, since inelastic processes
drop much faster than the elastic scattering processes, the latter essentially
determining the kinetic rates.

For example a �reball evolution with a freeze-out radius of Rdec ≈ 6
fm and collective velocity Ṙdec = 0.5 fm/c leads to a decoupling peak at
tdec = 12 fm/c for both types of freeze-out. The damping widths at decou-
pling peak are as large as Γ chem

dec = Γ kin
dec = 0.5 c/fm ≈ 100 MeV. Coming

from complete opaqueness the damping rate varies by more than an order

§ Refs. [357�360] introduced a Θ function factor to correct for this de�ciency, though still
insisting on that all particles touching the freeze-out surface decouple. The enforcement of
conservation laws, however, then led to readjustments of the emission spectrum and thus
to deviations from Planck's radiation law limit.
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Fig. 5.5 Contour plots of the freeze-out points in transverse radius versus time (rt · τ ,
respectively x · t) for the emission of pions in RHIC events. Plots (a) and (b) taken from
[334] show freeze-out distributions for pion momenta at 300 and 600 MeV/c, respectively.
The r.h. �gure shows a corresponding scatter plot from [335, 339] for a pion momentum of
300 MeV/c. The dashed lines show two representative world lines leading to the detector.

of magnitude, namely by a factor e−e ≈ 1/15 between the onset and end of
decoupling (full width at half maximum (FWHM)). This is a robust result
(e.g. Γ [onset,peak, end] = [370, 100, 24] MeV for the cases of Fig. 5.3). Thus,
during their decoupling particles have damping width values that initially
are far beyond the values of their mean kinetic energies. During decoupling
the system's volume grows by more than a factor 5. The above statements
are generic and likewise, if properly scaled, apply to the microwave back-
ground radiation released during the early universe evolution. Depending on
the underlying EoS the thermodynamic properties of the matter can there-
fore signi�cantly change during the decoupling time window. E.g. the re-
sulting distributions in temperature PT (T ) = Pt(t)(dT (t)/dt)−1 as shown in
Fig. 5.4 for two normally behaved example EoS show signi�cant widths in
the resulting T distributions. Remarkable is further that although both time
distributions Pt peak at the same time, the slower decrease in kinetic rates
leads to a considerably downward shifted and much broader T distribution
for thermal freeze-out compared to that in the chemical freeze-out case.

The analytic considerations above are con�rmed by recent calculations
within mixed scenarios [334, 335], where an initial �uid dynamic phase is
su�ciently early converted to a kinetic transport scheme in order to provide
a continuous freeze-out process in the late phase. Recording the instants of
the last interaction of particles that reach the detector with certain momen-
tum maps out the corresponding freeze-out zone, Fig. 5.5. The plots show
the initial opaqueness of the collision zone's interior for rt, x < 8 fm and τ
or t below 5 fm/c. They nicely con�rm that the freeze-out zones depend on
the observed momentum. For a low momentum (a) the decoupling essentially
happens as a time-like transition, i.e. at large times for low rt values. With in-
creasing observed momentum the emission becomes more surface dominated
and develops strong space-time correlations. The latter are important in the
context of HBT, see Sect. 5.9.

From all considerations presented one expects quite a spread in decoupling
temperatures, unless there are processes that provide a su�cient release of
latent heat and therefore induce a much weaker drop in T during the decou-
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Fig. 5.7 Emission time and transverse
radius distributions at freeze-out of mid-
rapidity Ω− and protons for central Pb +
Pb collisions at 158 A GeV resulting from
RQMD calculations [377].

pling phase than with ordinary EoS. An example could be a phase transition
as e.g. presented in the �rst order phase transition scenario [305, 306] dis-
cussed in Sect. 5.3.2 Fig. 5.2. There the latent heat caused by the phase
conversion from the QCD plasma to the hadronic phase even leads to a stop
in temperature drop during the phase conversion. If the chemical decoupling
happens right after this phase transition this could lead to a sharp temper-
ature deduced from the observed abundances of the various hadrons created
at freeze-out.

Thermal �ts to hadron abundances observed in all kinds of nuclear collision
data were performed by many authors, cf. Part I Sect. 4.1 or Part IV Chapt. 2.
Such data found their place as �measured� freeze-out points in a T -µB phase
diagram, Fig. 4.1 in Part I p. 201 (µB is the baryon chemical potential)
[370�373]. Fits with a common (i.e. species-independent) temperature at each
collision energy determined the freeze-out temperature to a quite sharp value
of e.g. Tchem = 164 ± 5 MeV for RHIC and top SPS energies with excellent
χ2 values of 0.9. On the other hand, there is a recent analysis [374] of the
similar data which permitted Gaussian �uctuations in T and baryon chemical
potential µB . These authors arrived at improved �ts with a better χ2 at
temperature �uctuations even on the order of 50 MeV. While the authors
speculated on �uctuations due to the vicinity of a critical point in the phase
diagram, the more natural explanation may be a spread in temperatures
resulting from the �nite decoupling time.

Particles with similar or even identical masses but di�erent interactions
with the source are well suited for quantifying dynamical e�ects. The abun-
dances of the three charge states of the pion may serve to quantify Coulomb
e�ects (apart from a small violation in iso-spin symmetry). This covers most
of the clear two-slope behaviour e.g. seen in the π− spectra [378]. Still a
net steepening of the low-energy part of the spectrum even survives the
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Coulomb correction as visible in the π0 data [100], c.f. Fig. 3.4 in Sect. 3.3.5.
Probes interacting weakly with the environment essentially decouple rela-
tively early right after creation, while strongly interacting probes decouple
late with spread in decoupling times according to the above discussion. This
is nicely demonstrated for the weakly interacting K+ mesons at SIS energies
and the Ω− baryon at SPS energies compared to the strongly interacting K−

and protons, respectively, cf. Figs. 5.6 and 5.7.
The long freeze-out durations separate long-lived resonances that essen-

tially decay far outside from the short-lived ones decaying during decoupling.
As a result, kinematical �nger prints of very short lived resonances such as
the pions originating from the ∆33 resonance do not survive the relatively
long decoupling times. The physical origin of this is that pions emitted in
resonance have a short mean-free path, while pions emitted with energies
o� resonance have long mean-free paths. Thus the visible layers are di�erent
in depth such that the enhanced resonance production is essentially compen-
sated by the corresponding reduced mean free path. The net result ultimately
leads to Planck's law of black-body radiation in the opaque limit. Yet, as
shown in Sect. 3.3.5, such resonances do in�uence the corresponding optical
potential Uopt of the emitted particle, Fig. 3.3. In lowest order virial expan-
sion Uopt is determined by the corresponding scattering phase-shifts [93], c.f.
also Refs. [86, 97] for the π,N,∆ system. This implies rearrangements in the
level densities and this way to some enhancement of the pion spectrum above
the thermal yields towards low momenta, Fig. 3.4.

A microscopic formulation of the freeze-out process in the context of com-
posite particle production, such as deuterons, that goes beyond the naive coa-
lescence picture [379], was formulated by Remler [380] in the early 80ies. Fur-
ther conceptual improvements were later given by Danielewicz et al. [66, 368].
Thereby composite particles are dynamically formed by multi-particle pro-
cesses in compliance with the conservation laws.

5.9 Collision source imaging (HBT) and �nal-state
correlations

Imaging of objects is a daily experience. Exploiting the wave coherence the of
photon �eld the lenses of our eyes project the surrounding world on their reti-
nas. However there are objects, like distant stars, that cannot be resolved in
their extensions by standard optical devices such as telescopes. It was there-
fore a remarkable advance when, about �fty years ago, the two astronomers
Hanbury-Brown and Twiss (HBT) reported about a measurement of the size
of Sirius. They simply correlated the intensities of the �uctuating signals from
two photo-multipliers placed only a few meters apart, rather than seeking to
exploit phase coherence e�ects in the amplitudes, as is standard practice
in optics. The e�ect is straightforward within classical �eld dynamics and
known from radio astronomy, but was initially questioned to occur, if merely
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Fig. 5.8 Two classical propagation
paths (green or red) for the emission
of the two photons from the source
points (a) and (b) reaching the detec-
tors at places (A) and (B). Figure from
Wikipedia.

independent photon pairs were detected. Still, the quantum boson nature
demands the two-photon wave function to be symmetric with respect to the
interchange of the two photons. This leads to two options for the classical
propagation of the photon pair leading to an intensity interferometry pattern
known as the HBT e�ect, Fig. 5.8. A detailed compact historical review of
this �eld in the context of nuclear collision was given by T. Csög® [381], see
also S. Padula's review [382], while U.A. Wiedemann and H.U. Heinz detailed
the theory developments [383].

The intensity coincidence rate of two identical bosons/fermions with mass
m and asymptotic four-momenta pA and pB with p2

A = p2
B = m2 over the

product of the corresponding single rates is then given by the asymptotic
state two-body wave function over the uncorrelated single ones at the source
points∗

C(pA,pB) =

∣∣∣∣∣∣
〈
Ψ (�)

pApB (xa, xb)Ψ (+)†
pApB (ya, yb)

〉〈
Ψ (�)

pA(xa)Ψ
(+)†
pA (ya)Ψ

(�)
pB (xb)Ψ

(+)†
pB (yb)

〉
∣∣∣∣∣∣ (5.28)

−→
(nii)

1
2

∣∣∣〈eipA(ra−rA)eipB(rb−rB)

± eipB(ra−rB)eipA(rb−rA)
〉∣∣∣2

=
〈
1 ± cos((pA − pB)(ra − rb))

〉
, (5.29)

where ra = (xa + ya)/2, rb = (xb + yb)/2. The averages 〈 . . . 〉 are to be
understood as integrations over all source coordinates x, y or r in the sense as
explained below at Eq. (5.30) �. Thereby the coordinate di�erences ξ = x−y
determine the four-momentum distributions via the Wigner transformation
(3.13) de�ned in Sect. 3.3.1. Simpli�cation (5.29) results for the case of non-
interacting identical (nii) bosons/fermions. If the emission at both source
points happens statistically uncorrelated with a source distribution S(ra −
rb) in the relative distance of the two emission points, then the measured

∗ Eq. (5.28) is written for the nuclear collision case, where the source size, i.e. |ra,b|, is
extremely small compared to the distance between the detector positions |rA|, |rB |. Thus
the latter de�ne the direction of the measured momenta pA,pB ; in astrophysics the situ-
ation is reverse: there the stellar positions de�ne the directions of measured momenta, i.e.
pa,pb and the measurement done with respect to the separation distance of the detectors
determines the distributions of the di�erence in transverse momenta, which, knowing the
distance of the star, determines its size.
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correlation function C(pA − pB) is given by the Fourier transformation of
the source distribution S. Thereby the absolute position of the source cannot
be determined. In compliance with the bosonic (fermionic) nature and the
uncertainty principle the correlation function shows an enhancement beyond
(depletion below) unity for momentum di�erences |pA − pB | < 1/R, where
R is the source radius, ideally reaching a value of two (zero) at vanishing
momentum di�erence.

Independently of the �rst HBT observation Goldhaber et al. [384] found
related correlations in high energy experiments in observing pairs of equally
charged pions in coincidence a few years later. With the advent of high-
energy nuclear collisions this method then became a tool to directly measure
the size of the collision zone[385, 386], thereby extending the method also to
fermions. Besides the measurement of the transverse extension of the source,
encoded in two transverse �radii�, also interferometry with momentum di�er-
ences q = pA − pB parallel to the mean pair momentum K = 1

2 (pA + pB)
can be observed. The latter is sensitive to both, the parallel extension of the
source and its life time. In nuclear collision one orients oneself with respect
to the beam direction and de�nes Rlong as longitudinal to the beam and two
perpendicular radii Rout lying in the plane of K and the beam direction, and
�nally Rside perpendicular to this plane [387]. One then generally does the
analysis in a co-moving longitudinal frame where K is perpendicular to the
beam direction such that for the case q ‖ K simultaneously Rout and the
life-time of the source are measured , c.f. Eq. (5.38) below.

While a two-photon coincidence [388] would map out the entire nuclear
collision zone during its entire life time, the observation of strongly interacting
probes limits the observation to the corresponding freeze-out zone. Further-
more, �nal-state interaction (FSI) between the observed particles distorts the
imaging. In particular the long-range Coulomb force has a major e�ect on the
correlation pattern, suppressing coincidence yields at low relative momenta.
Due to correlations imposed by FSI, even pairs of non-identical particles could
be used. In contrast to astrophysical HBT observation, in nuclear collisions
also signi�cant space-momentum correlations can build up before freeze-out,
e.g. due to collective �ow as �rst discussed by Pratt[386]. In such cases the

C(pA,pB)

small |K|

large |K|

|q| = |PA −PB |

Fig. 5.9 HBT correlation from
a collectively expanding source.
For low pair momenta |PAB |
one approximately recovers the
source size, while for large pair
momenta only a smaller source
region is explored by the inter-
ferometry. Figure from [386].



636 5 Fluid dynamics

interferometry is not able to map out the entire collision zone but rather
extracts source radii that are generally smaller than the true �reball size,
c.f. Fig. 5.9. Furthermore life-time e�ects of resonances that decay into the
observed particles can signi�cantly blur the interferometry of the source[389].
In particular, the decay of long lived resonances creates an additional halo
source which cannot be resolved by the detector resolutions and thus causes
the experimentally measured values of C to show a smaller interferometry
correlation (parametrised by a parameter λ < 1) than ideally expected. For
recent reviews see also [383, 390].

By straightforward generalisation of the microscopic de�nition of the
single-particle sources (3.9), the two-particle source is now given by the gain
component of a double current-current correlation function of the two ob-
served particles a and b[383]

S(xa, ya;xb, yb) =
〈
Ja(x−a )J†a(y

+
a )Jb(x−b )J†b (y

+
b )
〉
, where again

Ja(x) =
δ

δφ†a(x)
Lint(φ) (5.30)

with four-coordinates xa, etc. The coincidence signal of (5.28) then becomes

I(pA,pB) = (5.31)∫
d4xa d

4ya d
4xb d

4yb S(xa, ya;xb, yb)Ψ (�)

pApB (xa, xb)Ψ (�)†
pApB (ya, yb).

In order to view only the freeze-out zone, the wave function must account for
appropriate damping along the path from the source points to the detectors.
Such concepts were �rst introduced in the context of pion interferometry by
Gyulassy, Kau�mann and Wilson [391] and they were recently reformulated
and applied to RHIC data by Miller and Cramer [392]. Details that also
include the account of FSI will be discussed below.

Under the standard assumption of independent emissions along with that
of a smooth momentum dependence the Wigner transformed two-particle
source then simply factorises to

〈Na〉 〈Nb〉
〈NaNb〉

S(ra, pa; rb, pb) ≈ Sa(ra, pa)Sb(rb, pb)

≈ Sa(ra,K)Sb(rb,K), (5.32)

where Sa(r, p) = Πgain
a (r, p), etc.

The Na and Nb are the corresponding number operators.† Here and in the
following we use standard HBT notations

K =
1
2
(pA + pB), q = pA − pB (5.33)

† For Poisson distributions of identical particles we have 〈N2〉 = 〈N〉 (〈N〉 − 1).
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for the mean momentum and momentum di�erence, respectively (the latter
not to be confused with the relative momentum). Without any distortion for
the outgoing waves one simply recovers the result for penetrating probes, cf.
Ref. [383],

C(pA, pB)

=
[∫

d4rad
4rb (1± cos q(ra − rb))Sa(ra, pA) Sb(rb, pB)∫

d4rad4rbSa(ra, pA) Sb(rb, pB)

]
p2a=p

2
B=m2

(5.34)

≈ 1 +

[ ∣∣∫ d4r eiqr S(r,K)
∣∣2∫

d4raSa(ra, pA)
∫
d4rbSb(rb, pB)

]
p2A=p2B=m2

for |K|�|q|, (5.35)

for the source integrated correlation function C. This pocket formula (5.35)
assumes the smooth momentum dependence which at least requires |K| �
|q| ≈ 1/R, where R is the typical space-time extension of the source. Al-
though in the strict sense only valid for penetrating probes, i.e. particles
with a mean free paths large compared to the source size, this relation was
frequently used also for the HBT data analysis of strongly interacting par-
ticles such as pions. Thereby one relaxes the original de�nitions (5.30) and
(5.32) of the source distribution S towards an e�ective or visible source as to
e.g. e�ectively include the escape probability (5.25) discussed in the context
of continuous freeze-out

Seff(r,K) = Πgain(r,K)e−χ(r,K) with χ(r,K) =
∫ ∞

t

dt′Γ (t′). (5.36)

The data are normally analysed by a parametrisation of Seff , most commonly
taken as a Gaussian shape in space-time [383],

Seff(r,K) ∝ exp
(
− 1

2r
µrν((B(K))−1)µν

)
. (5.37)

This leads to a Gaussian form also for the correlated yield ratio,

C(pA, pB) = 1± exp
(
− 1

2q
µqνB(K)µν

)
, (5.38)

with the on-shell constraints
{

q0 =
√

p 2
A +m2 −

√
p 2
B +m2

2Kq = p2
A − p2

B = 0
.

Here time and spatial variances mix due to the on-shell constraint. Thereby
the symmetric tensor B(K) speci�es the space-time covariance of the source,

B(K)µν = 〈r̃µr̃ν〉 with r̃µ = rµ − 〈rµ〉 , (5.39)

where the average 〈. . . 〉 is understood to be taken with respect to Seff(r,K).
Besides the damping e�ects inherent in (5.36), cf. Fig. 5.5, the K depen-
dence can also arise from collective-�ow e�ects as illustrated in Fig. 5.9, c.f.
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Sects. 5.7 and 6.4. One commonly then condenses the information into three
orthogonal �radii� [387]

R2
out ≈

〈
(x̃− vxt̃)2

〉
, R2

side ≈
〈
ỹ2
〉
, R2

long ≈
〈
z̃2
〉
. (5.40)

With q ⊥ K one explores the two radii, Rlong and Rside, which are perpen-
dicular to the mean pair momentum K, while for q ‖ K one simultaneously
measures a combination of the depth of the visible layer and the lifetime of
the source. Thus, the disentanglement of the emission time of the source from
its spatial out extension requires additional information. Sometimes one sees
the recipe〈

v2
xτ

2
〉
≈ R2

out −R2
side (valid solely for penetrating probes) (5.41)

being applied to extract the source's life time τ . This relation ignores any type
of correlations. It therefore holds only under very severe restrictions‡, such
that it essentially never applies to strongly interaction probes, such as pions.
For example the events shown in the r.h. plot of Fig. 5.5 [335] are compatible
with the ratio Rout/Rside ' 1.0− 1.2 observed at RHIC despite the fact that
the freeze-out duration is above 10 fm/c. This shows that relation (5.41) is
inapplicable in realistic cases. The origin are strong positive x, t correlations,
in part resulting from a kind of Hubble �ow [381], which through (5.40)
reduce the value of Rout despite the long freeze-out duration. Findings of
these kinds resolve the so called RHIC HBT puzzle [382, 393] which arose
from earlier UrQMD, blast-wave hydrodynamic and many other dynamical
model calculations (more than �fty), which throughout predicted Rout/Rside

values far beyond unity.
The e�ective source function (5.36) entering the plane wave result (5.35)

may in fact become quite distorted for strongly interacting probes, such as
pions or nucleons. In this case a couple of further e�ects appear which in
their totality cannot exactly be accounted for, as it ultimately would amount
to solve a three-body problem for the �nal-state wave functions in (5.31).
Rather some further simpli�cations are required. The relevant e�ects for the
HBT observation are:

• only the outer layer of the source is probed, its depth being determined
by the last scattering experienced by the observed probe;

• the emitted particles feel the mean �eld of the source, such as the Coulomb
�eld; and

• generally there is also a mutual interaction between the pair of emitted
particles due to the mutual strong and Coulomb forces.

In transport simulations point (a) can easily be accommodated by sam-
pling the corresponding last collisional interaction points of the observed

‡ It requires: (a) penetrating probes that have an undistorted view of the entire collision
zone , (b)Kx � 1/Rout as well as (c) no space-momentum and no space-time correlations.
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probes, cf. Fig. 5.5. Otherwise one can exploit the semi-classical approach
discussed in Sect. 5.8 [308, 368], and use the path integrated attenuation fac-
tors e−

R
t
dt′Γ (x′) included in Seff , Eq. (5.36). Thereby Jacobian e�ects from

the mapping of the local momenta to the detector momenta cancel out in the
correlation ratio C(pA,pB). As a result the free correlation ratio (5.35) can
simply be used with the Fourier integrals replaced by∫

d4reiqrSeff(r,K) ≈
∫
d4rΠgain(r,K) eiqre−χ(r,K).

≈ 2iK0

∫
d4rfth(K0)Γ (r,K) eiqre−χ(r,K). (5.42)

In the last line local thermal equilibrium is assumed. Thereby the detector
momenta are replaced by the local momenta to take account of the real part of
the optical potential. This procedure ensures that only particles out of a layer
of one mean free path depth contribute to the intensity interferometry. It is
through the attenuation factor that strong space-time correlations, as seen in
Fig. 5.5, build up beyond those possibly inherent in the source distribution
Πgain. For instance in central collisions the original source distribution Πgain

is cylindrically symmetric around the beam (long) axis. If both detectors
watch the events from one side, this symmetry is broken for Seff due to the
attenuation factors. It implies that the visible space extensions in side and
out direction may signi�cantly di�er. The expression (5.42) again clari�es the
detailed balance relation between the source function given by the damping
rate Γ times the thermal occupations and the attenuation rate along the
escape paths also given by Γ leading to similar compensation e�ects as in
the single particle yields.

Returning to the optical potential problem, for probes that escape faster
than the �reball expands also the central Coulomb boost of the �reball can
simply be accounted for by a corresponding rescaling of the asymptotic mo-
menta to the local ones at the source points [391] (de�ections are generally
negligible and possible Jacobian determinant e�ects of this momentum map-
ping cancel out in the ratio (5.34)§).

The mutual interaction (c) between the interferometric partners must be
evaluated wave mechanically in terms of the relative scattering two-body
wave function Ξ(�)

qrel
(r). With these preparations, a still easily tractable two-

body wave function can be obtained by a separation into a centre-of-mass
motion with coordinate R(t) and a relative wave function

Ψ (�)

pApB (ra, rb) ∝ eiPRe−i(ϕa(t)+ϕb(t))Ξ(�)

qrel
(r)) where (5.43)

r = ra − rb R = (mbra +marb)/(ma +mb)
P = pa + pb qrel = (mbpA −mapB)/(ma +mb).

§ In case of slow probes the account of the Coulomb boost is intractable unless one has a
full many-body evolution for the expanding system.
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It feels the mean �elds of the central �reball in terms of the action phases
ϕa and ϕb to be integrated along the path of the centre-of-mass coordinate
R(t), which implies that polarisation e�ects due to the central mean �eld
are ignored. The relative wave function Ξ(�)

qrel
(r) is then simply determined

by the corresponding two-body potential acting between the two observed
particles.



Chapter 6

Characteristic results

In this Chapter we present further characteristic results obtained by the ap-
plication of dynamical transport models to nuclear collisions in the CBM
energy range, concentrating on the description of physical phenomena during
the collision process, such as compression and �ow e�ects. A detailed dis-
cussion in the contex of experimental observables will be given in the review
section of Part IV.

6.1 Gross characteristics of nucleus�nucleus collisions

We �rst elucidate the physical characteristics of the �matter� produced in
nuclear collisions in the FAIR energy range. For simplicity, we consider head-
on collisions of two heavy (gold) nuclei and then monitor the central region
of the collision system where the most extreme conditions occur. We shall
focus on the net baryon density, ρ(t) ≡ ρB(t)− ρB̄(t), and the (total) energy
density, ε(t). When expressed in the CM frame of the symmetric collision
system, these quantities are particularly simple to extract since there is nei-
ther any time dilation nor any collective �ow involved. Furthermore, both ρ
and ε have well-de�ned values at all times and, in particular, their extraction
does not rely on any assumptions regarding the degree of local equilibration
achieved. This is one advantage of considering these particular observables
for the present study.

In each speci�c transport model, it may be possible to also extract local
thermodynamic quantities, such as temperature T , baryon chemical potential
µ, and entropy density σ, but although most extraction methods can be cast
in su�ciently general terms to make them applicable also to non-equilibrium
scenarios, these quantities have physical meaning only in equilibrium. Fur-
thermore, importantly, even if equilibrium is reached, identical values of ρ
and ε will generally lead to di�erent values for the thermodynamic quantities

641
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from one model to the other, due to the di�erence in the degrees of freedom
treated.

By contrast, ρ and ε are inherently more robust variables since they are
subject to local conservation laws. For example, in �uid dynamics the conser-
vation of four-momentum is expressed as ∂µTµν = 0, while the conservation
of baryon charge is expressed by the continuity equation ∂µjµ = 0. Since the
various transport models generally abide by these basic conservation laws,
they will have a tendency to yield similar results for the corresponding quan-
tities. By asking about the behavior of such conserved observables we may
therefore expect to obtain relatively robust answers. [Of course, for the pur-
pose of discriminating between models (which is not our purpose here), it
would be better to consider observables that are more sensitive to the spe-
ci�c model ingredients.]

A special advantage of employing ρ and ε rather than µ and T for the
present purposes is that these act as order parameters in the sense that the
equation of state, i.e. the local pressure p, is always a single-valued function
of ρ and ε but not always of µ and T . Indeed, precisely when a �rst-order
phase transition is present, the bulk pressure (i.e. the pressure in a spatially
uniform system) is multi-valued throughout the region of phase coexistence
when viewed as a function of the thermodynamic variables, cf. the discussion
in Part I of the book dealing with the properties of the equation of state (EoS).
This fundamental feature of �rst-order phase transitions has the consequence
that the entire region of phase coexistence is invisible on a µ-T phase diagram
(it is "folded under", so to speak), and the corresponding representation of
the phase trajectory, (µ(t), T (t)), would exhibit a rather complex zig-zag
behavior as the phase point moves through the phase-transition region. This
problem is not encountered in the (ρ(t), ε(t)) representation, where the phase
trajectory has a regular behavior throughout, making it straightforward, for
example, to judge how long time will be spent in the spinodal region.

In order to get an impression of the spread in predictions, we present
results from a variety of existing dynamical models that have had consider-
able success in accounting for a variety of existing experimental collision data:
Three-Fluid Hydrodynamics (3-�uid) (Sect. 5.3.1), Parton-Hadron String Dy-
namics (PHSD) (Sect. 3.5.10), Ultrarelativistic Quantum Molecular Dynam-
ics (UrQMD) (Sect. 4.1.3), the Quark-Gluon String Model (QGSM) (Sect.
3.5.11), and the Gieÿen Boltzmann-Ühling-Uhlenbeck model (GiBUU) (Sect.
3.5.4). For each of these models, the dynamical evolution of head-on gold-gold
collisions was calculated and the values of ρ and ε at the center-of mass were
extracted at consecutive points in time, t. (A report on this study was given
in Ref. [2].) In the analysis of the results it should be kept in mind that the
early part of the collision generally has a strong non-equilibrium character
and the local conditions are more reminiscent of two interstreaming nuclei
than of compressed matter in thermal equilibrium.
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Let us �rst consider how the central net baryon density evolves in the
course of a collision. This is illustrated in Fig. 6.1, where ρ(t) is shown for
four di�erent bombarding energies: 5, 10, 20, 40 MeV/A.

In all cases, the density exhibits a relatively rapid increase followed by a
slower decrease. As the collision energy is increased, the maximum compres-
sion achieved increases steadily as the characteristic time scale decreases.
However, for a given energy, there is a signi�cant spread in the calculated
curves, amounting to a di�erence of roughly 0.5 fm−3 ≈ 3ρ0 between the
lowest and the highest peak values. At all energies the smallest peak value
is obtained with PHSD, while the largest peak compressions are obtained
with QGSM at the lower end and with UrQMD and the 3-�uid model at
the highest energy. The origin of the double-bump structure of ρ(t) obtained
with some of the models (3-�uid, PHSD, and GiBUU) is not yet clear and
is under current investigation. On the basis of these results, we may expect
that densities in excess of 1.0 fm−3 (corresponding to compressions ρ/ρ0 of
about 6) are maintained for about 5 fm/c at 5AMeV, while �fty per cent
higher compressions are maintained for about half that time at 20AMeV.

Fig. 6.1 The net baryon density ρ(t) at the center of a head-on Au+Au collision for
various bombarding energies as obtained with the dynamical models used in Ref. [2]. The
symbols on the UrQMD and QGSM curves are separated by the indicated time intervals
of ∆t = 1 fm/c. Densities and time are with respect to the c.m. frame.
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It should be noted that most of these models have yielded overall good
reproduction of a variety of existing experimental data. More details about
this study can be found in Ref. [2].

The dynamical evolution of the energy density, ε(t), largely follows the
evolution of the baryon density, ρ(t). Apart from binding e�ects, which are
negligible in the present context, the energy density must always exceed the
minimum amount dictated by the prevailing net baryon density, i.e. we have
ε ≥ mNρ, where mN is the nucleon mass. Therefore, it may be more in-
structive to consider the excitation energy density ε∗ ≡ ε − mNρ. Part of
ε∗ is due to compression, while the rest is available for particle production
and motion. (While it might be preferable to also subtract the compressional
energy, ε∗T=0(ρ), this quantity is not yet well under control theoretically and
rather the objective of these investigations.)

Figure 6.2 shows ε∗(t) for the scenarios considered in Fig. 6.1. These curves
are qualitatively similar to those for ρ(t), but while the lowest curves are
again obtained with PHSD, UrQMD yields the highest at all energies. As
was the case for the densities, there is a signi�cant spread in the degrees
of excitation achieved at a given collision energy, increasing from several
hundred MeV/fm3 at 5 AGeV to well over 1 GeV/fm3 at 40 AGeV. Roughly,

Fig. 6.2 The excitation energy ε∗ ≡ ε−mNρ at the center of a head-on Au+Au collision
for various bombarding energies as obtained with the same set of models under the same
conditions as used in Fig. 6.1.
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Fig. 6.3 The phase trajectories (ρ(t), ε(t)) of the environments at the center of a head-on
Au+Au collision for various bombarding energies as obtained by combining the results
in Figs. 6.1 and 6.2 (see Ref. [2]). The trajectories turn in a clockwise sense and the
symbols on the UrQMD and QGSM curves are separated by steps of 1 fm/c. The phase
points corresponding to idealized early interstreaming are indicated by the solid dots, while
post-freezeout free streaming occurs in the yellow zone. The dashed curves trace out the
coexisting phase points which come together at the critical point; this phase boundary is
schematic and serves primarily as a reference.

values of ε∗ > 800 MeV/fm3 are maintained for about 5 fm/c at 5 AGeV,
while ε∗ > 1.8 GeV/fm3 is maintained for about 4 fm/c at 20 AGeV.

In order to ascertain the prospects towards probing the phase structure
of hot and dense matter by high-energy nuclear collisions, it is important to
determine which parts of the corresponding ρ - ε phase diagram were visited
during the dynamical evolutions. The resulting dynamical trajectories are
shown in Fig. 6.3.

First one notes a remarkable degree of agreement between the results of
the di�erent models. The most notable exception are the QGSM expansion
paths which come out signi�cantly lower in excitation energy than those of the
other models. Furthermore, the UrQMD entry trajectories di�er signi�cantly
from the overall trend but, although this behavior is not quite understood,
this anomaly is probably less important because the system is still far away
from equilibrium during this early stage.
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At early times, when the density is rapidly increasing, the di�erent mod-
els (apart from UrQMD) yield nearly identical phase trajectories. Further-
more, this common path goes through the point corresponding to the ideal-
ized interstreaming of the two Lorentz-contracted nuclei. The latter picture
would yield ρ = 2γcmρ0 (in the CM frame) with the CM Lorentz factor
γcm =

√
1 + EB/2mN , where EB is the beam kinetic energy per nucleon for

a stationary target. In the CM frame the energy per baryon is γcmmN , so
the energy density is ε = γcmmNρi = 2γ2

cmmNρ0 = (2mN + EB)ρ0.
For the lowest beam energies the attained degree of compression and agita-

tion does not su�ce to explore the phase coexistence region and thus possible
signals of a phase transition. However, due to their relative slowness, these
collisions may achieve of high degree of local equilibration and therefore may
well provide quantitative information on the equation of state at the cor-
respondingly moderate compressions. The precise �subcoexistence� range of
collision energies is naturally determined by the so far relatively unknown
EoS. With the reference phase boundaries employed in Ref. [2] this subcoex-
istence range extends up to beam energies of 5 AGeV or so.

Above those subcoexistence energies follows a range (approximately 5 −
10 AGeV for the reference boundary adopted in Ref. [2]), across which the
highest degree of compression occurs within the region of phase coexistence.
As the beam energy is increased across this range, the turning point of the
phase trajectory traverses the coexistence region, starting at the hadronic
phase coexistence boundary and ending at the plasma boundary. Though
somewhat more violent, for these trajectories the matter is generally expected
to still attain a high degree of local equilibration. Furthermore, importantly,
they spend the longest period of time within the phase coexistence region.
Therefore, this energy range appears to be especially well suited for generat-
ing signals of the phase transition.

As the collision energy is increased further, the turning points of the phase
trajectories move further inside the plasma region and, at the same time,
the expansion path steepens. The time spent crossing the phase coexistence
region then decreases, both in absolute terms and relative to the overall
expansion time, so one would expect any phase-transition signals to gradually
subside.

Ultimately, beyond a certain critical collision energy (for which the expan-
sion path passes straight through the critical point), the phase trajectories
no longer enter the coexistence region but pass entirely to the left of the
critical point. Though interesting in its own right, this super-critical region
of collision energy would not be expected to elucidate the character of the
decon�nement phase transformation at su�ciently high baryon density, i.e.
to clarify whether there is in fact a �rst-order transition.

Finally, we wish to emphasise that none of the dynamical models em-
ployed (except possibly PHSD) incorporate a �rst-order phase transition.
They would therefore not be suited, in their present form, for studying ac-
tual dynamical consequences of a phase transition. However, the presence of
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such a phase transition is not expected to have an overwhelming e�ect on the
gross dynamics, primarily due to the predominance of the overall expansion.
[This expectation is supported by comparisons between HSD (which does not
contain a partonic phase) and PHSD (which does have a partonic phase) in
the energy range considered here.] Therefore, it must also be expected that
the e�ects of a phase transition would be relatively subtle and might best be
studied with carefully designed correlation observables.

6.2 Benchmarks

This section further investigates the consistency among the various models.
Di�erences result from di�erent physical inputs, such as the chosen elemen-
tary cross sections employed or the included set of hadronic resonances, since
these are not su�ciently constrained by experimental data. In particular for
resonances one mostly relies on model-dependent assumptions.

For the calculation of more global observables, such as e.g. rapidity dis-
tributions, one expects minor di�erences between the employed types of the
model, be it one-body, many-body, or �uid dynamics. As the simulation codes
are complicated and often based on di�erent numerical and methodical so-
lution techniques, the physical results are somewhat sensitive to such tech-
nical issues. Therefore it is necessary to carefully assess (and attempt to
reduce) such uncertainties. This was the major goal of two workshops held
in Trento 2001 and 2003, where most transport practitioners working in the
Bevalac/SIS and AGS energy range met. In a �rst round of home works the
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default versions of the codes were compared. Further speci�cations were then
suggested for a detailed comparison in the SIS energy range. The results
of the second round were published in Ref. [394]. As an illustration, Fig. 6.4
shows the result of the benchmark test for pion production in central Au+Au
collisions at 0.96 and 1.48 AGeV and Ni+Ni reactions at 1.93 AGeV.

For this comparison a nuclear mean �eld corresponding to a soft EoS
(K ∼200 MeV) was applied together with a constant ∆ width, Γ∆ = 120
MeV, in most models, corresponding to a constant lifetime τ∆ = 1/Γ∆.
Though unphysical and not used in the default versions of the codes, such
a constant resonance life time simpli�es the comparison of the pion yields.
Overall agreement in the predictions on the pion rapidity distributions was
obtained for beam energies around 1 AGeV, while discrepancies appeared
towards higher energies. The latter partially results from di�erences in the
number of included resonances: for this test only the ∆(1232) and N∗(1440)
resonances were included in RQMD and IQMD, while the Giessen HSD addi-
tionally considered the N∗(1535) and GiBUU even higher-lying resonances.
However, the GiBUU calculations were performed with medium-dependent
NN ↔ NR and NN ↔ NNπ cross sections which led to a reduction for
the corresponding pion yields. Figure 6.5 shows a corresponding model com-
parison at 40AGeV for the rapidity distributions of protons and produced
hadrons (π±, K± and p̄) in central Pb+Pb reactions. Predictions from vari-
ous transport models (AMPT, HSD, UrQMD) and the three-�uid model [299]
are compared.
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6.3 Mean-�eld dynamics

Before discussing further dynamical e�ects of nuclear collisions, we wish to
spend a few words on the dynamics of �nite nuclei. The motivation in doing
so is to recall that semi-classical approaches, such as the Boltzmann or Vlasov
equations, are able to describe basic features of collective nuclear dynamics
with high precision. For non-relativistic models it was found that the results
from the Vlasov equation coincide with the results from the corresponding
quantum mechanical calculations, i.e. time-dependent Hartree-Fock (TDHF)
to quite some acceptable accuracy [395].

Prototype examples are giant resonances in nuclear stucture. They are
successfully described in terms of the Random Phase Approximation (RPA),
which is the small amplitude limit of TDHF. Thus the RPA and TDHF ap-
proaches also include shell e�ects. If only the average features are of interest,
then semi-classical treatments based on the Vlasov equation may be be ap-
plied, providing an accurate treatment of the nuclear mean �eld, including
Coulomb and isospin e�ects. After proper initialisation the system will oscil-
late and the associated frequency then depends on the compression modulus
implied by the mean �eld. In Fig. 6.6 the result of a recent relativistic RBUU
transport calculation [396] for the Isoscalar Giant Monopole Resonance (IS-
GMR) in 208Pb is shown. The resulting peak at 13.4MeV agrees well with the
experimental observation at E = 13.7 ± 0.3MeV and state-of-the-art time-
dependent relativistic mean �eld (TDRMF) calculations [397]. Such calcu-
lations demonstrate that for one-body observables semi-classical approaches
reach accuracies comparable those of the corresponding quantum mechanical
calculations. In most applications, though, the e�ective �eld is not microscop-
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obtained within a RBUU transport calculation for di�erent parametrization of the nuclear
mean �eld (from top to bottom). Right: density oscillations as a function of time; left:
position of the ISGMR after Fourier transformation. From Ref. [396].
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ically derived but approximated by a density-dependent functional, such as
the Skyrme potential (or Walecka-type models in the relativistic Dirac case).

The importance of the mean-�eld e�ects depends on the energy range con-
sidered. At low energies, where binary collisions are largely Pauli blocked, the
reaction dynamics is dominantly driven by the real part of the mean �eld [or
the self-energy ReΣR e.g. in (3.24)]. Models designed for low and intermedi-
ate relativistic energies generally contain more sophisticated treatments of the
mean �eld than those designed for the ultra-relativistic regime. Appropriate
microscopic Brueckner-Hartree-Fock (BHF) and relativistic Dirac-Brueckner-
Hartree-Fock (DBHF) calculations were presented in Refs. [398, 399] and
[400�403], respectively. To perform such Brueckner calculations for arbitrary
non-equilibrium con�gurations, as they occur in nuclear reactions, is presently
out of reach. One possible option is to use the BHF/DBHF results for in�-
nite nuclear matter in a local density approximation (LDA). Attempts to go
beyond the LDA and to incorporate non-equilibrium features on the level of
the e�ective interaction were reported in Refs. [404, 405]. Since, however, the
density and momentum dependence of the G-matrix is rather complex, most
transport models use simpler e�ective interactions, such as Skyrme forces
[213] or parametrisations of the non-linear Walecka model, Quantum Hadron
Dynamics [406, 407].

At intermediate and relativistic energies, from Bevalac/SIS up to AGS
energies, the mean �eld still plays a dominant (or at least an important) role.
As the collision energy is further raised, the reaction dynamics is ever more
dominated by direct collisions as well as particle production and absorption.
Empirical studies, based e.g. on HSD or UrQMD models, suggest that the
nuclear mean �eld becomes unimportant above about 10 AGeV laboratory
energy, at least for the description of the �ow data. As a consequence, many
transport models are run in their cascade modes when applied to top AGS
or SPS energies. Except for the PHSD approach most models speci�cally
designed for ultra-relativistic energies do not contain a mean �eld at all.
Likewise hadron production through string excitations is generally based on
vacuum hadron masses, such that mass shifts arising through the presence
of mean �elds are usually ignored. Empirically this treatment is justi�ed by
the fact the particle yields are generally well described by statistical freeze-
out models, c.f. the decoupling discussion in Sect. 5.8 and the model results
presented in Part I, Sect.4.1.

6.4 Collective �ow

Since the early days of relativistic nuclear collisions the occurrence of �ow
phenomena was in the minds of the physicists as a tool for probing the nu-
clear equation of state (EoS). Anticipating a true hydrodynamic behavior,
investigators expected the production of shock fronts that would cause the
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Fig. 6.7 Mean kinetic energies of fragments
of di�erent mass emitted from in a central
Au+Au collisions at 250AMeV. Lines show
blast wave calculations with di�erent velocity
pro�les. Figure and data extracted from [412].

matter to be ejected in speci�c directions [269, 408]. These expectations were
later qualitatively con�rmed by transport calculations that include mean �eld
potentials [409�411]. More modest ideas considered a radial emission of the
matter in form of a blast wave due to the high compression zone formed
in the centre [351]. This idea found its beautiful con�rmation in the mass
dependence of the mean kinetic energies 〈Ekin〉 of the emitted particles ob-
served in central gold-gold collisions at SIS energies by the FOPI collaboration
[378, 412]. Overlaying the random thermal motion of temperature T with a
collective radial �ow vflow ∼ r leads to a linear dependence of the average
kinetic energy of a particle specie on its mass M , 〈Ekin〉 = 3

2 T + 1
2 M〈v

2
flow〉,

cf. Fig. 6.7. A similar phenomenon was observed in the AGS energy range.
In such central collisions close to 50% of the available collision energy is con-
verted into collective motion. At higher energies, one distinguishes between
a longitudinal expansion, which at collider energies could be boost invariant
as suggested by Bjorken [350], and a transverse �ow. Yet, both the discussed
radial or alternatively the transverse �ow do not directly provide a measure
of the underlying EoS of the system. Large pressures acting over a short time
may produce the same net collective energy as low pressures acting over a
long time. This calls for a special timer [413] of the reaction course.

Such a timer can be provided in non-central collisions at intermediate im-
pact parameters. Here one observes a subtle interplay between the spectators
and the participants. The spectator nucleons originate from the periphery of
the interaction zone and are only weakly a�ected by the collision processes, so
they proceed essentially undisturbed with their original velocity, see Fig. 6.8.
By contrast, the participant nucleons originate from the interaction zone and
thus experience violent collisions and are subjected to matter compression
and expansion in the course of the reaction. The spectators are expected
to bounce o� the compressed central zone thereby through their de�ection
de�ning the reaction plane. The radially accelerated particles emitted from
the central �reball zone are in part shielded by the spectators which leads to
a preferred emission perpendicular to the reaction plane. This phenomenon
was called �squeeze-out� [409].

In this context the role of the timer may be taken up by the spectators,
cf. Fig. 6.8. As the participant zone expands, the spectators, moving at a
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Fig. 6.8 Dynamical evolution of density and �ow pro�les in a semi-central (b=6 fm)
Au+Au collisions at 2AGeV as the result of a BUU transport simulation in time frames
in units of 1024s. The beam direction is given by the z axis; the x-z plane (lower panels)
de�nes the reaction plane; the upper panels de�ne the density contours and �ow directions
in a plane lying in the origin perpendicular to the beam direction. From Ref. [413].

prescribed pace, shadow the expansion. If the pressure in the central region
is high and the expansion is rapid, the anisotropies generated by the presence
of spectators are expected to be strong. On the other hand, if the pressure is
low and, correspondingly, the expansion of the matter is slow, the shadows
left by spectators will be less pronounced. Faced with this situation special
observables were suggested which in each event (i.e. event by event) �rst
determine the reaction plane from the multi-particle emission pattern and
then investigate special correlations of the emitted particles relative to the
so determined reaction plane. Special care must be taken to ensure that
such analysises are free from spurious correlations in case of low multiplic-
ities[410, 414]. The ��ow� observables provide a direct information on the
dynamical �ow behavior during the collision. The oldest of this type, the
�transverse momentum analysis� or �directed �ow�, dates back to a sugges-
tion of Danielewicz and Odyniec [415], see also the review [410]. In slices of
rapidity it measures the average transverse momentum within the reaction
plane, c.f. Fig. 6.9. This observable is known to be sensitive on the EoS. As
an example recent three-�uid dynamic (3FD) calculations [302] as presented
in Sect. 5.3.1 are displayed in Fig. 6.9.

Nowadays the anisotropies in azimuthal emission pattern are characterised
in terms of a Fourier series [416, 417] also to be evaluated at di�erent slices
of rapidity y,

dN

dφ
∝ 1 + 2v1cos(φ) + 2v2cos(2φ) + . . . . (6.1)

Here φ denotes the angle relative to the reaction plane determined for each
event. The advantage of this method is that the coe�cients v1 and v2 can be
determined fairly accurately despite the uncertainty in the determination of
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EoS at impact parameter b = 6 fm. Full sym-
bols correspond to measured data, the open
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the reaction plane due to �nite particle number �uctuations. Both coe�cients
have a quite transparent interpretation. The dipole term v1 is closely related
to the directed �ow and arises from the collective sideward de�ection of the
particles within the reaction plane (x-z plane when z is chosen as the beam
axis) and characterizes the transverse �ow in the reaction plane. The second
harmonics characterize the emission perpendicular to the reaction plane. It is
called elliptic �ow. For negative v2 one has a preferential out-of-plane emission
pointing towards a squeeze-out e�ect.

The two di�erent types of anisotropic �ow, sideward and elliptic, have dif-
ferent dynamical origin and their magnitudes depend strongly on the bom-
barding energy. At low and intermediate collision energy, throughout the early
stages, the particles move primarily along the beam axis in the centre of mass.
However, during the compression stage, the participants get locked within a
channel, titled at an angle, between the spectator pieces, cf. Fig. 6.8. As a
consequence, the forward and backward emitted particles acquire an aver-
age de�ection away from the beam axis, towards the channel direction. Thus
the transverse or sideward �ow, in particular its slope at mid-rapidity, de-
noted as Fy = d〈px〉/dy, has its analogy in the scattering angle in elementary
hadron-hadron reactions. It characterizes the sideward over the longitudinal
streaming velocity (close to the centre-of-mass rapidity the proportionality
Fy ∝ d〈ux〉/duy holds).

However, with rising energy the characteristics of the collective motion
change substantially. This feature becomes evident from the measured exci-
tation functions shown in Fig. 6.10. The transverse anisotropy, expressed by
the sideward �ow parameter F , is maximal at lower energies (SIS) and drops
practically down to zero at ultra-relativistic energies (SPS and RHIC). For a
summary of experimental data see [419, 420].

The elliptic anisotropy, expressed by the elliptic �ow v2, shows the opposite
trend of a steady increase. At RHIC energies v2 reaches the hydrodynamical
limit of an ideal �uid with zero viscosity. This indicates the transition from
density-driven dynamics with non-vanishing viscosity to the geometry-driven
dynamics of almost perfect hydrodynamics. It suggests that at RHIC energies
particle densities are already large enough, respectively interaction lengths
short enough, for the systems to reach the hydrodynamical limit.
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Fig. 6.11 Schematic representation of the creation of elliptic �ow at RHIC. Left: spatial
overlap in the plane perpendicular to the beam direction. the anisotropic pressure gra-
dients translate the initial spatial anisotropy into an anisotropic transverse momentum
distribution (right �gure).

As discussed e.g. in [296, 430�432], in the hydrodynamical limit the elliptic
�ow is approximately proportional to the original spatial deformation (ε) of
the nuclear overlapping region which determines the pressure gradients of the
expanding �reball, see Fig. 6.11. During the expansion the spatial anisotropy
decreases and thus the �ow has to built up in the very early stages of the re-
action. In the opposite limit, the elliptic �ow depends stronger on the particle
density in the transverse plane: v2 ∝ ε dN/dy /S, where ε and S are the cen-
tral energy density and the area of the overlapping zone, respectively [433].
Some hadronic string-cascade models [232, 434] have problems in explaining
the strong elliptic �ow observed at RHIC, while for the Quark-Gluon-String
models [195�197] such large elliptic �ow values are shown to be well in reach.
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Fig. 6.12 Sideward �ow (left) and elliptic (right) �ow excitation function for Au + Au.
Data and transport calculations are represented by symbols and lines, respectively. The
di�erent lines refer to di�erent values of the incompressibilty parameterK of the EoS. Here
ε = 〈y2 − x2〉/〈y2 + x2〉 denotes the initial spatial deformation. Figures and calculations
are from Ref. [413]. Experimental data are from the same Refs. as quoted in Fig. 6.10

In the Bevalac/SIS and AGS domains transport models were success-
fully applied to explain both transverse and elliptic �ow. Thereby the trans-
verse �ow was found to be sensitive to the nuclear EoS and, in particu-
lar in peripheral reactions, to the momentum dependence of the mean �eld
[404, 413, 435, 436]. The elliptic �ow v2, in contrast, showed a sensitivity to
the maximal compression reached in the early phase of a heavy-ion reaction.
The crossover from preferential out-of-plane �ow (v2 < 0) to preferential in-
plane �ow (v2 > 0) around 4-6 AGeV also led to speculations about a phase
transition in this energy region which goes along with a softening of the EoS
[437, 438].

Fig. 6.12 gives an impression on how these two types of anisotropy depend
on the nuclear EoS. The �gure shows results of BUU transport calculations
from [413] where the underlying EoS, i.e. the corresponding nuclear mean
�eld, was varied between super-soft (K=167 MeV) up to sti� (K=380 MeV).
The sti�ness of the EoS can directly be linked to the pressure built up during
the collisions. The pressure is lowest in the absence of a mean �eld, i.e. in a
pure cascade scenario. This case is clearly ruled out by data. However, the
transport investigations of Ref. [413] put only weak constraints on the sti�ness
of the EoS, c.f. Fig. 6.13. At lower energies, corresponding to lower compres-
sions, the transverse-�ow data would favour a softer EoS, while requiring a
sti�er behaviour at higher densities, in accordance with the corresponding v2
data. Such constraints from nuclear-collision data supplement corresponding
EoS investigations on neutron matter resulting from observations of neutron
stars. For details see Part I, Chapt. 3.4.
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In recent years the situation was considerably sharpened from the exper-
imental side when the FOPI Collaboration provided a rather complete set
of transverse and elliptic �ow data in the SIS range [439�443]. These data
favour a soft EoS (K = 200MeV) in the explored density range of 2-3 ρ0.
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Fig. 6.13 Constraints (hatched area) on the
EoS extracted by Danielewicz [413, 444] com-
pared to various EoS discussed in the context
of Fig. 6.9 and used in the 3FD model [302].

The present correspondence between theory and experiment is illustrated
in Fig. 6.14. The left panel compares transport model calculations to recent
FOPI data [443]. The BUU studies from Danielewicz [436] and Larionov et
al. [445] focussed on the EoS dependence, while Persram et al. [446] found
a sensitivity of v2 on the medium dependence of the NN cross sections. Fi-
nally, non-equilibrium e�ects were investigated at the level of the e�ective
interaction based on RBUU (Munich) [404, 405]. There local phase-space
anisotropies during the pre-equilibrium stage of the reaction were found to
reduce the repulsion of the mean-�eld and to soften the corresponding EoS.
Corresponding microscopic DBHF mean-�eld calculations by Gaitanos et al.
[448] lead to a good description of the v2 data. The right panel of Fig. 6.14
shows the excitation functions up to AGS energies comparing to FOPI and
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Fig. 6.14 Elliptic �ow excitation function at SIS (left) and from SIS to AGS energies
(right). Various theoretical studies based on transport models [404, 405, 436, 445, 446] are
compared to FOPI data [443] (left panel, Figure from [443]) and to data from the FOPI
and the EOS/ E877/ E895 Collaborations [418, 424, 438, 447] (right panel).
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EOS, E877 and E895 data. Two of the transport models shown there are the
same as in the left panel, in addition results from RBUU (Giessen) [407, 449]
are shown. The theoretical calculations are in reasonable agreement amongst
each other and provide a fair description of the data. The �gure stresses
again the importance of the nuclear mean �eld since pure cascade calcula-
tions completely fail to describe the excitation function. However, Fig. 6.14
also demonstrates that v2 is generated by the interplay of the mean �eld and
binary collisions which impedes to extract exclusive information on the EoS
from the data. Here certainly further clarifying studies are required.

With increasing energy the situation changes as can be read from Fig. 6.15.
Here UrQMD and HSD transport calculations as well as a 3-�uid hydrody-
namical calculation [300] are compared to NA49 data [450] for v1 and v2 at 40
AGeV. These data indicate the occurrence of proton �anti-�ow� around mid-
rapidity, in contrast to the AGS data as well as to the UrQMD and HSD cal-
culations at 40AGeV involving no phase transition; the hadron/string trans-
port calculations show a robust positive v2 of about 3% (Fig. 6.15, r.h.s.).
Remarkably, the three-�uid hydrodynamic model [300] with a hadronic EoS
shows qualitatively similar results; however, the actual �ow v2 is even much
higher in this model. The behavior of the data might be an indication for
a so-called �ow collapse as predicted by early hydrodynamical calculations
[451] as a signature for a �rst order phase transition in the energy range
between 10 and 40 AGeV. (For a further going discussion see Part IV.)

The fact that the matter created at RHIC di�ers from pure hadronic mat-
ter is clearly re�ected in the collective dynamics of the expanding source. Not
only that the matter behaves like a strongly coupled liquid, corresponding
data indicate the partonic nature of this liquid. Fig. 6.16 shows the elliptic
�ow in Au+Au collisions at

√
sNN = 200 GeV, as a function of transverse

momentum pT (left) and pseudo-rapidity (right). The results from PHENIX
[452] display separately v2 of identi�ed particles, π−, K−, p (top-left) and
π+, K+, p (top-right). The combined positively and negatively charged par-
ticles are shown in the bottom-left panel and compared to the result of a
hydrodynamical calculation with a �rst-order phase transition and a freeze-
out temperature of 120 MeV for π, K and p from upper to lower curves,
respectively. Motivated by a quark coalescence model [453] the bottom-right
panel shows the �quark� v2 as a function of the quark transverse momentum
pT by scaling both axes with the number of valence quarks for each hadron
specie.

The hydrodynamical calculation can reproduce the mass ordering and
magnitude of v2 for the di�erent particles in the region up to transverse
momenta of 2 GeV/c (which covers 99 % of the bulk production), but over-
predicts it beyond. This success led to the conjecture that the created matter
behaves as a perfect �uid with extremely low viscosity [454, 456�458]. The
hydrodynamical calculations require that the matter formed reaches local
thermal equilibrium as early as within 1 fm/c [459] and then expands with
a shear velocity η � s [460], where s is the entropy density, i.e. with values
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Fig. 6.15 Proton directed v1 (left) and elliptic v2 (right) �ow for central, semi-central
and peripheral Pb+Pb collisions at 40 AGeV. The full squares indicate NA49 data [450],
the solid lines with open squares show the HSD results, whereas the solid lines with open
triangles are the UrQMD results. The green solid lines show the results from the 3-�uid
hydrodynamical model [300] with a hadronic EoS.

reaching the lower bound of ηmin = s/4π reached in strongly coupled super-
symmetric gauge theories [461]. This raised the interest towards the applica-
tion of viscous hydrodynamics to the collision dynamics [311, 315, 323�328],
cf. Sect. 5.5.

Alternatively, the quark-coalescence scenario assumes that the �ow is gen-
erated in a partonic medium which implies that after formation all hadrons
�ow with the same velocity. Thus quark coalescence predicts a simple scaling
behavior between the v2 for mesons and for (anti)baryons. When the data
are presented as a function of the transverse mass mT , the scaling behaviour
is even more apparent [462].

Such a behavior is supported by the transport calculation shown in the
right panel of Fig. 6.16. Here QGSM simulations are compared to minimum
bias PHOBOS data [454]. The standard QGSM allows for a reasonable de-
scription of the magnitude of v2 but clearly fails in the shape as function of
rapidity. If, however, partonic recombination processes are included in the
model [455] the corresponding data are almost perfectly reproduced. This re-
sult may be interpreted as follows: In contrast to a highly dissipative hadronic
medium, the parton recombination processes lead to a reduction of the mean
free path in the very dense stages of the collision. Accordingly, the viscosity



6.5 Rare probes 659

0

0.1

0.2

0.3

0 1 2 3 4

pbar
K−
π−

v 2

pT (GeV/c)
0 1 2 3 4

p
K+
π+

pT (GeV/c)

0

0.1

0.2

0.3

0 1 2 3 4

p  pbar
K+ K−
π+ π−

hydro π
hydro K
hydro p

v 2

pT (GeV/c)

0

0.05

0.1

0 0.5 1 1.5

p  pbar
K+ K−
π+ π−

v 2/
n

q
u

ar
k

pT/nquark (GeV/c)

-6 -4 -2 0 2 4 6
η

0,00

0,01

0,02

0,03

0,04

0,05

0,06

v 2

PHOBOS data
QGSM (recombination)
QGSM (default)

Au+Au @ s
1/2

= 200 GeV
charged hadrons (min. bias)
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ti�ed particles. PHENIX data [452] are compared to a hydrodynamical calculation (solid
lines). The bottom-right panel shows the quark v2 as a function of the quark pT by scaling
both axes with the number of quarks for each particle. The �gure is taken from [452]. Right:
v2(η) of charged hadrons from the standard QGSM transport model (open symbols) and
those obtained with parton recombination (�lled symbols) are compared to PHOBOS data
[454]. From ref. [455].

is e�ectively lowered in comparison to the pure hadronic medium. Thus rear-
rangement processes on the partonic level reduce the amount of dissipation
in the highly dense matter and therefore enhance the elliptic �ow, especially
in the mid-rapidity region in line with the experimental observations.

6.5 Rare probes

Rare probes may provide useful insight into the conditions and features of
the matter existing during the various stages of a nucleus-nucleus collision.
The small production cross sections for rare probes have two general causes:

• The particles originate from electro-weak processes whose coupling con-
stants are inherently small. Of particular interest are electromagnetic
probes, i.e. photons and dileptons (e+e−, µ+µ−).

• The large mass of the produced hadron suppresses the available phase
space. As a consequence, the thermal production of heavy hadrons is sup-
pressed by the corresponding Boltzmann factor. This suppresison mecha-
nism is particularly relevant for hadrons carrying strange or charm quarks.
The most extreme case is subthreshold particle production where the inci-
dent energy (counted per nucleon) of the projectile lies below the elemen-
tary production threshold in vacuum.
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Electromagnetic probes have the advantage that their interaction with the
surrounding matter is negligible on the space-time scales of the nuclear colli-
sion. They thus provide direct and undistorted information on the matter or,
when originating from weak decays, on the properties of their parent hadrons.

Rare hadronic probes are useful, since they can provide a sort of a timer of
the reaction, in particular when produced close to threshold. The production
of these particles has to happen during the very early stage of the reaction,
where densities and temperature are still high and - depending on their quark
content - probes like kaons or D mesons may have only little chance to reach
chemical and/or kinetic equilibrium during the expansion phase. Hence, such
probes carry important information on the initial stages of the reaction. It
should be noted that a similar e�ect can be obtained by triggering on high
transverse momenta pT (or high mT ) as a substitution for a large hadron
mass.

The statistical description of strange and charmed hadrons requires special
care because of the requirement of �avor conservation in each event seper-
ately. Therefore the grand canonical treatment is inadequate and the rare
�avors must be treated microcanonically (see, for example, Ref. [463]).

Furthermore, the transport description of such rare particles requires cross
sections that are often only weakly constrained by data, in particular in the
vicinity of production thresholds, and one must therefore to a large degree
rely on theoretical modeling.

On the other hand, by virtue of their rareness, the production of these
particles may be treated perturbatively in the transport models [13]. The
nuclear collision of interest is treated with the transport model in the ususal
manner, without dynamical inclusion of the particular rare probe, but its
small production probability is calculated in each individual binary collision
and the accumulated yield thus extracted. This method was introduced for
the calculation of kaon production at the Bevalac and it o�ers a highly e�-
cient means for calculating the production of rare probes in nuclear collisions.
[The alternative method, direct simulation with dynamical inclusion of the
rare process, grows progressively more ine�cient as ever rarer processes are
treated. It typically requires the generation of thousands of individual colli-
sion events for the production of just a single rare particle, whereas in the
perturbative method each individual binary encounter contributes an entire
di�erential distribution, thus making it possible to obtain rather detailed
distributions from relatively few events.] The method was subsequently gen-
eralized to the study of the dynamical fate of a produced rare particle which
may be inserted and propagated in the unmodi�ed collision event [14].

A detailed discussion of the physics of rare probes, the present status as
well as predictions for the CBM regime, can be found in the corresponding
chapters of Part II and Part IV.



Chapter 7

Status, Perspectives and Challenges

The theoretical description of relativistic nucleus-nucleus collisions in the
addressed energy regime is a formidable task. The time evolution of a com-
plicated many-body quantum system must be followed through several stages
characterised by di�erent physical scenarios. At the early stage of the colli-
sion the initial correlated nuclear ground states are �rst violently transformed
into some non-equilibrated form of matter that is expected to be in a decon-
�ned partonic stage whose properties are still poorly understood. This rather
exotic system will rapidly expand, �rst predominantly along the original rel-
ative nuclear motion but gradually a transverse expansion builds up and,
concurrently, a certain (but yet unknown) degree of local equilibration oc-
curs. The continual expansion causes the system to transform itself into a gas
of hadronic resonances whose spectral functions and interaction cross sections
are complicated and largely unknown, until the gas has become su�ciently
dilute. Whereas the dynamics of a low-density hadron gas with moderate
collision rates and/or self energies appears to be su�ciently well understood
within familiar hadronic physics, the treatment becomes ill-founded when
the volume per hadron is comparable to the hadronic eigenvolume (which is
about 1 fm3 for pions and 2 fm3 for nucleons), i.e. at densities of 3-5 times
the nuclear saturation density.

Therefore the description of high-energy nuclear collisions requires a ver-
satile arsenal of models, each of which must compromise on certain physics
aspects in order to be practical. These treatments range from microscopic
kinetic transport models at various levels of re�nement to macroscopic ap-
proaches such as single- or multi-�uid dynamics. In this �nal chapter we
review the status of these approaches in brief terms in order to provide the
reader with a quick access to the main points. The details were given in pre-
vious chapters. We further discuss future developments needed and outline
some major challenges in the context of the high densities reached in these
reactions and about the instabilities and the change of degrees of freedom
occurring during the con�nement phase transition.

661
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7.1 Summary of dynamical concepts

We summarise here the characteristics of the various dynamical approaches,
together with their main capabilities and limitations.

Micro-dynamical concepts

The most commonly used microscopic frameworks are one-body approaches
based on the the Boltzmann equation and molecular-dynamics type many-
body schemes.
Boltzmann dynamics (BUU): These approaches (Sect. 3.5) attempt to

solve the Boltzmann equation for the reduced one-body phase-space densities
for the various constituents (mostly hadrons). They move in a self-consistent
e�ective mean �eld, while experiencing occasional two-body collisions that
are subject to quantum-statistical Pauli suppression (for baryons) or Bose
enhancement (for mesons) of the Uhling-Uhlenbeck type. Some treatments
include medium-dependent masses and cross sections. The e�ective �eld fre-
quently includes some momentum dependence which, however, can be in con-
�ict with conservation laws due to the lack of a corresponding back �ow part.∗

The required smooth phase-space densities are usually obtained through test-
particle or parallel-ensemble methods (Sect. 3.5.2), although lattice methods
have also been employed.
Molecular dynamics (QMD): In these approaches (Sect. 4.1) the mean-

�eld dynamics used in BUU is replaced by a classical many-body dynamics
subjected to mostly density- and momentum-dependent e�ective two-body
forces. The latter account for the smooth part of the interactions, while the
short range encounters are treated by a stochastic collision term as in BUU.
The key device to generate reasonably smooth phase-space densities that can
be used both for the required Pauli blocking and for the e�ective �eld is to
employ a Gaussian convolution in phase space. Due to the e�ective fuzziness
of the particles obeying the minimal uncertainty principle this class of models
have been dubbed �quantum� molecular dynamics.

We wish to draw attention to a number speci�c aspects common two both
approaches:
Limitations: Both approaches require the quasi-classical approximation

to be valid and are limited to small densities (i.e. long mean free paths) for a
meaningful separation of the smooth part of the interaction and the collisions,
cf. Sect. 1.2 and the discussion of the high density challenge (Sect. 7.3).

∗ Momentum-dependent forces generally lead to quasi-particles with an e�ective mass m∗

that may deviate signi�cantly from the free massm. However, the total mass of the A-body
system is not ≈ Am∗ but rather ≈ Am and the back �ow (Sect. 3.3.4) just compensates
for this di�erence by restoring Galilei (or Lorentz) invariance to the total system.
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Equation of state: The equation of state is primarily determined by
the dependence of the mean �eld on the particle density in BUU or by the
e�ective two-body potential in QMD. However, there is generally some depen-
dence on the speci�c numerical procedure. Furthermore, while the residual
interaction governing the collisions is assumed to have zero range in the ideal
Boltzmann model, the numerical implementations use a �nite range which
may then contribute to the pressure, thus modifying the e�ective equation of
state. Generally, the latter potentially important e�ect has mostly not been
determined in the various models.
Composite particle formation: For the CBM energy regime addressed

here, the formation of composite particles, such as deuterons or α particles,
is unimportant, unless one looks at speci�c channels. But it is important at
low collision energies. Through the interactions QMD (and with a speci�c
technique also BUU) are in principle able to form composite clusters†. In
many cases, however, �post� transport prescriptions are employed to form
clusters, such as coalescence pictures or, more advanced, as microscopic many-
body scattering schemes within a �nal state interaction formulation.
Strings: Most of the BUU and QMD models include string concepts in

order to extend the range of applicability to higher energies. Strings o�er
an e�cient phenomenological tool for parametrising multi-hadron production
processes. As the strings are generally formed in binary hadron collisions, this
agency violates detailed balance since the reverse processes cannot readily be
included. Fortunately, in a collision setting this may not be a serious �aw,
since the collisions tend to be over before the reverse processes would play a
role. However, the absence of reverse processes renders the model unsuitable
for equilibrium scenarios, thus deferring to assess the e�ective equation of
state.
Cascade mode: For survey studies, and in order to obtain a background

reference, most codes can be run in the so-called cascade mode (Sect. 2) which
ignores mean-�eld e�ects and solely treats collisions and decays on the basis
of vacuum cross sections and decay rates.
Resonances: The treatment of resonances (Sect. 3.3) pose a special chal-

lenge, in particular with respect to the required detailed balance between
creation and decay (Sect. 3.3.8) as well as unitarity problems (Sect. 3.3.6),
once several channels feed into the same resonance. Furthermore, the prop-
agation of a resonances is mostly treated as if each mass component of the
resonance spectrum is an on-shell particle with this mass. There is a great po-
tential for improvements of the microscopic transport approaches with regard
to the treatment of broad spectral structures. Recent progress and further
challenges are discussed in Sect. 3.4.6.

† Composite particle formation requires the simultaneous interaction with a third body in
order to comply with the conservation laws. This would not be possible in ideal BUU which
contains only two-body scattering. However, in a special parallel ensemble treatment it is
possible to build up few-body correlations and through them to form clusters.
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Boltzmann-Langevin: The Boltzmann equation describes the average
evolution of the one-body phase-space density. Thus the system is at any time
described in terms of a single phase-space density whose evolution is entirely
deterministic, thus preventing the system from branching into macroscopi-
cally di�erent con�gurations. The Boltzmann-Langevin (BL) model reintro-
duces the stochastic part of the collision term and thus each individual bi-
nary collision provides an opportunity for trajectory branching (Sect. 3.2.1).
Through this di�usive dynamics in the space of one-body densities the sys-
tem is described by an ensemble of densities, each one giving rise to its own
e�ective one-body �eld. Such a framework is particularly useful for scenar-
ios where the system may break up into a variety of di�erent channels, as
expected to happen during a phase decomposition. It may therefore be of
particular interest in the CBM context.
Quantum many-body approaches: Several models seek to treat the

collision system at a quantum level by describing the many-body state by
means of Slater determinants (Sect. 4.2) on the basis of Gaussian single
particle states. With the help of the Unitary Correlation Operator Method
(UCOM) the Fermionic Molecular Dynamics (FMD) concept permits to deal
with realistic nuclear forces. It developed into a quantitative tool for nuclear
structure calculations, Sects. 4.2.1. The Antisymmetrised Molecular Dynam-
ics (AMD), Sect. 4.2.2, can only deal with e�ective forces. It is though supple-
mented with a stochastic collision term similar as in QMD. Besides structure
calculations it permits the description of low energy collisions.

A di�erent re�nement is presented by the Quantum-Langevin (QL) ap-
proach which takes account of the quantum �uctuations inherent in a wave-
packet representation. This basic feature has signi�cant consequences for the
dynamics near a phase transition.

Though conceptually interesting, all these quantal approaches are techni-
cally extremely demanding and direct application to the CBM collisions are
not foreseen.

Macroscopic transport dynamics

Ideal �uid dynamics: This simplest macroscopic treatment (Sect. 5.2)
rests on the assumption of instantaneous local equilibration. The equations
of motion for the density and local temperature and �ow velocity follow
from the conservation laws. The sole physical input is an equation of state
that determines the local energy-momentum tensor. The resulting evolution
is isentropic. The implied zero space-time scales cause discontinuities, such
as shock fronts. Though physically interesting as a speci�c limit case, such
discontinuities are di�cult to treat in the numerical codes. Due �nite mean-
free path e�ects in the true physical case such discontinuous structures may
signi�cantly be blurred. Ideal hydrodynamics can deal with phase transitions,
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though, solely along the equilibrium con�gurations e.g. across the coexistence
phase.
Viscous �uid dynamics: The presence of a �nite mean free path causes

transport over �nite distances and thus distorts the local conditions away
from perfect equilibrium (Sect. 5.5). Such a situation requires the introduc-
tion of transport coe�cients describing shear and the bulk viscosity as well
as thermal conductivity, which can, in principle, be determined from kinetic
transport theory. However, these are even less known than the equation of
state and, moreover, the associated numerics is fairly tedious. As a conse-
quence, numerical treatments have appeared only very recently in the context
of the conjectured low viscosity deduced from the collider events at RHIC.
Multi-�uid dynamics: Since the deviations from local equilibrium can

be quite large at the early collision stage, where the participant system has the
character of two interstreaming media, it may be advantageous to consider the
system as several interacting �uids (Sect. 5.3), rather than a single viscous
�uid. The three-�uid concept is adapted to the nuclear collision scenario
with two incoming �uids and a third one created through collisions. Also this
approach requires additional coe�cients governing the collisional transport
between the �uids. The multi-�uid framework also provides a convenient
framework for treating di�erent phases that are not in mutual equilibrium and
therefore o�er a perspective for a dynamical treatment of phase transitions
(Sect. 5.3.2).
Freeze-out: Fluid-dynamic approaches must be supplemented by a freeze-

out procedure describing the conversion of the macroscopic �uid into indi-
vidual particles when a su�cient degree of dilution has been reached. The
commonly used Cooper-Frey prescription with its globally de�ned freeze-
out hypersurface still has conceptual problems, since the duration of the
decoupling is non-negligible. It is shown to be comparable to the expansion
time scale even for strongly interacting probes. Re�nements towards detector-
dependent formulations of the freeze-out zone, including the possibility of a
continuous decoupling, were recently investigated (Sect. 5.8).

7.2 Model overview

Table 7.1 summarises the main features of the most commonly employed
transport models for high-energy nuclear collisions.

The energy range of applicability is given in terms of the beam kinetic
energy per nucleon for a stationary target, in GeV per nucleon. For reference,
the current SIS18 at GSI delivers heavy-ion beams up to around 1.6 AGeV,
for the heaviest species such as Uranium, the AGS at BNL goes up to about
14 AGeV, and the SPS at CERN has a top energy of about 160 AGeV for
lead beams. The RHIC facility at BNL is a collider with a top energy of√
sNN = 200 GeV, corresponding to about 2200 AGeV on a �xed target.



666 7 Status, Perspectives and Challenges

model
energy range

[AGeV]
baryons

dynamical [perturbative]
mesons

dynamical [perturbative]
potential

−−−

hadronisation

QGSM 10− RHIC SU(3) SU(3) (ps & v) no
−−−

by strings

BRoBUU 0.1− 4
N(∗),∆(∗);M≤2.2GeV

[Λ,Σ]
π, η, σ, ρ, ω
[K±, φ]

U(ρ, p)
−−−

no

GiBUU 0.1− 40
N(∗),∆(∗), Y (∗), Ξ(∗)

M ≤ 2GeV
π, η, ρ, σ, ω, η′, φ,

ηc, J/ψ,K, K̄,K∗, K̄∗
U(ρ, p)
−−−

by strings

BUU1 0.1− 6 N,∆,N∗1440 π
U(ρ, p)
−−−

no

RBUU2 0.1− 2
N,∆,N∗1440

[Λ,Σ]
π

[K±]
Σ(ρ, β)
−−−

no

RBUU3 0.1− 2
N,∆

[Λ,Σ,Ξ]
π

[K±]
Σ(ρ)
−−−

no

AMPT 10− RHIC SU(3) SU(3) (ps & v)
no
−−−

by strings

HSD 0.1−RHIC SU(3),N(∗), ∆(∗)

[high pT ]

SU(3) (ps & v), a1
[D,D∗, Ds, D∗s , J/Ψ, χc,
Ψ ′, high pT e±, µ±, γ]

Σ(ρ, p)
−−−

no

(I)QMD 0.1− 2
N,∆
[Λ,Σ]

π
[K±]

U(ρ, p)
−−−

no

RQMD 0.1− 4
N(∗),∆(∗);M≤2GeV

[Λ,Σ]
π

[K+, η, ρ, ω, φe±]
U(ρ, p)
−−−

no

UrQMD 0.1− 4 SU(3)∗;M≤2.2GeV
0−+, 1−−, 0++, 1++

2++, 1+−, 1−−∗, 1−−∗∗
U(ρ)
−−−

by strings

1-�uid4,†

(FFD) 1−SPS N with in-med. masses
quarks

σ, ω
gluons

EoS
−−−

phase trans.
3-�uid4,†

(FFD) 1−SPS N with in-med. masses
quarks

σ, ω
gluons

EoS
−−−

phase trans.

3-�uid5,†
1−SPS N(∗),∆(∗);M≤1.9GeV

Λ,Σ(∗);M≤1.4GeV
π.K.k∗, η, η′, ρ, ω

f0, a0, φ
EoS
−−−

no

Table 7.1 Energy range, degrees of freedom (DoF) and mean-�eld and hadronisation
concepts used and applied in the di�erent models: the energy range coded in part by
the accelerator; besides explicitly treated DoFs (dynamical) most codes also include
[perturbatively] treated DoFs. The last column speci�es the type of mean-�eld and the
concepts used for the hadronisation transition. Further details are given in the text.
(1MSU (Danielewicz)[413, 444], 2Catania/Munich/Tübingen, 3Texas A&M/Stony Brook,
4Frankfurt Fluid Dynamics [276], 53-�uid model from [1], †All listed hadrons are included
in the EoS)

As the collision energy is raised, various thresholds open. Important exam-
ples are the thresholds for open or hidden strangeness at SIS18 energies and
for charm at AGS energies. Some of these new hadrons are very rare and may
be treated perturbatively, whereas others have a signi�cant in�uence on the
overall evolution and must be fully included into the dynamical treatment.

The table lists the hadronic degrees of freedom that are included and indi-
cates the type of treatment used for the mean �eld, whether non-relativistic
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(U) or relativistic (Σ). Furthermore, SU(3) refers to the �avour multiplets,
with �ps & v� denoting pseudo-scalar and vector mesons. The N, ∆1232, . . .
baryons and their excited states are denoted by N (∗), ∆(∗), . . . , while the
quantum numbers refer to the standard JPC classi�cation. The models are
grouped into cascade, one-body, N -body, and �uid-dynamical models. The
table also indicates which models use strings to account for the fact that
the appropriate degrees of freedom are no longer hadronic beyond a certain
energy density.

7.3 High-density challenge

The CBM experiment explores an energy regime where the increasing abun-
dance of particles in combination with high compressions (beyond �ve times
the saturation density) poses a particular challenge. These conditions imply
a signi�cant increase in the inter-particle collision rates, such that

a) most hadrons attain a signi�cant damping width from collisions and
b) multi-particle processes occur at a signi�cant rate.

Therefore, at the microscopic level, the particles should be described with
dynamical spectral functions the discussed in Sects. 3.3 and 3.4, a signi�-
cant complication that may render a kinetic transport treatment impractical.
Furthermore, most of the required microscopic input information is not only
unavailable but in fact unobtainable from elementary collision experiments.

Fortunately some mitigation can be expected. It arises from the mere fact
that due to the large collision rates the system may quickly produce local equi-
librium so that the evolution is essentially as in ideal �uid dynamics. In such
a situation ideal �uid dynamics would present an appropriate framework,
as represented by the various hybrid models that have been developed. In
such macroscopic descriptions of the high density stage, the various hadronic
species appear only implicitly through the equation of state; once the interac-
tion zone has become su�ciently dilute, one may switch to a kinetic picture
with the hadrons appearing explicitly and �nally decoupling, as described in
Sect. 5.8.

But since �uid dynamical descriptions are also not devoid of conceptual
di�culties, one might alternatively consider the high-density challenge as
an opportunity: One could simply use a kinetic treatment throughout, since
the high collision rates and the approximate local equilibrium would render
the details about the microscopic collisions less crucial. Thus, as long as
the kinetic model implements an appropriate equation of state along with
proper viscosity properties, it might be perfectly suitable for exploring the
high-density stage and yield reliable predictions for the kinetically driven
parts of the reaction dynamics, namely the collective �ow aspects and the
resulting kinetic particle spectra. Thus the kinetic model would produce an
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initial stopping and approximate local equilibration at the early high-density
stage as well as the transport evolution during the later low-density stage,
including a proper freeze-out into the asymptotically observed hadrons. Such
considerations led to the constraints on the nuclear equation of state put
forward by in Refs. [413, 444], cf. the discussion in Sect. 6.4 in the context of
Fig. 6.13.

7.4 Phase transitions

The CBM experiment will explore hot and dense matter in a phase region
where the con�nement transformation is expected to be of �rst order. This
poses several challenges to both experiment and theory.

On the experimental side, there is a need to develop robust observables
that can signal the occurrence of this �rst-order transition, including the as-
sociated critical end point. This task is made more di�cult by the dearth of
transport treatments suitable for dynamical simulations in the phase transi-
tion region where the e�ective degrees of freedom change radically.

At the microscopic level, a proper treatment would need to represent the
con�ned phase in terms of the degrees of freedom present in the decon�ned
phase, i.e. it must describe hadrons in terms of quarks and gluons. This basic
problem has not yet been solved in a satisfactory manner. Furthermore, such
a transport model must describe the thermodynamics correctly. This impor-
tant demand requires �rst of all that the model satis�es detailed balance, so
a proper equilibrium exists. Second, the associated equation of state must
display a �rst-order con�nement transition consistent with our theoretical
expectations. Third, the associated spinodal instabilities which provide the
main mechanism for the phase separation must be properly described in order
for the dynamics of the phase transition to be simulated in a realistic manner.
These interesting but challenging problems are all far from being solved and
intensi�ed e�orts are highly desirable. From a practical perspective, what is
most urgently needed is some sort of (relativistic) molecular dynamics that
would provide a reasonable (semi-quantitative) description of the key physics
features, particularly the occurrence of a �rst-order con�nement transition,
without necessarily yielding a quantitative reproduction of actual hadronic
properties. With such a transport model in hand, it would be possible to sim-
ulate the collision dynamics and examine the suitability of various candidate
signals.

One might hope to sidestep some of these di�cult problems by developing
instead a macroscopic treatment, in which the speci�c degrees of freedom do
not enter explicitly but only indirectly through such properties as the equa-
tion of state and the transport coe�cients. The natural starting point for such
an approach is ideal �uid dynamics which has proven to be quite useful for
nuclear collision simulations. However, ideal �uid dynamics conserves entropy
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and it therefore appears particularly unsuitable for the description of phase
separation processes, which occur because of the associated gain in entropy.
Furthermore, for the same reason, its region of mechanical phase instabil-
ity is not bounded the isothermal spinodal given by thermodynamics but
rather by the isentropic spinodal which is more restrictive. Thus ideal �uid
dynamics tends to suppress the development of phase separation relative to
what would be expected on more general grounds. Finally, within its limited
region of spinodal instability, ideal �uid dynamics yields a divergent disper-
sion relation for the unstable sound modes, thereby rendering the instability
growth mathematically meaningless as well as numerically intractable. There
is thus considerable work to be done before �uid dynamics is suitable for
dynamical simulations involving the con�nement transition. Furthermore, it
should be kept in mind that such a macroscopic approach has certain general
limitations. For example, the dynamical initial states need to be prepared on
the basis of a more detailed dynamical treatment of the early collision stage
when the local conditions are far from equilibrium. Furthermore, a suitable
freeze-out procedure needs to be applied at the late stages when the expan-
sion causes the various hadronic species to successively decouple. While this
latter problem would be relatively straightforward to treat, this has in fact
not yet been done (and it is perhaps less urgent).

In addition to the here discussed con�nement phase transition, theoretical
considerations lead to the expectation of further phases at high net baryon
density but rather low temperature, such as colour superconductivity. Al-
though there are similar challenges with regard to these phase transitions,
these are less urgent from a practical point of view, because it is not ex-
pected that the relevant phase regions can be accessed in nuclear collisions.
This is because a high degree of compression is invariably accompanied by a
correspondingly high degree of heating, as illustrated in the dynamical phase
trajectories (Fig. 6.3) that were discussed in Sect. 6.1.





References

[1] Y.B. Ivanov, V.N. Ruuskikh, V.D. Toneev, Phys. Rev. C 73, 44904
(2006) 540, 616, 617, 666

[2] I.C. Arsene, L.V. Bravina, W. Cassing, Y.B. Ivanov, A. Larionov,
J. Randrup, V.N. Ruuskikh, V.D. Toneev, G. Zeeb, D. Zschiesche, Phys.
Rev. C 75, 24902 (2007) 540, 642, 643, 644, 645, 646

[3] J. Randrup, J. Cleymans, Phys. Rev. C 74, 47901 (2006) 540
[4] J. Hüfner, J. Knoll, Nucl. Phys. 290, 460 (1977) 542, 543, 550, 551
[5] P. Danielewicz, Annals Phys. 152, 239 (1984) 544, 561
[6] P. Danielewicz, Annals Phys. 152, 305 (1984) 544, 561
[7] P. Danielewicz, Phys. Lett. B146, 168 (1984) 544
[8] B. ter Haar, R. Mal�iet, Phys. Rev. C 36, 1611 (1987) 544
[9] T. Alm, G. Röpke, M. Schmidt, Phys. Rev. C 50, 31 (1994) 544
[10] C. Fuchs, A. Faessler, M. El-Shabshiry, Phys. Rev. C 64, 024003 (2001)

544
[11] W.M. Yao, et al., J. Phys. G 33, 1 (2006). [http://pdg.lbl.gov/] 47,

48, 52, 53, 101, 106, 185, 305, 350, 362, 398, 407, 434, 479, 545
[12] C. Fuchs, Prog. Part. Nucl. Phys. 56, 1 (2006) 150, 157, 416, 420, 425,

426, 430, 546, 595, 605, 699, 701, 704, 705, 707, 708, 709
[13] J. Randrup, C.M. Ko, Nucl. Phys. A 343, 519 (1980) 546, 551, 590,

660
[14] J. Randrup, Phys. Lett. B 99, 1981 (1981) 546, 551, 591, 660
[15] K. Chen, Z. Fraenkel, G. Friedlander, J.R. Grover, J.M. Miller, Y. Shi-

mamoto, Phys. Rev. 166, 949 (1969) 549
[16] V.S. Barashenkov, K.K. Gudima, V.D. Toneev, Acta Phys. Polon. 36,

457 (1969) 549
[17] V.S. Barashenkov, K.K. Gudima, V.D. Toneev, Acta Phys. Polon. 36,

887 (1969) 549
[18] Y. Yariv, Z. Fraenkel, Phys. Rev. C20, 2227 (1979) 549
[19] K.K. Gudima, H. Iwe, V.D. Toneev, J. of Physics G 5, 229 (1979) 549
[20] K.K. Gudima, V.D. Toneev, Sov. Journ. of Nuclear Phys. 31, 1455

(1980) 549

671



672 References

[21] E.C. Halbert, Phys. Rev. C23, 295 (1981) 549, 550
[22] J. Cugnon, T. Mizutani, J. Vandermeulen, Nucl. Phys. 352, 505 (1981)

550
[23] J. Cugnon, Nucl. Phys. A387, 191c (1982) 550
[24] R.J. Glauber, Phys. Rev. 100, 242 (1955) 550
[25] R.J. Glauber, Lectures in Theoretical Physics, vol. I, ed. W. E. Brittin

et al. (Intersience Publishers, 1959) 550
[26] R.J. Glauber, G. Matthiae, Nucl. Phys. B 21, 135 (1970) 550
[27] J. Knoll, J. Randrup, Nucl. Phys. 324, 445 (1979) 551
[28] J. Knoll, J. Randrup, Phys. Lett. B 103, 264 (1981) 551
[29] J. Cugnon, J. Knoll, J. Randrup, Nucl. Phys. A 360, 444 (1981) 551
[30] B. Schürmann, J. Randrup, Phys. Rev. C 23, 2766 (1981) 551
[31] J. Randrup, Nucl. Phys. 314, 429 (1979) 552, 559
[32] J. Knoll, Phys. Rev. C 20, 773 (1979) 552
[33] R. Shyam, J. Knoll, Nucl. Phys. A426, 606 (1984) 552
[34] R. Shyam, J. Knoll, Phys. Lett. B136, 221 (1984) 552
[35] J. Knoll, R. Shyam, Nucl. Phys. A483, 711 (1988) 552
[36] A. Bialas, M. Bleszynski, W. Czyz, Nucl. Phys. B 111, 461 (1976) 552,

721
[37] S. Jeon, J.I. Kapusta, Phys. Rev. C56, 468 (1997) 552
[38] K. Geiger, Phys. Rept. 258, 237 (1995) 552
[39] B. Andersson, G. Gustafson, B. Soderberg, Z. Phys. C 20, 317 (1983)

553
[40] T.S. Biro, J. Knoll, H.B. Nielsen, Nucl. Phys. B 245, 449 (1984) 553
[41] J. Knoll, Z. Phys. C 38, 187 (1988) 553
[42] K.A. Brueckner, et al., Phys. Rev. 95 (1954) 556
[43] G.P. Lepage, arXiv:nucl-th/9706029 (1997) 556
[44] S.R. Beane, P.F. Bedaque, W.C. Haxton, D.R. Phillips, M.J. Savage,

arXiv:nucl-th/0008064 (2000) 556
[45] S.K. Bogner, A. Schwenk, T.T.S. Kuo, G.E. Brown, arXiv:nucl-

th/0111042 (2001) 556
[46] H. Feldmeier, T. Ne�, R. Roth, J. Schnack, Nucl. Phys. A 632, 61

(1998) 556, 608
[47] T. Ne�, H. Feldmeier, Nucl. Phys. A 713, 311 (2003) 556, 608
[48] R. Roth, et al., Phys. Rev. C73, 044312 (2006) 556
[49] H.P. Duerr, Phys. Rev. 103(2), 469 (1956) 557, 618
[50] J.D. Walecka, Annals Phys. 83, 491 (1974) 557, 618
[51] P.G. Reinhard, E. Suraud, Ann. Phys. 216, 98 (1992) 558
[52] E. Suraud, P.G. Reinhard, arXiv:nucl-th/9704048 (1997) 558
[53] L.W. Nordheim, Proc. R. Soc. London A 119, 689 (1928) 559
[54] E.A. Uehling, G.E. Uhlenbeck, Phys. Rev. 43, 552 (1933) 559
[55] G.F. Bertsch, H. Kruse, S.D. Gupta, Phys. Rev. C 29, 673 (1984) 559
[56] S. Ayik, Z. Phys. A 350, 45 (1994) 559
[57] S. Ayik, J. Randrup, Phys. Rev. 50, 2947 (1994) 559



References 673

[58] K. Morawetz, P. Lipavsky, V. Spicka, Prog. Part. Nucl. Phys. 42, 147
(1999) 559

[59] S. Ayik, Z. Phys. A 298, 83 (1980) 560
[60] J. Randrup, B. Remaud, Nucl. Phys. A 514, 339 (1990) 560
[61] P. Chomaz, G.F. Burgio, J. Randrup, Phys. Lett. B 254, 340 (1991)

560
[62] G.F. Burgio, P. Chomaz, J. Randrup, Nucl. Phys. A 529, 157 (1991)

560
[63] P. Chomaz, M. Colonna, A. Guarnera, J. Randrup, Phys. Rev. Lett.

73, 3512 (1994) 560
[64] P. Chomaz, M. Colonna, J. Randrup, Phys. Reports 389, 263 (2004)

560, 621
[65] Y. Abe, S. Ayik, P.G. Reinhard, E. Suraud, Phys. Rep. 275, 49 (1996)

561
[66] P. Danielewicz, G.F. Bertsch, Nucl. Phys. A 533, 712 (1991) 561, 582,

583, 591, 592, 633
[67] L.P. Kadano�, G. Baym, Quantum Statistical Mechanics (Benjamin,

1962) 561, 565, 569
[68] M. Bonitz (ed.), Progress in nonequilibrium Grenn's functions (World

Scienti�c, 1999) 562
[69] M. Bonitz, D. Semkat (eds.), Progress in nonequilibrium Grenn's func-

tions II (World Scienti�c, 2002) 562
[70] M. Bonitz, A. Filinov (eds.), Progress in nonequilibrium Grenn's func-

tions III, vol. 35 (Institute of Physics, 2006) 562
[71] J. Berges, S. Borsanyi, J. Serreau, Nucl. Phys. B660, 51 (2003) 562
[72] J. Knoll, Prog. Part. Nucl. Phys. 42, 177 (1999) 562, 577, 578
[73] S. Leupold, Nucl. Phys. A 672, 475 (2000) 562, 569, 571, 572, 593
[74] W. Cassing, S. Juchem, Nucl. Phys. A 665, 377 (2000) 562
[75] Y.B. Ivanov, J. Knoll, D.N. Voskresensky, Nucl. Phys. A 672, 313

(2000) 562, 567, 569, 571, 572
[76] W. Cassing, S. Juchem, Nucl. Phys. A 672, 417 (2000) 562, 569, 571,

572, 593, 598
[77] W. Cassing, S. Juchem, Nucl. Phys. A 677, 445 (2000) 562
[78] J. Knoll, Y.B. Ivanov, D.N. Voskresensky, Ann. Phys.(NY) 293, 126

(2001) 562, 567, 569, 571, 581, 586
[79] S. Leupold, Nucl. Phys. A 695, 377 (2001) 562
[80] S. Juchem, W. Cassing, C. Greiner, Phys. Rev. D 69, 025006 (2004)

562, 572, 586, 588
[81] S. Juchem, W. Cassing, C. Greiner, Nucl. Phys. A 743, 92 (2004) 562,

572, 586, 588
[82] W. Cassing, Eur. Phys. J. ST 168, 3 (2009). DOI 10.1140/epjst/

e2009-00959-x 562, 586, 587, 588
[83] Dirac, P.A. M., Proc. Roy. Soc. 114, 243 (Lond) 563
[84] E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics (Nauka, 1979; Perga-

mon press, 1981) 564



674 References

[85] G. Baym, Phys. Rev. 127, 1391 (1962) 108, 110, 567, 580, 581, 586
[86] Y.B. Ivanov, J. Knoll, D.N. Voskresensky, Nucl. Phys. A 657, 413

(1999) 567, 568, 574, 581, 633
[87] W. Botermans, R. Mal�iet, Phys. Rep. 198, 115 (1990) 571, 586
[88] G.M. Carneiro, C.J. Pethick, Phys. Rev. B 11, 1106 (1975) 571
[89] H. van Hees, J. Knoll, Phys. Rev. D 65, 025010 (2002) 572
[90] H. van Hees, J. Knoll, Phys. Rev. D 65, 105005 (2002) 572
[91] H. van Hees, J. Knoll, Phys. Rev. D 66, 025028 (2002) 572
[92] J.P. Blaizot, E. Iancu, U. Reinosa, Nucl. Phys. A 736, :149 (2004) 572
[93] E. Beth, G.E. Uhlenbeck, Physica 4, 915 (1937) 572, 633
[94] K. Huang, Statistical Mechanics (Wiley, New York, 1963) 572
[95] R. Dashen, S. Ma, H.J. Bernstein, Phys. Rev. 187, 345 (1969) 407,

572
[96] A.Z. Mekjian, Phys. Rev. C 17, 1051 (1978) 572
[97] W. Weinhold, B. Friman, W. Nörenberg, Phys. Lett. B 433, 236 (1998)

407, 573, 574, 581, 633
[98] R.A. Arndt, I.I. Strakovsky, R.L. Workman, Phys. Rev. C52, 2246

(1995) 573
[99] P. Danielewicz, S. Pratt, Phys. Rev. C 53, 249 (1996) 573
[100] O. Schwalb, et al., Phys. Lett. B321, 20 (1994) 574, 633
[101] V. �pi£ka, P. Lipavský, K. Morawetz, Phys. Lett. A 240, 160 (1998)

575
[102] L.D. McLerran, T. Toimela, Phys. Rev. D31, 545 (1985) 348, 575, 765
[103] C. Gale, J.I. Kapusta, Phys. Rev. C35, 2107 (1987) 576
[104] M. Herrmann, B.L. Friman, W. Norenberg, Nucl. Phys. A560, 411

(1993) 368, 369, 576
[105] S. Leupold, U. Mosel, Phys. Rev. C 58, 2939 (1998) 358, 576
[106] R. Rapp, G. Chanfray, J. Wambach, Nucl. Phys. A 617, 472 (1997)

360, 368, 369, 372, 576, 765
[107] F. Klingl, N. Kaiser, W. Weise, Nucl. Phys. A 624, 527 (1997) 355,

358, 360, 368, 369, 373, 576, 765
[108] B.L. Friman, H.J. Pirner, Nucl. Phys. A 617, 496 (1997) 368, 372,

373, 576, 765
[109] B. Friman, M. Lutz, G. Wolf, Nucl. Phys. A 661, 526 (1999) 576
[110] F. Riek, H. van Hees, J. Knoll, Phys. Rev. C75, 059801 (2007) 371,

579, 587
[111] J. Knoll, D.N. Voskresensky, Annals Phys. 249, 532 (1996) 580, 583,

588
[112] L.D. Landau, I. Pomeranchuk, Dokl. Akad. Nauk Ser. Fiz. 92, 535

(1953) 580, 588
[113] A.B. Migdal, Phys. Rev. 103, 1811 (1956) 580, 588
[114] J.M. Cornwall, R. Jackiw, E. Tomboulis, Phys. Rev. D 10, 2428 (1974)

580
[115] J.M. Luttinger, J.C. Ward, Phys. Rev. 118, 1417 (1960) 110, 580, 586
[116] R. Rapp, E.V. Shuryak, Phys. Rev. Lett. 86, 2980 (2001) 582



References 675

[117] C. Greiner, S. Leupold, J. Phys. G27, L95 (2001) 582
[118] Z. Xu, C. Greiner, Phys. Rev. C71, 064901 (2005) 582, 587
[119] W. Cassing, Nucl. Phys. A700, 618 (2002) 582, 744, 745
[120] P. Danielewicz, Nucl. Phys. A 673, 375 (2000) 582, 591
[121] G. Batko, J. Randrup, T. Vetter, Nucl. Phys. A536, 786 (1992) 584
[122] G. Batko, J. Randrup, T. Vetter, Nucl. Phys. A546, 761 (1992) 584
[123] H. van Hees, J. Knoll, Nucl. Phys. A 683, 369 (2001) 368, 371, 375,

587
[124] Y.B. Ivanov, J. Knoll, D.N. Voskresensky, Phys. At. Nucl. 66, 1902

(2003) 587
[125] Y.B. Ivanov, F. Riek, H. van Hees, J. Knoll, Phys. Rev. D72, 036008

(2005) 587
[126] Y.B. Ivanov, F. Riek, J. Knoll, Phys. Rev. D71, 105016 (2005) 587
[127] J. Ruppert, T. Renk, Phys. Rev. C 71, 064903 (2005) 368, 371, 376,

587
[128] S. Leupold, Phys. Lett. B646, 155 (2007) 371, 587
[129] F. Riek, J. Knoll, Nucl. Phys. A740, 287 (2004) 368, 370, 372, 388,

588
[130] Y.B. Ivanov, J. Knoll, H.v. Hees, D.N. Voskresensky, Phys. Atom. Nucl.

64, 652 (2001) 588
[131] R.V. Gavai, S. Gupta, Phys. Rev. D73, 014004 (2006) 588
[132] V. Koch, A. Majumder, J. Randrup, Phys. Rev. Lett. 95, 182301 (2005)

588, 816, 817
[133] C.D. Roberts, A.G. Williams, Prog. Part. Nucl. Phys. 33, 477 (1994)

588
[134] R.J. Lenk, V.R. Pandharipande, Phys. Rev. C 39(6), 2242 (1989) 592
[135] M. E�enberger, E.L. Bratkovskaya, U. Mosel, Phys. Rev. C 60, 44614

(1999) 592, 593
[136] M. E�enberger, PhD thesis, University Giessen (1999) 592, 593
[137] A.B. Larionov, U. Mosel, Nucl. Phys. A 728, 135 (2003) 592, 593
[138] M. Wagner, A.B. Larionov, U. Mosel, Phys. Rev. C 71, 034910 (2005)

592, 593, 741, 742, 744, 750, 751, 755, 761
[139] S.J. Lee, et al., Phys. Rev. Lett. 57, 2916 (1986) 592
[140] V. Dmitriev, O. Sushkov, C. Gaarde, Nucl. Phys. A 459, 503 (1986)

592
[141] O. Buss, L. Alvarez-Ruso, P. Mühlich, U. Mosel, Eur. Phys. J. A 29,

189 (2006) 593
[142] H.W. Barz, B. Kampfer, G. Wolf, M. Zetenyi, arXiv:nucl-th/0605036

(2006) 593
[143] G. Wolf, W. Cassing, U. Mosel, Nucl. Phys. A 552, 549 (1993) 593
[144] H.W. Barz, M. Zétényi, Phys. Rev. C 69, 024605 (2004) 594
[145] G. Wolf, Heavy Ion Physics 5, 281 (1997) 594
[146] K. Tsushima, A. Sibitsev, A.W. Thomas, G.Q. Li, Phys. Rev. C 59,

369 (1999) 594, 708



676 References

[147] H.W. Barz, M. Zétényi, G. Wolf, B. Kämpfer, Nucl. Phys. A 705, 223
(2002) 594

[148] H.W. Barz, L. Naumann, Phys. Rev. C 68, 041901 (R) (2003) 594
[149] C.M. Ko, Q. Li, R. Wang, Phys. Rev. Lett. 59, 1084 (1987) 594
[150] C.M. Ko, Q. Li, Phys. Rev. C 37, 2270 (1988) 594
[151] Q. Li, J.Q. Wu, C.M. Ko, Phys. Rev. C 39, 849 (1989) 594
[152] C.M. Ko, Nucl. Phys. A 495, 321 (1989) 594
[153] C.M. Ko, G.Q. Li, J. Phys. G 22, 405 (1996) 594, 701
[154] G.Q. Li, C.H. Lee, G.E. Brown, Nucl. Phys. A 625, 372 (1997) 594,

595
[155] G.Q. Li, G.E. Brown, Phys. Rev. C 58, 1698 (1998) 594
[156] G.Q. Li, G.E. Brown, Nucl. Phys. A 636, 487 (1998) 594, 703
[157] R.J. Furnstahl, H.B. Tang, B.D. Serot, Phys. Rev. C 52, 1368 (1995)

594
[158] C.M. Ko, Phys. Lett. B 120, 294 (1983) 594
[159] S. Pal, C.M. Ko, Z.W. Lin, Phys. Rev. C 64, 042201 (2001) 595, 701
[160] L.W. Chen, C.M. Ko, Y. Tzeng, Phys. Lett. B 584, 269 (2004) 595,

701, 702
[161] C. Fuchs, H.H. Wolter, Nucl. Phys. A 589, 732 (1995) 595
[162] V. Greco, et al., Phys. Lett. B 562, 215 (2003) 595, 596
[163] T. Gaitanos, et al., Nucl. Phys. A 732, 24 (2004) 155, 595
[164] T. Gaitanos, et al., Phys. Lett. B 595, 209 (2004) 595
[165] G. Ferini, et al., Nucl. Phys. A 762, 147 (2005) 595, 596
[166] B. Liu, et al., Phys. Rev. C 65, 045201 (2002) 595
[167] V. Baran, M. Colonna, V. Greco, M.D. Toro, Phys. Rep. 410, 335

(2005) 153, 154, 595
[168] B.A. Li, C.M. Ko, Phys. Rev. C 52, 2037 (1995) 596, 597
[169] B. Li, A.T. Sustich, B. Zhang, C.M. Ko, Int. J. Mod. Phys. E 10, 267

(2001) 596, 597
[170] B.A. Li, C.M. Ko, W. Bauer, Int. J. Mod. Phys. E 7, 147 (1998) 596
[171] G. Song, B.A. Li, C.M. Ko, Nucl. Phys. A 646, 481 (1999) 596, 597
[172] J. Cugnon, P. Deneye, J. Vandermeulen, Phys. Rev. C 41, 1701 (1990)

597
[173] Z.W. Lin, C.M. Ko, B.A. Li, B. Zhang, S. Pal, Phys. Rev. C 72, 064901

(2005) 597
[174] X.N. Wang, M. Gyulassy, Phys. Rev. D 44, 3501 (1991) 597
[175] B. Zhang, C.M. Ko, B.A. Li, Z.W. Lin, Phys. Rev. C 61, 067901 (2000)

597, 761, 841
[176] Z.W. Lin, S. Pal, C.M. Ko, B.A. Li, B. Zhang, Phys. Rev. C 64,

011902(R) (2001) 597
[177] B. Zhang, Comput. Phys. Commun. 109, 193 (1998) 597
[178] T. Sjostrand, Comput. Phys. Commun. 82, 74 (1994) 597, 598
[179] Z.W. Lin, C.M. Ko, Phys. Rev. C 65, 034904 (2002) 597
[180] W. Ehehalt, W. Cassing, Nucl. Phys. A 602, 449 (1996) 598, 742, 761
[181] J. Geiss, W. Cassing, C. Greiner, Nucl. Phys. A 644, 107 (1998) 598



References 677

[182] W. Cassing, E.L. Bratkovskaya, Phys. Rep. 308, 65 (1999) 598, 699,
708, 742, 761, 768, 784, 789, 790, 800, 801

[183] E.L. Bratkovskaya, W. Cassing, Nucl. Phys. A 619, 413 (1997) 346,
598

[184] W. Cassing, E.L. Bratkovskaya, A. Sibirtsev, Nucl. Phys. A 691, 753
(2001) 464, 477, 482, 598, 740, 742, 786, 787, 788, 796, 797

[185] W. Cassing, K. Gallmeister, C. Greiner, Nucl. Phys. A 735, 277 (2004)
598

[186] W. Cassing, E.L. Bratkovskaya, S. Juchem, Nucl. Phys. A 674, 249
(2000) 598, 690

[187] B. Andersson, G. Gustafson, H. Pi, Z. Phys. C57, 485 (1993) 598
[188] W. Cassing, (2005). URL http://conferences.jlab.org/ECT/

program 598
[189] A. Peshier, W. Cassing, Phys. Rev. Lett. 94, 172301 (2005) 215, 598,

599
[190] W. Cassing, Nucl. Phys. A795, 70 (2007) 598, 841
[191] W. Cassing, Nucl. Phys. A791, 365 (2007) 598, 841
[192] A.B. Kaidalov, Phys. Lett. B 116, 459 (1982) 599
[193] A.B. Kaidalov, K.A. Ter-Martirosian, Phys. Lett. B 117, 247 (1982)

599
[194] N.S. Amelin, L.V. Bravina, L.P. Csernai, V.D. Toneev, K.K. Gudima,

S.Y. Sivoklokov, Phys. Rev. C 47, 2299 (1993) 599, 761
[195] E.E. Zabrodin, C. Fuchs, L.V. Bravina, A. Faessler, Phys. Rev. C 63,

034902 (2001) 599, 654, 750, 751, 761, 762
[196] E.E. Zabrodin, C. Fuchs, L.V. Bravina, A. Faessler, Phys. Lett. B 508,

184 (2001) 599, 654, 750, 751, 761, 762
[197] G. Burau, J. Bleibel, C. Fuchs, A. Faessler, L.V. Bravina, E.E.

Zabrodin, Phys. Rev. C 71, 054905 (2005) 599, 654, 750, 751, 761, 762
[198] V. Gribov, Sov. Phys. JETP 26, 414 (1968) 599
[199] L.V. Gribov, E.M. Levin, M.G. Ryskin, Phys. Rep. 100, 1 (1983) 599
[200] V. Abramovskii, V. Gribov, O. Kancheli, Sov. J. Nucl. Phys. 18, 308

(1974) 599
[201] N.S. Amelin, E.F. Staubo, L.P. Csernai, Phys. Rev. D 46, 4873 (1992)

599
[202] R.J. Lenk, V.R. Pandharipande, Phys. Rev. C 34, 177 (1986) 601
[203] R.J. Lenk, V.R. Pandharipande, Phys. Rev. C 36, 162 (1987) 601
[204] C.O. Dorso, V.C. Latora, A. Bonasera, Phys. Rev. C 60, 34606 (1999)

601
[205] C. Dorso, J. Randrup, Phys. Lett. B 232, 29 (1989) 601, 602
[206] A. Chernomoretz, C.O. Dorso, J.A. López, Phys. Rev. C 64, 044605

(2001) 601
[207] C.O. Dorso, C.R. Escudero, M. Ison, J.A. López, Phys. Rev. C 73,

044601 (2006) 601
[208] L. Wilets, E.M. Henley, M. Kraft, A.D. Mackellar, Nucl. Phys. A 282,

341 (1977) 601

http://conferences.jlab.org/ECT/program
http://conferences.jlab.org/ECT/program


678 References

[209] L. Wilets, Y. Yariv, R. Chestnut, Nucl. Phys. A 301, 359 (1978) 601
[210] C. Dorso, S. Duarte, J. Randrup, Phys. Lett. B 188, 287 (1987) 601,

602
[211] C. Dorso, J. Randrup, Phys. Lett. B 215, 611 (1988) 602
[212] G. Peilert, J. Randrup, H. Stöcker, W. Greiner, Phys. Lett. B 260, 271

(1991) 602, 603
[213] J. Aichelin, H. Stöcker, Phys. Lett. B 176, 14 (1986) 602, 650
[214] J. Aichelin, Phys. Rep. 202, 233 (1991) 602, 603
[215] G. Peilert, H. Stöker, W. Greiner, A. Rosenhauer, A. Bohnet, J. Aiche-

lin, Phys. Rev. C 39, 1402 (1989) 602
[216] T. Maruyama, A. Ohnishi, H. Horiuchi, Phys. Rev. C 42, 386 (1990)

602
[217] C. Hartnack, R.K. Puri, J. Aichelin, J. Konopka, S.A. Bass, H. Stöcker,

W. Greiner, Eur. Phys. J. A 1, 151 (1998) 602, 603, 705
[218] H. Sorge, H. Stöcker, W. Greiner, Ann. of Phys. 192, 266 (1989) 603,

604
[219] E. Lehmann, R.K. Puri, A. Faessler, G. Batko, S.W. Huang, Phys. Rev.

C 51, 2113 (1995) 603, 604
[220] P.A.M. Dirac, Rev. Mod. Phys. 21, 392 (1949) 604
[221] J. Samuel, Phys. Rev. D 26, 3482 (1982) 604
[222] H. Sorge, Phys. Rev. C 52, 3291 (1995) 604, 751, 757, 761
[223] H. Sorge, Phys. Lett. B 373, 16 (1996) 604
[224] G.Q. Li, C.M. Ko, G.E. Brown, H. Sorge, Nucl. Phys. A 611, 539 (1996)

604, 768, 769
[225] H. Sorge, Phys. Rev. Lett. 78, 2309 (1997) 604
[226] H. Sorge, Phys. Rev. Lett. 82, 2048 (1999) 604
[227] C. Fuchs, E. Lehmann, L. Sehn, F. Scholz, T. Kubo, J. Zipprich,

A. Faessler, Nucl. Phys. A 603, 471 (1996) 604
[228] W.S.U. Maheswari, C. Fuchs, A. Faessler, L. Sehn, D. Kosov, Z. Wang,

Nucl. Phys. A 628, 669 (1998) 604, 706
[229] C. Fuchs, A. Faessler, E. Zabrodin, Y.E. Zheng, Phys. Rev. Lett. 86,

1974 (2001) 605, 701, 707, 708
[230] K. Shekter, C. Fuchs, A. Faessler, M. Krivoruchenko, B. Martemyanov,

Phys. Rev. C 68, 014904 (2003) 346, 605, 776
[231] S.A. Bass, et al., Prog. Part. Nucl. Phys. 41, 225 (1998) 605, 889
[232] M. Bleicher, et al., J. Phys. G25, 1859 (1999) 491, 605, 624, 654, 834
[233] M. Berenguer, H. Sorge, W. Greiner, Phys. Lett. B 332, 15 (1994) 606
[234] R.D. Field, R.P. Feynman, Nucl. Phys. B136, 1 (1978) 606
[235] H. Feldmeier, Nucl. Phys. A 515, 147 (1990) 607
[236] H. Feldmeier, J. Schnack, Nucl. Phys. A 583, 347 (1995) 607
[237] H. Feldmeier, K. Bieler, J. Schnack, Nucl. Phys. A 586, 493 (1995) 607
[238] H. Feldmeier, J. Schnack, Prog. Part. Nucl. Phys. 39, 393 (1997) 607
[239] H. Feldmeier, J. Schnack, Rev. Mod. Phys. 72, 655 (2000) 607
[240] T. Maruyame, K. Niita, A. Iwamoto, Phys. REv. C 53, 297 (1996) 607
[241] D. Kiderlen, P. Danielewicz, Nucl. Phys. A 620, 346 (1997) 607



References 679

[242] M. Colonna, P. Chomaz, Phys. Lett. B 436, 1 (1998) 608
[243] J. Schnack, H. Feldmeier, Phys. Lett. B 409, 6 (1997) 608
[244] H. Feldmeier, in "The Nuclear Equation of State", Part A, W. Greiner

and H. Stöcker (ed), (Plenum Press, New York, 1989) 608
[245] M. Chernyk, H. Feldmeier, T. Ne�, P. von Neumann-Cosel, A. Richter,

Phys. Rev. Lett. 98, 032501 (2007) 608
[246] T. Ne�, H. Feldmeier, R. Roth, Nucl. Phys. A752, 321 (2005) 608
[247] T. Ne�, H. Feldmeier, Nucl. Phys. A738, 357 (2004) 608
[248] A. Ono, H. Horiuchi, T. Maruyama, A. Ohnishi, Phys. Rev. Lett. 68,

2898 (1992) 609
[249] A. Ono, H. Horiuchi, T. Maruyama, A. Ohnishi, Prog. Theor. Phys.

87, 1185 (1992) 609, 610
[250] A. Ono, H. Horiuchi, Prog. Part. Nucl. Phys. 53, 501 (2004) 609
[251] A. Ono, H. Horiuchi, Phys. Rev. C 53, 2958 (1996) 609, 610
[252] A. Ono, Phys. Rev. C 59, 853 (1999) 609
[253] A. Ono, S. Hudan, A. Chbihi, J.D. Frankland, Phys. Rev. C 66, 014603

(2002) 609
[254] Y. Kanada-En'yo, M. Kimura, H. Horiuchi, C. R. Physique 4, 497

(2003) 610
[255] A. Ono, H. Horiuchi, Phys. Rev. C 53, 2341 (1996) 610
[256] Y. Sugawa, H. Horiuchi, Phys. Rev. C 60, 064607 (1999) 610
[257] Y. Sugawa, H. Horiuchi, Prog. Theor. Phys. 105, 131 (2001) 610
[258] T. Furuta, A. Ono, Phys. Rev. C in press 74, 2006 (2006) 610
[259] R. Wada, et al, Phys. Rev. C 62, 034601 (2000) 610
[260] A. Ono, P. Danielewicz, W.A. Friedman, W.G. Lynch, M.B. Tsang,

Phys. Rev. C 68, 051601(R) (2003) 610
[261] A. Ono, P. Danielewicz, W.A. Friedman, W.G. Lynch, M.B. Tsang,

Phys. Rev. C 70, 041604(R) (2004) 610
[262] A. Ohnishi, J. Randrup, Phys. Rev. Lett. 75, 596 (1995) 610, 611
[263] A. Ohnishi, J. Randrup, Ann. Phys. 253, 279 (1997) 610, 611
[264] A. Ohnishi, J. Randrup, Nucl. Phys. A 565, 474 (1994) 611, 612
[265] A. Ohnishi, J. Randrup, Phys. Rev. A 55, R3315 (1997) 612
[266] Y. Hirata, A. Ohnishi, Y. Nara, T. Harada, J. Randrup, Nucl. Phys. A

639, 389 (1998) 612
[267] Y. Hirata, Y. Nara, A. Ohnishi, T. Harada, J. Randrup, Prog. Theo.

Phys. 102, 89 (1999) 612
[268] A. Ohnishi, J. Randrup, Phys. Lett. B 394, 260 (1997) 612
[269] H.G. Baumgardt, et al., Z. Phys. A273, 359 (1975) 614, 615, 651
[270] A.A. Amsden, F.H. Harlow, J.R. Nix, Phys. Rev. C15, 2059 (1977)

614
[271] R.B. Clare, D. Strottman, Phys. Rept. 141, 177 (1986) 614
[272] I.N. Mishustin, V.N. Russkikh, L.M. Satarov, Nucl. Phys. A494, 595

(1989) 614, 616
[273] N. Amelin, E.F. Staubo, L. Csernai, V.D. Toneev, K.K. Gudima,

D. Strottman, Phys. Rev. Lett. 67, 1523 (1991) 614



680 References

[274] B.R. Schlei, D. Strottman, Phys. Rev. C59, 9 (1999) 614
[275] D.H. Rischke, Nucl. Phys. A610, 88c (1996) 614
[276] D.H. Rischke, S. Bernard, J.A. Maruhn, Nucl. Phys. A595, 346 (1995)

614, 666, 834
[277] D.H. Rischke, Y. Pursun, J.A. Maruhn, Nucl. Phys. A595, 383 (1995)

614, 834
[278] J. Bolz, U. Ornik, R.M. Weiner, Phys. Rev. C46, 2047 (1992) 614
[279] P. Huovinen, P.V. Ruuskanen, Ann. Rev. Nucl. Part. Sci. 56, 163 (2006)

614
[280] P. Huovinen, arXiv:nucl-th/0305064 (2003) 614
[281] P.F. Kolb, U.W. Heinz, P. Huovinen, K.J. Eskola, K. Tuominen, Nucl.

Phys. A696, 197 (2001) 222, 614, 761
[282] P. Huovinen, P.F. Kolb, U.W. Heinz, P.V. Ruuskanen, S.A. Voloshin,

Phys. Lett. B503, 58 (2001) 614
[283] J. Sollfrank, et al., Phys. Rev. C55, 392 (1997) 614, 615
[284] J. Brachmann, et al., Nucl. Phys. A619, 391 (1997) 614, 616, 758
[285] K. Paech, H. Stoecker, A. Dumitru, Phys. Rev. C 68, 044907 (2003)

614
[286] L.P. Csernai, J.I. Kapusta, Phys. Rev. D46, 1379 (1992) 614
[287] Y. Hama, R. Andrade, F. Grassi, O. Socolowski, T. Kodama,

B. Tavares, S.S. Padula, AIP Conf. Proc. 828, 485 (2006) 615
[288] V.V. Skokov, V.D. Toneev, Phys. Rev. C 73, 021902(R) (2006) 615
[289] J. Sollfrank, P. Huovinen, M. Kataja, P.V. Ruuskanen, M. Prakash,

R. Venugopalan, Phys. Rev. C 55, 392 (1997) 614, 615
[290] P. Huovinen, P.V. Ruuskanen, J. Sollfrank, Nucl. Phys. A 650, 227

(1999) 615
[291] P.F. Kolb, J. Sollfrank, P.V. Ruuskanen, U. Heinz, Nucl. Phys. A 661,

349 (1999) 615
[292] C. Nonaka, S.A. Bass, Nucl. Phys. A 774, 873 (2006) 615
[293] C.M. Hung, E.V. Shuryak, Phys. Rev. Lett. 75, 4003 (1995) 615
[294] C.M. Hung, E. Shuryak, Phys. Rev. C 57, 1891 (1998) 615
[295] D. Teaney, J. Lauret, E.V. Shuryak, arXiv:nucl-th/0110037 (2001) 615
[296] D. Teaney, J. Lauret, E.V. Shuryak, Phys. Rev. Lett. 86, 4783 (2001)

615, 623, 654
[297] A.A. Amsden, A.S. Goldhaber, F.H. Harlow, J.R. Nix, Phys. Rev. C17,

2080 (1978) 616
[298] U. Katscher, et al., Z. Phys. A346, 209 (1993) 616
[299] V.D. Toneev, Y.B. Ivanov, E.G. Nikonov, W. Norenberg, V.N.

Russkikh, Phys. Part. Nucl. Lett. 2, 288 (2005) 616, 617, 648, 758
[300] V.N. Russkikh, Y.B. Ivanov, E.G. Nikonov, W. Norenberg, V.D.

Toneev, Phys. Atom. Nucl. 67, 199 (2004) 616, 657, 658
[301] L.M. Satarov, Sov. J. Nucl. Phys. 52, 264 (1990) 617
[302] V.N. Russkikh, Y.B. Ivanov, Phys. Rev. C74, 034904 (2006) 617, 652,

653, 656, 750, 760
[303] Y.B. Ivanov, V.N. Russkikh, Eur. Phys. J. A 37, 139 (2008) 617



References 681

[304] V.N. Russkikh, Y.B. Ivanov, Phys. Rev. C 76, 054907 (2007) 617, 627,
628

[305] H.W. Barz, B.L. Friman, J. Knoll, H. Schulz, Nucl. Phys. A 484, 661
(1988) 617, 632, 810

[306] H.W. Barz, B.L. Friman, J. Knoll, H. Schulz, Nucl. Phys. A 519, 831
(1990) 617, 618, 625, 632, 810

[307] H.W. Barz, B.L. Friman, J. Knoll, H. Schulz, Phys. Rev. D40, 157
(1989) 618

[308] J. Knoll, Nucl. Phys. A821, 235 (2009) 619, 627, 630, 639, 809
[309] V.V. Skokov, D.N. Voskresensky, arXiv:0811.3868 [nucl-th] (2008) 621,

623
[310] P. Danielewicz, M. Gyulassy, Phys. Rev. D31, 53 (1985) 621
[311] U.W. Heinz, H. Song, A.K. Chaudhuri, Phys. Rev. C73, 034904 (2006)

621, 623, 658
[312] L. Landau, E. Lifshitz, in Fluid Mechanics (Pergamon, Oxford) (1963)

621
[313] R. Kubo, J. Phys. Soc. Jap. 12, 570 (1957) 622
[314] J. Randrup, Phys. Rev. C79, 054911 (2009) 622, 623
[315] K. Paech, S. Pratt, Phys. Rev. C74, 014901 (2006) 622, 658
[316] S. Pratt, arXiv:0809.0089 [nucl-th] (2008) 622
[317] S. Cheng, et al., Phys. Rev. C65, 024901 (2002) 622
[318] F. Karsch, D. Kharzeev, K. Tuchin, Phys. Lett. B663, 217 (2008) 622
[319] A. Krasnitz, Y. Nara, R. Venugopalan, Nucl. Phys. A717, 268 (2003)

622
[320] W. Israel, Ann. Phys. 100, 310 (1976) 622
[321] W. Israel, J.M. Stewart, Ann. Phys. 118, 341 (1979) 622
[322] J. Randrup, Phys. Rev. Lett. 92, 122301 (2004) 261, 623
[323] A. Muronga, Eur. Phys. J. ST 155, 107 (2008) 623, 658
[324] A. Muronga, J. Phys. G31, S1035 (2005) 623, 658
[325] T. Koide, Phys. Rev. E75, 060103 (2007) 623, 658
[326] R. Baier, P. Romatschke, U.A. Wiedemann, Phys. Rev. C73, 064903

(2006) 623, 658
[327] H. Song, U.W. Heinz, Phys. Rev. C77, 064901 (2008) 623, 658
[328] P. Romatschke, U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007)

287, 623, 658
[329] A. Dumitru, S.A. Bass, M. Bleicher, H. Stoecker, W. Greiner, Phys.

Lett. B460, 411 (1999) 623
[330] S.A. Bass, A. Dumitru, Phys. Rev. C61, 064909 (2000) 623
[331] R. Andrade, et al., Eur. Phys. J. A29, 23 (2006) 623, 624
[332] T. Hirano, U.W. Heinz, D. Kharzeev, R. Lacey, Y. Nara, Phys. Lett.

B636, 299 (2006) 623, 624
[333] C. Nonaka, S.A. Bass, Phys. Rev. C75, 014902 (2007) 287, 623, 624
[334] S.V. Akkelin, Y. Hama, I.A. Karpenko, Y.M. Sinyukov, Phys. Rev.

C78, 034906 (2008) 623, 627, 631



682 References

[335] S. Pratt, J. Vredevoogd, arXiv:0809.0516 [nucl-th] (2008) 623, 624,
631, 638

[336] Q.f. Li, J. Steinheimer, H. Petersen, M. Bleicher, H. Stocker, Phys.
Lett. B674, 111 (2009) 623, 624

[337] H. Petersen, J. Steinheimer, G. Burau, M. Bleicher, Eur. Phys. J. C62,
31 (2009) 623, 624

[338] H. Petersen, J. Steinheimer, G. Burau, M. Bleicher, H. Stocker, Phys.
Rev. C78, 044901 (2008) 623, 624, 834

[339] S. Pratt, Phys. Rev. Lett. 102, 232301 (2009) 624, 631, 809
[340] F. Grassi, Y. Hama, O. Socolowski, T. Kodama, J. Phys. G31, S1041

(2005) 624
[341] V.V. Skokov, V.D. Toneev, Phys. Rev. C73, 021902 (2006) 624
[342] D. Teaney, J. Lauret, E.V. Shuryak, (2001) 287, 624
[343] T. Hirano, U.W. Heinz, D. Kharzeev, R. Lacey, Y. Nara, Phys. Rev.

C77, 044909 (2008) 624
[344] S.A. Bass, et al., Prog. Part. Nucl. Phys. 41, 255 (1998) 624, 715, 742,

761, 834
[345] H. Petersen, M. Bleicher, S.A. Bass, H. Stocker, (2008) 624
[346] H. Petersen, J. Steinheimer, M. Bleicher, H. Stocker, J. Phys. G36,

055104 (2009) 624
[347] H. Petersen, M. Bleicher, (2009) 624
[348] H. Petersen, M. Mitrovski, T. Schuster, M. Bleicher, (2009) 624
[349] J. Steinheimer, et al., (2009) 624
[350] J.D. Bjorken, Phys. Rev. D27, 140 (1983) 625, 651, 690, 723
[351] P.J. Siemens, J.O. Rasmussen, Phys. Rev. Lett. 42, 880 (1979) 625,

651
[352] T. Biro, H.W. Barz, B. Lukacs, J. Zimanyi, Phys. Rev. C27, 2695

(1983) 625
[353] G.A. Milekhin, Zh. Eksp. Teor. Fiz. 35, 1185 (1958) 626
[354] G.A. Milekhin, Sov. Phys. JETP 35, 829 (1959) 626
[355] G.A. Milekhin, Trudy FIAN 16, 51 (1961) 626
[356] F. Cooper, G. Frye, Phys. Rev. D 10, 186 (1974) 626
[357] K.A. Bugaev, Nucl. Phys. A606, 559 (1996) 627, 630
[358] K.A. Bugaev, M.I. Gorenstein, W. Greiner, J. Phys. G25, 2147 (1999)

627, 630
[359] C. Anderlik, et al., Phys. Rev. C59, 3309 (1999) 627, 630
[360] L.P. Csernai, Z. Lazar, D. Molnar, Heavy Ion Phys. 5, 467 (1997) 627,

630
[361] F. Grassi, Y. Hama, T. Kodama, Z. Phys. C73, 153 (1996) 627
[362] F. Grassi, Y. Hama, T. Kodama, Phys. Lett. B355, 9 (1995) 627
[363] V.K. Magas, et al., Heavy Ion Phys. 9, 193 (1999) 627
[364] Y.M. Sinyukov, S.V. Akkelin, Y. Hama, Phys. Rev. Lett. 89, 052301

(2002) 627, 630
[365] J.J. Neumann, B. Lavrenchuk, G.I. Fai, Heavy Ion Phys. 5, 27 (1997)

627



References 683

[366] R.G. Newton, Scattering Theory of Waves and Particles (Springer, New
York, USA, 1982) 627

[367] J. Knoll, R. Schae�er, Annals Phys. 97, 307 (1976) 627
[368] P. Danielewicz, P. Schuck, Phys. Lett. B 274, 268 (1992) 627, 633, 639
[369] H. van Hees, R. Rapp, Nucl. Phys. A806, 339 (2008) 628
[370] P. Braun-Munzinger, J. Stachel, Nucl. Phys. A606, 320 (1996) 632
[371] P. Braun-Munzinger, J. Stachel, Nucl. Phys. A638, 3 (1998) 200, 632
[372] J. Cleymans, K. Redlich, Phys. Rev. Lett. 81, 5284 (1998) 200, 202,

632, 693, 695, 696
[373] P. Braun-Munzinger, J. Stachel, C. Wetterich, Phys. Lett. B596, 61

(2004) 202, 632, 744, 745
[374] A. Dumitru, L. Portugal, D. Zschiesche, Phys. Rev.C73, 024902 (2006)

201, 202, 632
[375] C. Hartnack, H. Oeschler, J. Aichelin, arXiv:0712.0316 [nucl-th] (2007)

632
[376] A. Forster, et al., Phys. Rev. C75, 024906 (2007) 632
[377] H. van Hecke, H. Sorge, N. Xu, Phys. Rev. Lett. 81, 5764 (1998) 632,

751
[378] B. Hong, et al. [FOPI Collaboration], Phys. Rev. C57, 244 (1998) 632,

651
[379] H. Sato, K. Yazaki, Phys. Lett. B98, 153 (1981) 633
[380] E.A. Remler, Ann. Phys. 136, 293 (1981) 633
[381] T. Csörg®, J. Phys. Conf. Ser. 50, 259 (2006) 634, 638
[382] S.S. Padula, Braz. J. Phys. 35, 70 (2005) 634, 638
[383] U.A. Wiedemann, U.W. Heinz, Phys. Rept. 319, 145 (1999) 634, 636,

637
[384] G. Goldhaber, et al., Phys. Rev. Lett. 3, 181 (1959) 635
[385] G.I. Kopylov, Phys. Lett. B50, 472 (1974) 635
[386] S. Pratt, Phys. Rev. Lett. 53, 1219 (1984) 635
[387] G.F. Bertsch, Nucl. Phys. A498, 173c (1989) 635, 638
[388] L.V. Razumov, H. Feldmeier, Phys. Lett. B377, 129 (1996) 635
[389] G.F. Bertsch, P. Danielewicz, M. Herrmann, Phys. Rev. C49, 442

(1994) 636
[390] M.A. Lisa, S. Pratt, R. Soltz, U. Wiedemann, Ann. Rev. Nucl. Part.

Sci. 55, 357 (2005) 204, 636, 716
[391] M. Gyulassy, S.K. Kau�mann, L.W. Wilson, Phys. Rev. C20, 2267

(1979) 636, 639
[392] G.A. Miller, J.G. Cramer, J. Phys. G34, 703 (2007) 636
[393] M. Gyulassy, Lect. Notes Phys. 583, 37 (2002) 638
[394] E.E. Kolomeitsev, C. Hartnack, H.W. Barz, M. Bleicher,

E. Bratkovskaya, W. Cassing, L.W. Chen, P. Danielewicz, C. Fuchs,
T. Gaitanos, C.M. Ko, A. Larionov, M. Reiter, G. Wolf, J. Aichelin, J.
Phys. G 31, 741 (2005) 647, 648

[395] H. Stöcker, W. Greiner, Phys. Rep. 8, 137 (1986) 649



684 References

[396] S. Yildirim, T. Gaitanos, M.D. Toro, V. Greco, Phys. Rev. C 72, 064317
(2005) 649

[397] P. Ring, D. Vretenar, B. Podobnik, Nucl. Phys. A 598, 107 (1996) 649
[398] H. Müther, A. Polls, Prog. Part. Nucl. Phys. 45, 243 (2000) 147, 650
[399] X.R. Zhou, G.F. Burgio, U. Lombardo, H.J. Schulze, W. Zuo, Phys.

Rev. C 69, 018801 (2004) 147, 650
[400] B. ter Haar, R. Mal�iet, Phys. Rep. 149, 207 (1987) 147, 155, 650
[401] R. Brockmann, R. Machleidt, Phys. Rev. C 42, 1965 (1990) 147, 150,

650
[402] T. Gross-Boelting, C. Fuchs, A. Faessler, Nucl. Phys. A 648, 105 (1999)

147, 150, 155, 650
[403] E. van Dalen, C. Fuchs, A. Faessler, Nucl. Phys. A 744, 227 (2004)

147, 152, 153, 154, 155, 650
[404] T. Gaitanos, C. Fuchs, H.H. Wolter, A. Faessler, Eur. Phys. J. A 12,

421 (2001) 154, 650, 655, 656, 703
[405] C. Fuchs, T. Gaitanos, Nucl. Phys. A 714, 643 (2003) 650, 656
[406] B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1988) 148, 419, 422,

650
[407] B. Blättel, V. Koch, U. Mosel, Rep. Prog. Phys. 56, 1 (1993) 650, 657
[408] P. Danielewicz, Nucl. Phys. A314, 465 (1979) 651
[409] H. Stoecker, W. Greiner, Phys. Rept. 137, 277 (1986) 651
[410] P. Danielewicz, et al., Phys. Rev. C38, 120 (1988) 651, 652
[411] P. Danielewicz, Phys. Rev. C51, 716 (1995) 651
[412] W. Reisdorf, et al. [FOPI Collaboration], Nucl. Phys.A612, 493 (1997)

651
[413] P. Danielewicz, R. Lacey, W.G. Lynch, Science 298, 1592 (2002) 177,

178, 651, 652, 655, 656, 666, 668, 718, 720, 755
[414] P. Danielewicz, M. Gyulassy, Phys. Lett. B129, 283 (1983) 652
[415] P. Danielewicz, G. Odyniec, Phys. Lett. B157, 146 (1985) 652
[416] J.Y. Ollitrault, arXiv:nucl-ex/9711003 (1997) 652
[417] J.Y. Ollitrault, Nucl. Phys. A638, 195 (1998) 652
[418] M.D. Partlan, et al. [EOS Collaboration], Phys. Rev. Lett. 75, 2100

(1995) 653, 654, 656
[419] W. Reisdorf, H.G. Ritter, Ann. Rev. Nucl. Part. Sci. 47, 663 (1997)

653, 654
[420] N. Herrmann, J.P. Wessels, T. Wienold, Ann. Rev. Nucl. Part. Sci. 49,

581 (1999) 653, 654
[421] H.H. Gutbrod, A.M. Poskanzer, H.G. Ritter, Rept. Prog. Phys. 52,

1267 (1989) 654
[422] H.H. Gutbrod, et al., Phys. Rev. C42, 640 (1990) 654
[423] J. Barrette, et al. [E877 Collaboration], Phys. Rev. C55, 1420 (1997)

654
[424] H. Liu, et al. [E895 Collaboration], Phys. Rev. Lett. 84, 5488 (2000)

654, 656, 718, 719



References 685

[425] A. Wetzler, et al. [NA49 Collaboration], Nucl. Phys. A715, 583 (2003)
654

[426] M.M. Aggarwal, et al. [WA98 Collaboration], Nucl. Phys. A638, 459
(1998) 654

[427] S.A. Voloshin, Nucl. Phys. A 715, 379 (2003) 654
[428] C. Adler, et al. [STAR Collaboration], Phys. Rev. C66, 034904 (2002)

654
[429] J. Adams, et al. [STAR Collaboration], Phys. Rev. Lett. 92, 112301

(2004) 654
[430] J.Y. Ollitrault, Phys. Rev. D 46, 229 (1992) 654
[431] P. Kolb, J. Sollfrank, U. Heinz, Phys. Lett. B 459, 667 (1999) 654
[432] P. Kolb, J. Sollfrank, U. Heinz, Phys. Rev. C 62, 054909 (2000) 447,

654, 732
[433] S.A. Voloshin, A.M. Poskanzer, Phys. Lett. B 474, 27 (2000) 654
[434] H. Petersen, M. Bleicher, Eur. Phys. J. C 49, 91 (2007) 654
[435] A. Hombach, W. Cassing, S. Teis, U. Mosel, Eur. Phys. J. A 5, 157

(1999) 655, 703
[436] P. Danielewicz, Nucl. Phys. A 673, 275 (2000) 154, 655, 656
[437] P. Danielewicz, et al., Phys. Rev. Lett. 81, 2438 (1998) 655, 754
[438] C. Pinkenburg, et al. [E895 Collaboration], Phys. Rev. Lett. 83, 1295

(1999) 655, 656, 717, 718
[439] A. Andronic, et al. [FOPI Collaboration], Nucl. Phys. A c 661, 333

(1999) 656, 755
[440] A. Andronic, et al. [FOPI Collaboration], Phys. Rev. C 64, 041604

(2001) 656, 754
[441] A. Andronic, et al. [FOPI Collaboration], Phys. Rev. C 67, 034907

(2003) 656, 754
[442] G. Stoicea, et al. [FOPI Collaboration], Phys. Rev. Lett. 92, 072303

(2004) 656
[443] A. Andronic, et al. [FOPI Collaboration], Phys. Lett. B 612, 173 (2005)

656, 755
[444] P. Danielewicz, arXiv:nucl-th/0512009 (2005) 656, 666, 668
[445] A.B. Larionov, W. Cassing, C. Greiner, U. Mosel, Phys. Rev. C 62,

064611 (2000) 656, 742, 755, 761
[446] D. Persram, C. Gale, Phys. Rev. C 65, 064611 (2002) 656
[447] J. Barrette, et al. [E877 Collaboration], Phys. Rev. C56, 3254 (1997)

656
[448] T. Gaitanos, C. Fuchs, H.H. Wolter, Nucl. Phys. A 741, 287 (2004)

656
[449] T. Maruyama, W. Cassing, U. Mosel, S. Teis, K. Weber, Nucl. Phys.

A573, 653 (1994) 657
[450] C. Alt, et al., Phys. Rev. C 68, 034903 (2003) 657, 658, 760
[451] L.P. Csernai, D. Rohrich, Phys. Lett. B 458, 454 (1999) 657, 753, 754,

759



686 References

[452] S.S. Adler, et al. [PHENIX Collaboration], Phys. Rev. Lett. 91, 182301
(2003) 657, 659

[453] D. Molnar, S.A. Voloshin, Phys. Rev. Lett. 91, 092301 (2003) 657
[454] B.B. Back, et al. [PHOBOS Collaboration], Phys. Rev. C 72, 051901

(2005) 657, 658, 659
[455] J. Bleibel, G. Burau, A. Faessler, C. Fuchs, Phys. Rev. C 76, 024912

(2007) 658, 659
[456] I. Arsene, et al., Nucl. Phys. A757, 1 (2005) 657
[457] J. Adams, et al., Nucl. Phys. A757, 102 (2005) 657
[458] K. Adcox, et al., Nucl. Phys. A757, 184 (2005) 657
[459] U.W. Heinz, P.F. Kolb, Nucl. Phys. A702, 269 (2002) 657
[460] D. Teaney, Phys. Rev. C68, 034913 (2003) 88, 286, 287, 295, 657, 761
[461] P. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601

(2005) 88, 658
[462] B.I. Abelev, et al. [STAR Collaboration], Phys. Rev. C 75, 054906

(2007) 658
[463] V. Koch, A. Majumder, J. Randrup, Phys. Rev. C 72, 064903 (2005)

660, 745, 825, 826, 827, 830



Part IV

OBSERVABLES AND PREDICTIONS

Conveners:

E. Bratkovskaya3, P. Senger1,a

Authors, who contributed to the various chapters or sections given
in brackets:
A. Andronic1 [4, 8], R. Averbeck1 [7], R. Bellwied6 [3.2, 3.3], E. Bratkovskaya3

[4�9], V. Friese1 3.3], C. Fuchs5 [3.1], J. Knoll1,4 [9, 9.2, 9.3] J. Randrup2 [9],
P. Senger1,a [1, 3, 4�9], J. Steinheimer3 [10]
A�liations:

1GSI, Darmstadt; 2LBL, Berkeley; 3University of Frankfurt; 4University of
Heidelberg; 5University of Tübingen; 6Wayne State University, Detroit.

Support:

aEU, FP6 Hadron Physics (I3HP) under Contract number RII3-CT-2004-506078





Chapter 1

Introduction

In the laboratory hot and dense nuclear matter can be generated in a wide
range of temperatures and densities by colliding atomic nuclei at high ener-
gies. In the collision zone, the matter is heated and compressed to a "�re-
ball" for a very short period of time. At moderate collision energies, nucleons
are excited to short-lived states (baryonic resonances) which decay by the
emission of mesons. At higher collisions energies and thus at higher temper-
atures, also baryon-antibaryon pairs are created. This mixture of baryons,
antibaryons and mesons, all strongly interacting particles, is generally called
hadronic matter, or baryonic matter if baryons prevail. At very high temper-
atures or densities the hadrons melt, and their constituents, the quarks and
gluons, form a new phase, the Quark-Gluon Plasma. High-energy heavy-ion
collision experiments provide the unique possibility to create and investigate
these extreme states of matter, and, therefore, address fundamental aspects
of QCD: (i) the equation-of-state of strongly interacting matter at high tem-
peratures and high net-baryon densities, (ii) the microscopic structure of
strongly interacting matter as function of temperature and baryon density,
such as hadronic and partonic phases, (iii) the location of the phase tran-
sitions and critical points, and (iv) the in-medium modi�cations of hadrons
which might be related to the restoration of chiral symmetry.

The nuclear matter equation of state plays an important role for the dy-
namics of core collapse supernova and for the stability of neutron stars. In
type II supernova explosions, symmetric nuclear matter is compressed to 2-3
times saturation density ρ0. Such conditions have been realized in heavy-ion
collisions at BEVALAC/GSI-SIS18 beam energies (up to about 2 AGeV), al-
though the temperatures reached in nuclear collisions are higher than those
in the core of a supernova. Heavy-ion experiments at BEVALAC/GSI-SIS18
discovered the collective �ow of nucleons, and studied in detail the produc-
tion of pions and strange particles. In particular the data on strangeness
production obtained at SIS18 provided evidence for a soft nuclear matter
equation-of-state, and for the modi�cation of kaon properties in dense nu-
clear matter. Moreover, pioneering studies of electromagnetic radiation from
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the �reball via the measurement of electron-positron pairs were performed
at the BEVALAC in order to obtain information on the in-medium proper-
ties of vector mesons. At GSI, the 2nd generation High Acceptance Dilepton
Spectrometer (HADES) has been installed and started data production.

The experiments at BNL-AGS (using gold beams of energies between 2
and 11 AGeV) measured the yields and momentum spectra of various particle
species in heavy-ion collisions, and established the scenario of an expanding
thermalized source with a common chemical freeze-out temperature for all
particles. A major achievement of the experiments at AGS was the measure-
ment of the excitation function of collective �ow of protons as a probe of the
equation-of-state of dense nuclear matter.

Experiments at CERN-SPS (using lead beams of energies between 10 and
160 AGeV) extended the list of hadrons observed in heavy-ion collisions up
to multi-strange hyperons, and con�rmed the picture of a chemically equili-
brated �reball. The particle yields and event-wise �uctuations measured in
Pb+Pb collisions exhibit intriguing features at low SPS energies, which have
been interpreted as signatures for the onset of decon�nement. The obser-
vation of a strong suppression of the charmonium yield in central collisions
supported the idea of Debye screening of charmonium in quark-gluon matter.
Measurements of electron-positron pairs and muon pairs found an enhanced
dilepton yield at invariant masses between 0.2 GeV/c2 and 1 GeV/c2, an
e�ect which is interpreted as a contribution from ρ mesons with modi�ed
in-medium masses.

Experimental observations at RHIC provided strong evidence for the cre-
ation of partonic matter at the highest collision energies reached so far
(
√
sNN=200 GeV). This interpretation is based on three major discoveries:

the large azimuthal anisotropy of particle emission in noncentral collisions
(elliptic �ow), the scaling of this anisotropy with the number of constituent
quarks (constituent quark scaling), and the suppression of high-energetic par-
ticles traversing the medium ("jet-quenching").

According to lattice QCD calculations the critical energy densities for the
formation of a quark-gluon plasma is Ec = 1.15±0.3 GeV/fm3 [1]. Estimates
based on the Bjorken formula [2] for the energy density achieved in central
Au+Au collisions suggest that this value of Ec = is by far exceeded in the
initial phase of collisions at Relativistic Heavy-Ion Collider (RHIC) energies.
On the other hand, critical energy densities in the order of Ec = 1 GeV/fm3

might already be reached at beam energies of ∼ 10 A·GeV, and thus also in
heavy-ion collisions at FAIR energies [3�5].

The analysis of particle yields and ratios measured in heavy-ion collisions
from AGS to RHIC energies using a thermal (statistical) model �nds a limit-
ing chemical freeze-out temperature of about 160 MeV above a kinetic beam
energy of about 30 AGeV [6]. This nontrivial observation might re�ect a
change in the degrees-of-freedom of the �reball at low-SPS energies. The
freeze-out temperature is roughly compatible with the critical temperatures
of Tc = 150 - 190 MeV found in lattice QCD calculations at zero quark chem-
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ical potential [7, 8]. According to these calculations the phase transition at
vanishing quark chemical potential is a cross over [9]. On the other hand,
most models predict the transition at zero temperature and �nite density to
be of �rst order. Then, the �rst-order transition line has to end in a critical
point (for a review see [10]). Lattice QCD calculations, however, have not
yet reached conclusion on whether the QCD critical endpoint exists, and if
yes, where it is located [7, 11�13] A theoretical answer to these questions is
expected from more realistic calculations based on physical quark masses and
a more accurate continuum extrapolation.

Experiments at top SPS and RHIC energies so far did not �nd indications
of the QCD critical point. Theoretical predictions suggest that the �rst or-
der transition and the critical endpoint are located at large baryo chemical
potentials which are well in reach for low SPS and FAIR energies. A careful
beam energy scan will be required to possibly discover these most prominent
landmarks of the QCD phase diagram. In order to obtain a consistent picture
one has to investigate a comprehensive set of observables, and to search for
a non-monotonous behaviour in the excitation functions. The challenge is to
identify signatures of the partonic phase, of the coexistence phase, or of the
critical point which survive hadronization. It is obvious that those observ-
ables which are generated in the early phase of the collision and which are
not distorted by �nal-state interactions during the evolution of the �reball,
are the most promising candidates in this respect.

One of the observables which develop early is the elliptic �ow, as it senses
the initial anisotropic �reball shape in coordinate space. An important ques-
tion is whether the hadron elliptic �ow still remembers its partonic origin,
as it is suggested by the data obtained at RHIC: the observed elliptic �ow
is extremely large, and its strength scales with the number of constituent
quarks, independent of the quark �avor content. Will this scaling feature dis-
appear below a certain beam energy? The answer to this question requires a
beam energy scan of the elliptic �ow of pions, kaons, phi-mesons, D-mesons,
charmonium, as well as of nucleons, and (multi-) strange hyperons (including
the antiparticles). Particularly sensitive probes of the partonic phase are phi-
mesons and particles containing charm quarks due to their small hadronic
cross sections. The experimental challenge is to measure all these particles
up to high transverse momenta. This would also allow to search for the dis-
appearance of the suppression of high energetic particles at a given beam
energy as a signature for the phase transition.

The microscopic properties of QCD matter vary with temperature and
density. The structure of hot and dense hadronic matter as created in ener-
getic heavy-ion collisions is strongly related to the spectral properties of the
hadrons and their interactions in the medium. Therefore, the investigation
of hadronic excitations will shed light on the conditions inside the �reball.
The in-medium properties of strange and charmed hadrons are not directly
measurable, but might be extracted from their abundance, phase-space dis-
tributions, and �ow pattern. Using electromagnetic radiation as a probe, one
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can study the in-medium modi�cations of light vector mesons. The dilepton
observable accumulates information on the entire collision history, and, thus,
provides an undistorted insight into the hot and dense phase [14].

The dissociation of charmonium due to Debye-screening in the QGP has
been proposed as a signature for the decon�ned phase [15]. Lattice QCD
calculations predict di�erent dissociation temperatures for the various char-
monium states. As a consequence, the observation of sequential melting of ψ′
and J/ψ mesons has been predicted as an indication for the onset of decon-
�nement [16, 17].

Another sensitive probe of the structure of strongly interacting matter
are the charm di�usion coe�cients which di�er for the QGP as compared to
the hadronic phase [18]. These coe�cients will a�ect signi�cantly both the
nuclear suppression factor and the elliptic �ow of D mesons in a consistent
way (see section 5.2.2.). Moreover, the relative yields of hadrons containing
charm quarks (D+, D−, D0, Ds, J/ψ, ψ′, Λc) may allow to distinguish whether
the early phase is partonic or hadronic [19]. Possible in-medium e�ects on the
D meson are expected to modify the observed charmonia ratio ψ′/(J/ψ).

Particle correlations - in particular strange particle correlations - might
serve as indication for a phase coexistence which is expected to cause cluster-
ing or clumping of particles in the spinodal region. Nonstatistical �uctuations
of charges, particle abundances or mean transverse momenta measured event-
by-event have been proposed as a signature for critical opalescence which
might occur at the critical endpoint.

The research program outlined above requires the measurement of light,
strange and charmed hadrons, of vector mesons decaying into lepton pairs,
of yields, momentum distributions, collective �ow, correlations and �uctua-
tions. These measurements have to be performed in nucleus-nucleus, proton-
nucleus, and proton-proton collisions at di�erent beam energies. A selection
of the available experimental information, its theoretical interpretation, and
predictions for FAIR energies will be presented in the following.



Chapter 2

Exploring the QCD phase diagram

High-energy heavy-ion collision experiments provide the unique opportunity
to explore the QCD phase diagram, and to investigate the properties of
strongly interacting matter under extreme conditions. At very high beam
energies as available at RHIC and LHC the research programs concentrate
on the study of the properties of decon�ned QCD matter at very high tem-
peratures and almost zero net baryon densities, whereas at moderate beam
energies (SPS and FAIR) experiments focus on the search for structures in
the QCD phase diagram such as the critical endpoint, the predicted �rst or-
der phase transition between hadronic and partonic matter, and the chiral
phase transition. The critical endpoint and the �rst order phase transition
are expected to occur at �nite baryo chemical potential and moderate tem-
peratures. In the following we brie�y review what is known from experiment
about the QCD phase diagram.

The statistical model as outlined in Part I is a unique tool to relate ex-
perimental data to the phase diagram of hadronic matter [20�22]. Particle
yields or ratios measured at di�erent beam energies and analyzed with the
statistical model provide sets of thermal parameters, temperature (T ) and
baryo-chemical potential (µb), which establish a "line of chemical freeze-out"
[23�25]. The results of the �ts to experimental data are shown in a phase dia-
gram of hadronic and quark-gluon matter in Fig. 2.1 [6] which is an updated
version of the diagram shown in [26]. Full points are from �ts to particle yields
observed at midrapidity, open points refer to yields measured over the full
solid angle (4π�). The dashed-dotted line - which roughly follows the freeze-
out points - corresponds to a constant total baryon density of nb=0.12 fm−3 .
The open triangle in Fig. 2.1 represents the QCD critical endpoint predicted
by Fodor and Katz [11]. According to this lattice QCD result, the experimen-
tal freeze-out points are located in the vicinity of the critical point.

The thermal model is based on the assumption of a common chemical
freeze-out temperature for all particles independent of their inelastic inter-
action cross sections. Given the fact that the �reball expands and therefore
potentially cools during the freeze-out process, cf. Sect. 5.8 in Part III,the
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Fig. 2.1 The phase diagram of hadronic and quark-gluon matter in the T -µb plane. The
experimental values for the chemical freeze-out are shown together with results of lattice
QCD calculations, the predicted critical point is marked by the open triangle [11]. Also
included are calculations of freeze-out curves for a hadron gas at constant energy density
(ε=500 MeV/fm3) and at constant total baryon density (nb=0.12 fm−3). The full triangle
indicates the location of ground state nuclear matter (atomic nuclei). Taken from [6].

assumption of a common and well de�ned freeze-out temperature is far from
being obvious and deserves justi�cation. One possible scenario could be that
the freeze-out occurs su�ciently shortly after a �rst-order phase transition.
The latent heat released during phase coexistence can then stabilize the tem-
perature during the subsequent freeze-out process. Moreover, there is an on-
going debate on strangeness equilibration in nuclear collisions. According to
the thermal model analysis of Becattini et al. strangeness is not fully sat-
urated at top SPS energies and below [27]. These authors also claim that,
dependent on centrality, recent RHIC data on strange-particle production can
be explained by a superposition of a fully equilibrated hadron gas, and par-
ticle emission from single independent nucleon-nucleon collisions in the outer
corona of the collision zone. Finally, the statistical models achieve best �ts ig-
noring e�ects of in-medium modi�cations of hadrons in the �reball. Thermal
model calculations assuming mass modi�cations showed signi�cant e�ects on
the resulting yields. This �nding implies that the number of frozen-out par-
ticles is practically not in�uenced by their properties in the dense medium.

Fig. 2.2 presents a comparison of the thermodynamic parameters T and µB
extracted from the transport models in the central overlap regime of Au+Au
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collisions [28�30]. The symbols represent temperatures T and chemical poten-
tials µB extracted from UrQMD 1.3 transport calculations for central Au+Au
(Pb+Pb) collisions at kinetic beam energies of 11, 40, 160 AGeV and at

√
s =

200 AGeV at various time steps. The open symbols denote non-equilibrium
con�gurations and correspond to T parameters extracted from the trans-
verse momentum distributions, whereas the full symbols denote equilibrium
con�gurations which means that the momentum distributions are isotropic.
The solid line in Fig. 2.2 characterizes the universal chemical freeze-out line
from Cleymans et al. [24, 25], and the full dots with error bars denote the
chemical freeze-out parameters - determined from the thermal model �ts to
the experimental ratios - taken from Ref. [24, 25]. Fig. 2.2 also contains the
predictions for the location of the critical endpoint as extracted from lattice
QCD calculations by Karsch et al. [7] (large open circle) and Fodor et al. [8]
(large open square).

Fig. 2.2 (Color online) Schematic phase diagram in the T - µB plane. The solid line
characterizes the universal chemical freeze-out line from Cleymans et al. whereas the full
dots (with error bars) denote the chemical freeze-out parameters from Ref. [24, 25]. The
various symbols represent temperatures T and chemical potentials µB extracted from
UrQMD 1.3 transport calculations in central Au+Au (Pb+Pb) collisions at 21.3 ATeV, 160,
40 and 11 AGeV [28, 29]. The large open circle and the square indicate the critical endpoints
from lattice QCD calculations by Karsch et al. [7] and Fodor et al. [8], respectively. The
picture is taken from [31].

Fig. 2.3 presents dynamical trajectories in the T- µB plane as calculated
for central Pb+Pb collisions at various beam energies with a 3-�uid hydro-
dynamical model [32]. The bold parts of the trajectories indicate that the
system has reached approximate equilibration. The dotted line represents
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the freeze-out curve as determined by [24, 25] under the condition that the
energy per hadron is 1 GeV. These trajectories depend strongly on the EOS
which in this case is purely hadronic, i.e. no phase transition is included.
Therefore, the calculations only provide a rough estimate of the beam ener-
gies which are relevant for the search for the expected decon�nement phase
transition, or for the QCD critical endpoint as predicted by [33] and marked
by the star in Fig. 2.3.

Fig. 2.3 (Color online) Dynamical trajectories in the T-µB plane for central Pb+Pb col-
lisions (b = 2.5 fm) at various incident energies calculated with a 3-�uid hydrodynamical
model [32]. Numbers near the trajectories correspond to time steps (in fm/c) in the c.m.
frame of the colliding nuclei. Bold parts of trajectories indicate an approximately thermal-
ized baryon-rich subsystem. The dotted line represents the freeze-out curve determined by
a thermal model [24, 25]. The critical end-point calculated in Ref. [33] is marked by the
star.

McLerran and Pisarski [34] have proposed the existence of a new state
of matter at moderate temperatures and high net baryon density. This new
phase appears due to a separation of the chiral and decon�nement phase
transitions at �nite baryon density, and exhibits features of both baryonic and
quark matter. The phase is con�ned and chirally symmetric. The argument
here is that at su�ciently high density and temperature one would generate a
very large Fermi sea which is mostly well described as a quark sea. But when
the quarks are within ΛQCD of the Fermi surface con�nement will force the
quarks to convert to colorless states, i.e. baryons. The combination of both
parts can be viewed as a "quarkyonic" system. For smaller values of the
quark chemical potential which equals M/Nc the baryonic skin will increase
its thickness and once the chemical potential is close to ΛQCD the system
freezes out into nuclear matter.
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In conclusion, beam energies between 10 and 40 AGeV are expected to
be well suited to produce nuclear matter under extreme conditions, and to
explore the QCD phase diagram at high baryon densities. The experimental
task is to systematically measure the relevant observables for various beam
energies, and to search for structures in the excitation functions. First indica-
tions of a non-monotonous behaviour of particle ratios were found in central
Pb+Pb collisions around 30 AGeV at the SPS by NA49 [35]. These measure-
ments will be repeated by experiments at RHIC running at beam energies
close to or even below injection energy [36]. A comprehensive experimental
program - which for the �rst time includes measurements of very rare diag-
nostic probes at moderate beam energies - will be performed at FAIR with
the Compressed Baryonic Matter (CBM) experiment.





Chapter 3

Review of experimental observations

3.1 Probing dense nuclear matter: results from GSI

The study of strangeness production in heavy-ion collisions addresses funda-
mental questions in nuclear and astrophysics such as the equation of state at
high baryon densities and the modi�cation of hadron properties in dense and
hot hadronic or baryonic matter. K+ mesons have been proposed already
many years ago as a promising diagnostic probe for the nuclear equation
of state at high densities. Microscopic transport calculations indicate that
the yield of kaons created in collisions between heavy nuclei at subthresh-
old beam energies (Ebeam = 1.58 GeV for NN→ K+ΛN) is sensitive to the
compressibility of nuclear matter at high baryon densities [37, 38]. This sen-
sitivity is due to the production mechanism of K+ mesons. At subthreshold
beam energies, the production of kaons requires multiple nucleon-nucleon
collisions or secondary collisions such as πN→ K+Λ. These processes are
expected to occur predominantly at high baryon densities, and the densities
reached in the �reball depend on the nuclear equation-of-state (For a review
see [39]).

The properties of kaons and antikaons are expected to be modi�ed in dense
baryonic matter (see e.g. [40�42]). In mean-�eld calculations, this e�ect is
caused by a repulsive K+N potential and an attractive K−N potential. As
a consequence, the total energy of a kaon at rest in nuclear matter increases
and the antikaon energy decreases with increasing density. It has been specu-
lated that an attractive K−N potential will lead to Bose condensation of K−

mesons in the core of compact stars above baryon densities of about 3 times
saturation density [43]. According to G. Brown and H. Bethe this e�ect has
dramatic consequences for the stability of neutron stars and the formation of
low mass black holes [44]. This scenario is supported by recent self-consistent
coupled-channel calculations which �nd a narrow structure in the antikaon
in-medium spectral function at low energies for twice saturation density [45].
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Strangeness is exactly conserved during a nuclear collision. Open strangeness
can be produced by the creation of kaon (K+(us̄),K0(ds̄)) - antikaon
(K−(ūs), K̄0(d̄s)) pairs or by kaon-hyperon pairs. The hyperons carrying
one strange quark are Λ(uds) and Σ (Σ−(dds), Σ0(uds), Σ+(uus)) hyper-
ons. The production of hidden strangeness through φ(ss̄) mesons is possible
but suppressed according to the Okubo-Zweig-Iizuka selection rule. A con-
sequence of strangeness conservation is the fact that K+ mesons, once pro-
duced, cannot be absorbed by the surrounding nucleons. This results in a
rather long mean free path of K+ mesons of about 7 fm in nuclear matter.
Therefore, K+ mesons are a suitable 'penetrating' probe for the dense �reball
produced in heavy ion reactions at 1-2 A GeV where nuclear densities between
2 - 3 ρ0 are reached. Antikaons, in contrast, are strongly coupled to the envi-
ronment through strangeness exchange reactions (such as K̄N ←→ πY with
Y = Λ,Σ ) and the excitation of baryonic resonances (such as Λ(1405)).
Hence, the mean free path of antikaons in nuclear matter is much shorter
that the one of kaons.

3.1.1 Kaons in dense nuclear matter

Theory predicts strong modi�cations of the kaon and antikaon properties in
a dense hadronic environment. Mean �eld models as well as chiral pertur-
bation theory predict a repulsive K+ potential of about VK+ ' +(20 − 30)
MeV at nuclear saturation density. Such a value is in agreement with empirical
kaon-nucleon scattering. The K−-nucleon interaction, in contrast, is resonant
around threshold and requires non-perturbative approaches. The strength of
the K− potential is still an open issue. The depth of the attractive antikaon-
nucleon potential ranges from VK− ' −(50 − 100) MeV, obtained within
chiral coupled channel dynamics, to VK− ' −(100 − 200) MeV predicted
by mean �eld approaches and the analysis of kaonic atoms. Self-consistent
coupled-channel calculations based on a chiral Lagrangian predict a dynam-
ical broadening of the antikaon spectral function in dense nuclear matter
[45�48]. A particularly interesting result is the prediction of a sizable popula-
tion of soft antikaon modes that arise from the coupling of the antikaon to a
highly collective Λ(1115) nucleon-hole state at twice nuclear matter density
[45]. To search for evidences of these medium modi�cations was one of the
major goals of the KaoS and FOPI experiments at SIS18 where kaons and
antikaons were measured below and at threshold energies.

3.1.1.1 Total Yields

Various transport models meanwhile provide a relatively consistent picture
concerning the net potential e�ect on the K+ meson multiplicities. The re-
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pulsive mean �eld leads to a reduction of the yields by 30-50%, depending
on the actual strength of the potential, the system size and the energy of the
reaction. The magnitude of the reduction within di�erent transport model
realizations can be read o� from Figs. 3.1 and 3.5. The reduction of the K+

yield due to the repulsive potential is, as expected, slightly larger in heavy
systems than in light systems and most pronounced at energies far below
threshold.

The results obtained by several independent groups, i.e. the Tübingen
group (RQMD) [39, 49], the Texas and Stony Brook groups (RBUU) [43, 50],
the Nantes group (IQMD) [51] and the Giessen group (HSD) [52] converged
to the conclusion that the measured K+ yield can only be reproduced when
taking into account a repulsive K+N potential. This fact is demonstrated by
Fig. 3.1 which compares K+ rapidity distributions in Ni+Ni reactions at 1.93
AGeV obtained with RQMD, IQMD, RBUU and HSD in Ni+Ni reactions at
1.93 AGeV to data from FOPI [53] and KaoS [54]. Although the theoretical
descriptions show still some variance they allow to distinguish between the
scenarios with and without in-medium e�ects. The data clearly support the
calculations which include a repulsive K+N potential.
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Fig. 3.1 Rapidity distributions of K+ mesons (left panel) and K− mesons (right panel)
measured in Ni+Ni reactions at 1.93 AGeV, and compared to calculations with and without
in-medium kaon and antikaon potentials: RQMD [39], IQMD [51], HSD [52] and RBUU
[55]). The K+ data have been measured by FOPI [53] and KaoS [54], the K− data by
KaoS [54].

The interpretation of K− meson data is complicated by the fact that
strangeness exchange reactions (πY ←→ NK−, Y = Λ,Σ) play an impor-
tant role in the production, propagation and freeze-out of K− mesons. While
strangeness production takes place predominantly in the early high density
phase, strangeness exchange reactions are the driving processes for K− pro-
duction and absorption at later stages and at lower nuclear densities [56, 57].
In this case the attractive potential is weak, and the net e�ect of the in-
medium potentials on the K− yield may be small [52, 57, 58]. The same is
true when less attractive K− potentials, e.g. from coupled channel calcula-
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tions, are used instead of mean �elds potentials. The right panel of Fig. 3.1
depicts the rapidity distribution of K− mesons measured by KaoS in semi-
central Ni+Ni reactions at 1.93 AGeV, in comparison to results of transport
calculations HSD [52] and RBUU (Texas) [55]. Both models support the K−

in-medium scenario, but on the basis of a qualitatively di�erent behavior.
The results of the calculations depend on the density dependence of the

cross section for strangeness exchange which is still a matter of investigations.
The predictions obtained within coupled channel calculations range from a
moderate enhancement close to threshold [59, 60] to a strong suppression [58].
A consistent treatment of these e�ects requires to take into account o�-shell
dynamics within the transport approach. First o�-shell transport calculations
using K− meson spectral functions have been performed, but a satisfactory
agreement with measured K− meson spectra and angular distributions has
not yet been achieved [58].

3.1.1.2 In-plane �ow

Dynamical observables such as collective �ow patterns are to large extent free
from uncertainties in the total production rates. They depend on the phase
space pattern of the primordial sources and the �nal state interaction. For
K+ mesons the �nal state interaction is well under control since only elastic
(and charge exchange) reactions occur, the total elastic cross section is of the
order of 10− 15 mb.
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The transverse or in-plane �ow was proposed as a promising observable
to address in-medium potentials [63, 64]. A repulsive potential pushes the
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kaons away from the nuclear matter and produces slight anti-�ow at specta-
tor rapidities and a zero �ow signal around mid-rapidity. This behavior was
found to be consistent with the �rst available �ow data from FOPI [61]. Other
theoretical studies predicted similar features for the kaon �ow [65�68]. How-
ever, the scalar-vector type structure of the kaonic mean �eld implies the
occurrence of a Lorentz-force [69]. The Lorentz-force from the vector �eld
counterbalances the in�uence of the time-like vector potential on the K+

in-plane �ow to large extent which makes it more di�cult to draw de�nite
conclusions from transverse �ow pattern. As can be seen from the �ow pat-
tern around mid-rapidity in Fig. 3.2 it is di�cult to distinguish between the
scenarios w/o in-medium potentials and full covariant in-medium dynamics.
However, at spectator rapidities clear di�erences appear and the data favor
again the in-medium scenario [70] with a relatively strong repulsive mean
�eld. Similar results have been obtained in [71].

The e�ect of the Lorentz-force may be reduced by an explicit momentum
dependence beyond mean �eld. Such a momentum dependence is known to
reduce the nucleon �ow and it is necessary in order to comply with the
empirical optical nucleon-nucleus potential and nucleon �ow data above 1
AGeV [72�75]. Similarly, spectra (plab, pT and mT ) imply that the KN
interaction is less repulsive at high pT which might be an indication for an
explicit momentum dependence counterbalancing the Lorentz force to some
extent. Slopes obtained in central Au+Au reactions are too hard while C+C
spectra are well described [71]. The FOPI Collaboration measured also the
pT dependence of v1 in Ni+Ni and Ru+Ru reactions at spectator rapidities
where a transition from anti-�ow to �ow with rising pT was observed [76].
Also these data require a repulsive in-medium potential where compensation
e�ects from Lorentz forces are necessary not to overestimate the data [71].
For a precise determination of the density and momentum dependence of the
K+ potential certainly more theoretical e�orts are needed.

3.1.1.3 Out-of-plane �ow

The phenomenon of collective �ow can generally be characterized in terms
of anisotropies of the azimuthal emission pattern, expressed in terms of a
Fourier series

dN

dφ
(φ) ∝ 1 + 2v1 cos(φ) + 2v2 cos(2φ) + . . . (3.1)

which allows a transparent interpretation of the coe�cients v1 and v2. The
dipole term v1 arises from a collective sideward de�ection of the particles in
the reaction plane and characterizes the transverse �ow in the reaction plane.
The second harmonic describes the emission pattern perpendicular to the
reaction plane. For negative v2 one has a preferential out-of-plane emission,
called squeeze-out. Pions exhibit a clear out-of-plane preference [77, 78] which
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is due to shadowing by spectator nucleons. The short mean free path of the
pions hinders pions produced in the central reaction zone to traverse the
spectator matter located in the reaction plane. Therefore it is easier for them
to escape perpendicular to the reaction plane. Since the K− mean free path is
comparable to that of the pions one might expect the same phenomenon for
K− while the mean free path of K+ mesons is large and no squeeze-out signal
should be observed. These arguments hold when the �nal state interaction is
exclusively determined by scattering and absorption processes.

First measurements of the azimuthal emission pattern of K+ mesons [79]
found that K+ mesons are preferentially emitted perpendicular to the reac-
tion plane, similar to the pions. In transport calculations [79�81] this e�ect
could only be reproduced by the presence of the repulsive K+ mean �eld.
Elastic rescattering of K+ mesons was found to be not su�cient to create
the observed squeeze-out signal. If the repulsive potential is taken into ac-
count, the kaons are driven by potential gradients preferentially out-of-plane.
Thus, the repulsive potential leads to an additional dynamical focusing out
of the reaction plane.

Fig. 3.3 shows the azimuthal distributions for semi-central Au+Au re-
actions at 1 AGeV and Ni+Ni at 1.93 AGeV [82]. In the Au+Au case we
compare RQMD [39] and GiBUU [71] calculations to the KaoS data [79].
The results con�rm the �ndings that the in-medium potential is needed in
order to explain the experimental squeeze-out signal. Another interesting ob-
servation is the fact that the Lorentz force, present in covariant dynamics,
has only a small in�uence on the out-of-plane �ow, contrary to the in-plane
�ow discussed above [71]. The right panel of Fig. 3.3 shows also HSD results.
Calculations using various transport models converge to the conclusion that
the azimuthal K+ emission pattern can be explained only by taking into
account a repulsive mean �eld.

The interpretation of the azimuthal emission pattern of K− mesons is less
conclusive. The �rst predictions [81, 84] for K− out-of-plane emission pattern
exhibited an obvious scenario: due to the short mean free path K− should
behave similar like pions, i.e. they should show a clear squeeze-out signal
caused by absorption and rescattering. However, the existence of an attrac-
tive K−N potential would strongly reduce the absorption of K− mesons, and
consequently the shadowing of K− mesons by the spectator fragments would
be reduced as well. In this case the K− mesons are expected to be emitted
almost isotropically in semi-central Au+Au collisions. The observation of a
�at azimuthal distribution of K− mesons would provide strong experimental
evidence for in-medium modi�cations of antikaons. Fig. 3.4 (right panel) de-
picts the �rst data on the K− azimuthal emission pattern measured in heavy-
ion collisions which di�ers signi�cantly from the corresponding K+ pattern
(left panel) [82]. The K− data are compared to IQMD calculations with-
out (dashed) and with (solid) K−N -potential [51]. The attractive in-medium
K−N -potential produces an in-plane enhancement which agrees better with
the data.
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Fig. 3.4 Azimuthal distributions of K+ and K− mesons measured in semi-central Ni+Ni
collisions at 1.93 AGeV. The data are corrected for the resolution of the reaction plane and
refer to impact parameters of 3.8 fm< b < 6.5 fm, rapidities of 0.3 < y/ybeam < 0.7 and
momenta of 0.2 GeV/c < pt < 0.8 GeV/c. The lines represent results of IQMD transport
calculations with and without KN potential (see [85]).

The �ow pattern of K− mesons is determined by the interplay between
mean �eld and absorption. However, inside the medium the theoretical knowl-
edge of the absorption rates is very uncertain since the corresponding absorp-
tion cross sections are predicted to have an extremely pronounced density
dependence. This is due to the strong - and theoretically not well controlled
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- density dependency and o�-shell behavior of the hyperon resonances which
govern the K−N interaction at threshold. As shown e.g. within the HSD
model [83] the emission pattern of K− mesons depends strongly on model
uncertainties concerning the in-medium K−N cross sections. The observed
emission pattern ofK− mesons is at present not fully understood, and further
experimental and theoretical e�orts are needed to clarify the picture.

Experiments on strangeness production in proton-nucleus collisions pro-
vide important information complementary to heavy ion reactions. Although
proton-nucleus reactions only explore normal and subnormal nuclear densi-
ties, they are easier to interpret than heavy-ion collisions with their compli-
cated dynamical evolution. Measurements of the K+ cross section in p+Au
and p+C reactions [86, 87] support the existence of a repulsive kaon potential
of VK+ ∼ 20 ± 5 MeV at ρ0 which is consistent with the conclusions from
heavy ion reactions. Such a potential was also found to be consistent with
the measured K+ spectra in p+A reactions at subthreshold energies [88, 89].

Both K+ and K− meson di�erential cross sections have been measured
in p+C and p+Au reactions at several beam energies and emission angles at
SIS18/GSI [90]. The data are consistent with the assumption of a repulsive
K+N potential of VK+ = 25±5 MeV, and an attractive K−N potential of
VK− = −80±20 MeV.

3.1.2 Probing the nuclear equation-of-state with
subthreshold kaon production

The most intriguing motivation for the �rst heavy-ion experiments at rela-
tivistic energies was to obtain information on the nuclear matter equation-of-
state (EOS) [91]. At two times saturation density - which should be reached
in the �reball at BEVALAC/SIS energies - the di�erence in binding energy
per nucleon between a soft and a hard Skyrme EOS is about 13 MeV . If the
matter is compressed up to 3ρ0 the di�erence is already ∼ 55 MeV. It was
expected that the compressional energy should be released into the creation
of new particles, primarily pions, when the matter expands [91]. However,
pions have large inelastic cross sections, they undergo several absorption cy-
cles through nucleon resonances [92�94], and freeze out at �nal stages of the
reaction and at low densities. Hence, pions loose most of their sensitivity on
the compression phase, and turned out to be not very suitable probes for the
sti�ness of the EOS.

In contrast to pions,K+ mesons have a long mean free path in nuclear mat-
ter due to the absence of absorption reactions. Moreover, at BEVALAC/SIS
energies K+ mesons are produced preferentially in the high density phase by
multiple scattering processes which are required to accumulate energy, and
to overcome the energy threshold for kaon production. Therefore, K+ mesons
have been suggested as promising tools to probe the nuclear EOS [37]. This
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scenario was supported by the results of the �rst theoretical investigations
using transport models which found a strong dependence of the K+ yield on
the nuclear compressibility [38, 95�97]. On the experimental side the KaoS
Collaboration performed systematic measurements of the K+ meson yields
and phase-space distributions in heavy-ion collisions at GSI/SIS18 [98�102].
These data triggered a major theoretical activity in the �eld of transport
calculations in order to improve our understanding of K+ meson production
mechanisms in heavy-ion collisions, and to extract reliable information on the
nuclear matter EOS from the data [49, 51]. Subsequent investigations con-
�rmed the robust dependence of the K+ meson yield measured in heavy-ion
collision on the nuclear matter EOS [39, 103, 104].
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Fig. 3.5 Excitation function of the K+ multiplicities in Au+ Au and C + C reactions.
RQMD [49] and IQMD [104] with in-medium kaon potential and using a hard/soft nuclear
EOS are compared to data from the KaoS Collaboration [102].

Excitation functions of K+ meson production in inclusive Au+Au and
C+C collisions measured by the KaoS collaboration [100, 102] are shown in
Fig. 3.5 in comparison to RQMD [39, 49] and IQMD [104] transport calcu-
lations. The kaon yield from C+C collision does not depend on the nuclear
EOS, but rather on the in-medium K+N potential. Only when taking into
account a repulsive kaon-nucleon potential the calculations are able to repro-
duce the data. The Au+Au data are in agreement with the assumption of a
nuclear matter compression modulus of κ = 200 MeV. The calculations use
a momentum-dependent Skyrme interaction to determine the binding energy
per nucleon.

In order to reduce systematic uncertainties both in experiment (normal-
ization, e�ciencies, acceptances) and theory (elementary cross sections) the
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K+ multiplicities are plotted as ratios (K+/A)Au+Au / K+/A)C+C in the
right panel of Fig. 3.6 [102]. In this representation also the in-medium e�ects
cancel to a large extent. The data are compared to results of di�erent trans-
port model calculations [39, 49, 104] which are performed with a compression
modulus of κ = 380 MeV (corresponding to a �hard� equation-of-state) and
with κ = 200 MeV (corresponding to a �soft� equation-of-state). The shaded
area in Fig. 3.6 represents the range of theoretical uncertainties. The data
clearly favor a soft equation of state.
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The ratio ofK+ production excitation functions shown in Fig. 3.6 has been
proven to be a very robust observable which does not depend signi�cantly on
the theoretical uncertainties of the input to the transport models such as the
elementary production cross sections N∆;∆∆ 7→ NYK+ [104]. These cross
sections are not constrained by data, and their parameterizations vary by al-
most one order of magnitude in the di�erent models [42, 105]. Nevertheless,
the ratio R - and the conclusions drawn from it - are practically indepen-
dent of the variation of the elementary cross sections, even when taking into
account an additional medium dependence [104].

Fig. 3.7 depicts di�erent versions of the equation of state as predicted by
di�erent calculations [39]. The �gure illustrates that it is not su�cient to
determine the nuclear compressibility (which is determined by the curvature
of E/A(ρ) at saturation density), but rather one has to study the response
of nuclear matter at di�erent densities, which means one has to perform
nucleus-nucleus collisions at di�erent beam energies.



3.1 Probing dense nuclear matter: results from GSI 709

Fig. 3.7 Binding energy per nucleon as a function of the nuclear density obtained from
relativistic Dirac-Brueckner Hartree-Fock calculations and from a phenomenological model
based on Skyrme forces. Both approaches assume di�erent values for the compressibility
as indicated (taken from [39]).

3.1.3 Conclusions

The experiments on strangeness production at GSI demonstrated how kaons
can be used as diagnostic probes both for the properties of compressed nu-
clear matter and for the modi�cations of hadrons inside the dense medium.
It turned out that the sensitivity of the kaon probe to medium properties is
strongly enhanced if the beam energy is below the kaon production threshold
energy in nucleon-nucleon collisions. We have also learned that dynamical
transport models play a crucial role in the extraction of the relevant physics
information from the heavy-ion data. State of the art transport calculations
have reached a reasonable degree of consistency concerning K+ meson pro-
duction and dynamics. The comparison of theory to experiment concerning
total yields, momentum distributions, and the collective �ow pattern supports
the existence of a slightly repulsive in-mediumK+N potential of VK+ = 25±5
MeV at nuclear saturation density as predicted by chiral dynamics. This result
is supported by data on K+ meson production in proton-nucleus collisions
[86�90]. A very important result of the strangeness experiments at GSI is that
K+ mesons have been proven to provide information on the compressibility
of nuclear matter at densities up to twice or three times saturation density.

Due to the in-medium strangeness exchange reactions it is complicated
to extract information on the K−N potential from the measured K− yield
in heavy-ion collision at SIS18 energies. In proton-nucleus collisions - where
the strangeness exchange process πY → K−N is strongly reduced - it was
found that the measured K−/K+ ratio can be reproduced with an attractive
in-medium K−N potential of VK− = −80 ± 20 MeV at saturation density
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[90, 106]. However, the quasi-particle picture which underlies most of the
semi-classical transport approaches, is much better justi�ed for the kaons
than for the antikaons. Microscopic coupled-channel calculations based on a
chiral Lagrangian predict a dynamical broadening of the K− meson spectral
function in dense nuclear matter [45, 47, 48, 107, 108]. First o�-shell transport
calculations using K− meson spectral functions have been performed [58].
The ultimate goal of the calculations is to relate the in-medium spectral
function of K− mesons to the anticipated chiral symmetry restoration at
high baryon density.

3.2 Probing hot and dense hadronic matter: results
from AGS

The AGS at BNL was home to a dedicated �xed target relativistic heavy
ion program from 1988 through 1999. During this decade of data taking
a variety of experiments were performed. Each experiment had to re-apply
for beam time when one of their programs was completed, therefore certain
long standing collaborations were re-numbered several times. The two main
collaborations were E802/E866/E910/E917 and E814/E877. In addition the
�rst generation of experiments also included the initial usage of a TPC by
E810. The second generation featured a dedicated strangelet search exper-
iment in E864, which also made substantial measurements in light nuclei
production. The third generation featured a dedicated H-dibaryon experi-
ment in E896, and this experiment also made substantial measurements in
mid-rapidity strangeness production, in light nuclei production and in strange
particle polarization. The program was rounded out by E895, an experiment
which performed the only AGS energy scan measurements and utilized the
EoS-TPC to obtain a multitude of measurements relevant to the CBM pro-
gram. The program was performed using either Si or Au beams and using
Si,Al or Au targets. The collision energies ranged from 2 A GeV to 14.5 A
GeV. This is an interesting energy region because it is expected that the un-
derlying reactions will transition from being baryon dominated at the lower
energies to meson dominated at the highest energies. It was also believed that
these collision energies could generate the necessary conditions for a phase
transition from hadronic to partonic matter. Unfortunately none of the an-
ticipated signatures were found. The program can be considered exhaustive
in terms of global observables, basic hadronic spectra, strange particle (kaon
and lambda) formation, and correlation measurements such as collective �ow
and HBT. Measurements of rare probes such as hadronic resonances, multi-
strange hyperons (except one Ξ point at 6 AGeV), lepton pairs and charmed
particles have not been performed. Also �uctuations were not addressed in
depth.
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In the following we will highlight the main AGS physics results that pertain
to the future measurements at FAIR.

3.2.1 Identi�ed particle spectra

Identi�ed particle spectra have been measured extensively at the AGS by
various experiments. These spectra formed the basis of initial applications of
thermal model calculations to experimental spectra. It was concluded that
a thermal system was reached that had a freeze-out temperature of T =
90-130 MeV and a baryo-chemical potential of µB = 500-600 MeV . The
system expands out radially with a mean transverse expansion velocity of
0.3-0.5c [23]. The rapidity distributions of pions, kaons, protons and lambdas
measured for central Au+au collisions at 10.7 AGeV are presented in Fig. 3.8
[109]. Based on the extracted baryo-chemical potential, which is considerably
higher than at SPS and RHIC one can deduce that there is a substantial
amount of baryon stopping at AGS energies. The rapidity distribution of
protons by E917 at a variety of energies and centralities is shown in Fig. 3.9
[110]. The plateau signals a considerable amount of stopping, however the
stopping is not complete. When applying a Bjorken estimate to the boost-
invariant mid-rapidity part of the spectrum we can deduce an energy density
of 1.4 GeV/fm3 for the highest AGS energies, which is just above the critical
energy density estimate from lattice QCD [111].

Fig. 3.8 Pion, kaon, proton, and Lambda rapidity distributions measured in central
Au+Au collisions at 10.7 AGeV by di�erent experiments. Dashed line: isotropic, thermal
source (T=130 MeV). Solid line: longitudinally expanding source (T=130 MeV, βl=0.5)
(from [109]).
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3.2.2 Strange particle measurements

The excitation function of kaon production as measured by E866/E917 and
its very good agreement with hadronic transport models, as shown in Fig. 3.10
indicates that the strangeness enhancement at the AGS may still be a purely
hadronic e�ect, i.e. its cause is predominantly hadronic rescattering [112].
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and dashed curve) for various collision systems at the AGS (from [113]).
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The K+/K− ratio stays constant over all centralities and system sizes
as is shown in Fig. 3.10. The ratio can be related to a baryon phase space
density and therefore one can conclude that the baryon phase space density is
constant at a given collision energy at the AGS. When relating these results
to similar measurements at the SPS we �nd that the charged kaon ratio
is highly correlated with the baryon phase space density and drops with
increasing collision energy [113].

E896 has also performed the only strange particle polarization measure-
ment in a relativistic heavy ion system (Au+Au) prior to RHIC [114]. The
results are shown in Fig. 3.11. It shows a Λ polarization level, as a func-
tion of xF , that is comparable to the level measured in elementary collisions
[115, 116]. The disappearance of the strange particle polarization is consid-
ered a QGP signature [117], yet these measurements indicate that strangeness
hadronization in heavy ion collisions at AGS energies proceeds according to
the mechanisms deduced from elementary particle collisions.

Another important strangeness measurement from the AGS is the quanti-
tative mapping of anti-�ow of neutral kaons. Fig. 3.12 shows the directed side-
ward �ow measurements by E895 at 6 A GeV collision energy [118]. This e�ect
is likely due to a large repulsive interaction (mean �eld) between baryons and
kaons. At lower energies FOPI measured directed �ow consistent with zero.

Fig. 3.11 Λ polarization as a function of xF as measured by E896 in central Au+Au
collisions at 11.6 A GeV(from [118]).

Finally, multi-strange baryons (Ξ) have been successfully reconstructed at
the AGS in 6 A GeV Au+Au collisions and 14.5 A GeV Si+Au Collisions by
E895 and E810, respectively [119]. The results can be seen in Fig. 3.13. In both
cases the yields and their centrality dependence are again well described by
hadronic transport and thermal models, which seems to indicate strangeness
saturation of the available phase space even at low AGS energies.
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Fig. 3.12 Directed K0
s anti�ow measured in 6 A GeV Au+Au collisions (from [118]).
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3.2.3 Anti-baryon production

One of the remaining puzzles of the AGS program is the unusually large Λ/p
ratio which was �rst measured by E878 and then con�rmed subsequently by
E864, E917 and the SPS experiments [120�122]. The ratio seems to exceed
three in central Au+Au collisions at the highest AGS energies as shown in
Fig. 3.14. The interpretation is complex because at these energies two compet-
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ing e�ects, namely enhanced production and large annihilation (absorption)
cross sections compete. Strange anti-baryons are furthermore unique by being
sensitive to decon�nement based on an enhanced probability for strangeness
enhancement, although the equally sensitive multi-strange baryons do not
indicate any partonically driven strangeness production as shown in the pre-
vious chapter. The dramatic ratio increase as a function of centrality from
0.2 in peripheral collisions to 3.5 in central collisions has never been properly
modelled. Thermal models, constrained by the detailed K/π measurements,
fail completely, and transport models which allow the variation of annihila-
tion cross section and anti-particle formation time get closer to the central
data, but fail to describe the centrality dependence [123]. The closest theory
calculation, based on UrQMD, is shown in Fig. 3.14 [124]. Many additional
measurements have been performed in order to further constrain the problem.
E941 measured the antiproton production in p+Be [125] and E877 measured
the anti-�ow of antiprotons [126]. Both measurements underline the impor-
tance of absorption and hint at a scaling of the ratio with the number of �rst
collisions. But even with this additional input a complete explanation of the
very unusual ratio has not been found.

3.2.4 HBT studies

Detailed and extensive HBT measurements, cf. Part III Sect. 5.9, were at
the center of the physics program of many AGS experiments from E802 [128]
to E895 [129]. Figs. 3.15 and 3.16 show the present knowledge of the basic
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Fig. 3.16 Pion source radii as a function of mT from Au+Au (Pb+Pb) collisions at AGS,
SPS and RHIC energies (from [127]).

HBT parameters for energies ranging from AGS to RHIC [127]. Ultimately
no substantial change in the HBT parameters, which is expected in the case
of a long-lived �reball including substantial partonic and hadronic phases,
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has been observed. Recent, more detailed results based on 3-d imaging indi-
cate that the distributions at RHIC might have a substantial non-Gaussian
tail [130] which could explain at least part of the lack of di�erences in the
Gaussian �t parameters from AGS to RHIC as shown here. Overall the AGS
HBT results are well within expectations and should be treated as a reference
for future measurements at comparable energies.

Fig. 3.17 Azimuthal distributions (with respect to the reconstructed reaction plane) for
2, 4, 6, and 8 AGeV Au + Au collisions. Distributions are shown for di�erent rapidity bins:
(a) -0.7 < ycm < -0.5, (b) -0.5 < ycm < -0.3, (c) -0.1 < ycm < 0.1, (d) 0.3 < ycm <
0.5, and (e) 0.5 < ycm < 0.7. The mid-rapidity selections for 4 - 8 AGeV also include a
transverse momentum selection as indicated.(from [131])

3.2.5 Elliptic and directed �ow studies

A very important measurement performed at AGS was the excitation function
of collective �ow [131]. The azimuthal angle distributions of protons measured
in Au+Au collisions from 2 - 8 AGeV are presented in 3.17 for di�erent bins
in rapidity. A dramatic result from this energy scan was the discovery of the
transition from out-of-plane to in-plane emission based on the measurement of
proton elliptic �ow. The cos2φ component switches from negative to positive
values at Ebeam=4 A GeV as shown in Fig. 3.18. Early interpretations suggest
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a softening of the equation of state from a high compressibility factor (K ≈
380 MeV) below 4 A GeV to a low compressibility factor (K≈ 210 MeV) above
4 A GeV (see Fig. 3.18). This could potentially signal a phase transition in
the mapped out energy regime. More recent transport model calculations,
however, which take into account in-medium cross sections and momentum
dependent interactions, �nd a reduced sensitivity of the proton �ow data to
the nuclear equation-of-state [132].
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Fig. 3.18 Elliptic �ow excitation function for Au+Au measured by E895. The curves and
open symbols represent calculated excitation functions with di�erent equations of state.
The insert shows the transverse momentum dependence of the elliptic �ow for collision
energies of 2, 4, and 6 A GeV (from [131])

Directed sideward �ow (v1) measurements of the protons are shown in
Fig. 3.19 [133]. The data do not exhibit a pronounced dip or shape change in
the energy range where the v2 changes its sign. Therefore the v1 data do not
seem sensitive to a sudden change in reaction dynamics, but again transport
models fail to consistently reproduce the data.
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3.2.6 Conclusions and perspectives for FAIR

The physics of dense baryonic matter has been pioneered with heavy-ion colli-
sion experiments at AGS. The measurements provided information on global
observables such as the yields and phase space distributions of hadrons in-
cluding strange particles (kaons and lambdas). Measurements of hadronic
resonances, multi-strange hyperons (except one Ξ point at 6 AGeV), lepton
pairs and charmed particles have not been performed. The detailed investi-
gation of these rare probes as function of beam energy and system size will
be a central part of the heavy-ion research program at FAIR.

One of the most intriguing results obtained at AGS was the excitation
function of proton collective �ow. It was observed that the elliptic �ow of
protons changes its pattern from preferential out-of-plane to in-plane emis-
sion at a beam energy around 4 AGeV. These data have been interpreted
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using microscopic transport models in order to extract information on the
nuclear equation-of-state at baryonic densities above 3 times saturation den-
sity [132, 134]. It turned out that the strength of the collective �ow of protons
or fragments in nucleus-nucleus collisions depends not only on the nuclear
equation-of-state, but also on the assumptions on the in-medium nucleon-
nucleon cross sections, and on momentum-dependent interactions. Therefore,
the analysis and interpretation of data on proton collective �ow measured at
AGS energies (2-10 AGeV) provided only limits on the nuclear compressibility
(see chapter "Collective �ow").

Novel observables are required in order to obtain more detailed information
on the nuclear equation-of-state at densities from 3 to 7 ρ0. One promising
experimental approach would be the measurement of the excitation function
of multi-strange hyperon production in heavy-ion collisions in the energy
range between about 2 and 15 AGeV. The threshold beam energies for the
processes pp→ ΛΛ̄ pp, pp→ Ξ+Ξ− pp, and pp→ Ω+Ω− pp are 7,1, 9.0 and
12.7 GeV, respectively. However, multi-strange hyperons can also be created
via strangeness exchange reactions in multi-step collisions involving processes
like pp→ K+Λp, pp→ K+K−pp, ΛK− → Ξ−π0, Ξ−K− → Ω−π− [135]. In
this case the minimum energy required in a single NN collision corresponds
to the production of a K+K− pair. The yield of anti-hyperons is suppressed
because the sequential production chain starts with anti-Lambdas, and con-
tinues with Λ̄ → Ξ+π0, and Ξ+K+ → Ω+π+. The "cooking" of particles
containing 2 or 3 strange quarks (or antiquarks) is favored at high densities
where the mean free path between consecutive collisions is short. Therefore,
the yield of multi-strange hyperons depends very much on the density, and,
hence on the compressibility of baryonic matter at these particular densi-
ties. In summary, the detailed measurement of the excitation function of the
multiplicities and the collective �ow of multi-strange hyperons in heavy-ion
collisions at beam energies between 2 and about 15 AGeV will provide new
information on the high density nuclear EOS. Such an experiment has a high
discovery potential as no multi-strange hyperons have been measured at AGS
beam energies, except for a total Ξ yield at 6 AGeV [119].

3.3 Searching for the phase transition: results from SPS

At the CERN SPS the �rst heavy ion induced reactions were studied already
in 1986. At that time Oxygen (and shortly afterwards Sulphur) ions were
available. Two experiments, WA80 and NA35 with strong participation from
GSI and LBL, were among the �rst to take data. Both were designed to cover
a large fraction of charged particle phase space. WA85/94 was designed to
measure baryons and antibaryons with emphasis on hyperons. Other experi-
ments concentrated on rare probes like muon pairs (NA38) or on spectrome-
ter techniques (NA44). The experiment NA36 pioneered the use of the "Time
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Projection Chamber" technique in the �eld, which was the prerequisite of the
successes of the later EOS experiment at the AGS (see previous section) and
of NA49 at the SPS, although the latter was a direct follow-up of NA35 with
its own TPC upgrade [136]. The most important results of the early SPS
experiments with 16O and 32S beams, which are still valid today, were the
�rst estimates of the large energy density obtained in nuclear collisions, the
approximate scaling of the number of produced pions with the number of
wounded nucleons as suggested by Bialas [137, 138], and strong deviations
of the wounded nucleon scaling for strange particle production, at that time
dubbed as strangeness enhancement. After the �rst heavy ion experiments
had con�rmed the expectation of large energy densities and the failure of the
trivial superposition picture in the SPS energy range, 208Pb beams became
available in 1994, and an extensive scienti�c programme at the beam energy
of 158 A GeV was established. The experiments and their main features and
goals are described next.

Most experimental groups which had used the 16O and 32S beams proposed
a continuation of their research programme with Pb ions. WA98 became the
successor of WA80 with increased photon detection capabilities and a new
large acceptance charged hadron spectrometer. WA85/94 became WA97 and
later on NA57 still concentrating on hyperon decays this time by means
of small acceptance high resolution Silicon hodoscopes. NA49 evolved from
NA35 by replacing the visual device (streamer chamber) by four large vol-
ume TPCs covering the c.m.-forward hemisphere both in tracking as well
as in particle identi�cation via high resolution dE/dx measurement in the
relativistic rise region. The Di-muon spectrometer NA38 became NA50 and
needed only little modi�cation to run with Pb-beams. Since 2002, NA50 was
equipped with silicon tracking detectors placed in a dipole �eld close to the
target. With this setup (named NA60) high quality data on the production
of both charmonium and low-mass muon pairs have been measured. The Di-
lepton study with electrons was taken over by the new experiment NA45
(CERES), a novel large acceptance hadron blind spectrometer consisting of
RICH detectors in a magnetic �eld. The second new and large experiment
was NA52 which searched for new particles with unusual mass and/or charge
at small transverse momenta using a modi�ed beam line as spectrometer.

The �rst results from 158 A GeV Pb+Pb collisions at the SPS were the
"horse back" shapes of the transverse energy spectra [139] which quanti�ed
the energy deposited in those interactions. Assumptions about the transverse
and longitudinal size of the interaction zone allowed to infer the size of this
zone and thus a range of energy densities between 1 and 3 GeV/fm3. This
size and the lifetime of the zone was later deduced from two pion correlation
studies [140]. No results on estimates of the energy density at low SPS and
AGS energies have been reported so far, probably since Bjorken scaling is no
longer a valid assumption. It will be a challenge for the CBM physics program
to come up with new methods and results on the energy density reached in
A+A collisions in the SIS300 regime.
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The �eld of high energy nuclear collisions is based on the assumption that
the produced particles constitute a reaction volume ("�reball") in which equi-
librium conditions prevail for �nite periods of time. Only then the concepts of
statistical mechanics or thermodynamics are appropriate. Such an assump-
tion seems reasonable in view of the success of the Hagedorn �reball model
[141] to explain the bulk kinematical properties of the �nal state in hadronic
interactions. Early concepts of extending the thermal/statistical picture to
particle yields [142, 143] were soon probed experimentally. These studies re-
vealed an astonishing approach to equipartition of (energy among) essentially
all particle species [144, 145]. The success of the underlying chemical equili-
bration picture apparently applies to heavy ion collisions at all energies. It
justi�es the use of bulk property observables in the description of the reaction
zone in high energy nuclear collisions.

Further important observations made at the SPS are the strong J/Psi sup-
pression [146], the intermediate mass di-electron enhancement [147, 148] and
the enhanced yield ratio of strange to non strange particles in Pb+Pb versus
p+p collisions [149]. The interpretation of the observed J/Psi suppression
was and still is controversial, since the original prediction of J/Psi dissolu-
tion in decon�ned matter (or Quark-Gluon-Plasma, QGP) [15] turned out
to be more di�cult to describe theoretically than anticipated. The surplus
of di-electrons on top of the expected cocktail of known hadronic sources,
as observed by CERES may have various medium induced origins: two-pion
interactions, multi-hadron interactions and vector meson mass modi�cations.
The third �nding con�rmed an early prediction of strangeness enhancement
in a QGP [150], however, such an enhancement is also expected as the re-
sult of multiple hadron interactions in the reaction zone in any high energy
nucleus-nucleus collision. So far microscopic transport models cannot repro-
duce the experimental results on strangeness enhancement quantitatively at
the highest SPS energy in contrast to the situation at AGS. The implications
of all three experimental results for the nature of the produced �reball are
thus not yet fully understood. On the other hand they suggest that interac-
tions and degrees of freedom are important which go beyond those established
in hadronic physics.

Although matter properties had been established for the �reball created
in ultra-relativistic heavy ion collisions, and the prospects for new physics
beyond the hadronic "world" were favorable, unequivocal signatures for a
new state of matter were still missing. Instead CERN o�cially announced
"compelling evidence ... for the formation of a new state of matter... in which
quarks and gluons no longer feel the constraints of color con�nement" [151].
The main observations supporting such a conclusion were charmonium sup-
pression, strangeness enhancement and the initial energy density.

At about the same time the idea was realized to measure the excita-
tion function of many hadronic observables with the aim to identify possible
threshold phenomena which would signal the onset of new phenomena. Beams
of 80A GeV, 40A GeV, 30A GeV, and 20A GeV beams were used to study
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the energy dependence of hadronic particle production in Pb+Pb collisions.
This energy scan program provided two intriguing results. The pion source
size parameters turned out to be approximately energy independent (even
when including AGS and RHIC data [152]. The non-monotonic behavior of
the K+/pion ratio, and a step-like behavior of transverse mass slopes as func-
tion of

√
s (or of mT ) hint at a threshold phenomena at around 30A GeV

which cannot be explained by hadronic phenomena. On the contrary, models
which include both hadronic and partonic matter phases can reproduce the
experimental �ndings qualitatively.

In the following, we will brie�y outline the main physics results of the
CERN-SPS heavy-ion programme.

3.3.1 Initial energy density

The initial density of the produced energy can be estimated from the mea-
surement of the total transverse energy ET using Bjorken's formula [2]

ε(τ0) =
1

2τ0πR2

dET
dη

(3.2)

which assumes a boost-invariant longitudinal expansion. Evidence that the
Bjorken scenario holds in the midrapidity region at SPS exists from HBT
measurements [140].

The transverse energy at midrapidity in central Pb+Pb collisions was mea-
sured by the experiments NA49 and WA98 and found to be around 400 GeV
[139, 153]. The NA49 data are presented in Fig. 3.20. Using eq. (3.2) with
τ0 = 1 fm, this translates to an initial energy density of about 3 GeV/fm3, to
be compared to the 600 MeV/fm3 which are, according to lattice QCD calcu-
lations, required for the transition to decon�ned matter. This result demon-
strates that the initial conditions reached in central collisions of heavy ions
at the SPS are likely to be suitable for the creation of quark-gluon matter.

Fig. 3.20 Pseudorapidity distribution of transverse energy for central Pb+Pb collisions
at 158A GeV [139]
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3.3.2 Hadronic expansion

The transverse momentum spectra of the produced particles provide infor-
mation on the hadronic �nal state after thermal freeze-out, i. e. after inelas-
tic collisions cease. Assuming local thermalization at this stage, the spectra
re�ect both the thermal conditions and the collective motion ("transverse
�ow"). Fig. 3.21 shows a simultaneous blast-wave parameterization of trans-
verse mass spectra for di�erent particle species measured by the NA49 ex-
periment [154]. The model reproduces the measured spectra well, possibly
with the exception of multi-strange hyperons (Ξ and Ω), for which NA57
claims to see deviations from the blast wave model �tted to the bulk hadrons
[155]. This would signify an earlier decoupling of the hyperons due to their
low scattering cross section.

The fact that the transverse mass spectra are well described by the blast
wave model suggests that the �reball is thermalized and expands explosively
with a velocity of about half the speed of light. It �nally decouples when
the temperature has dropped to about 120 MeV. These freeze-out conditions
agree with the analysis of the kT dependence of the transverse HBT radius
RT measured in two-pion interferometry [140]. Hadronic transport models
(e. g. UrQMD) failed to reproduce the observed spectra, demonstrating that
hadronic scattering cannot generate su�cient pressure to drive the collective
expansion.

Fig. 3.21 Blastwave �t to the transverse mass spectra measured in central Pb+Pb colli-
sions at 158A GeV [154]
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3.3.3 Strangeness enhancement and chemical
equilibrium

Enhanced strangeness production with respect to p+p interactions was pro-
posed as a messenger of the decon�ned state since strangeness is more e�ec-
tively produced in parton-parton interactions than in hadronic reaction sce-
narios [156]. Indeed, it was observed that all strange particles are enhanced
in Pb+Pb collision [157�159]; the enhancement grows with the number of
strange valence quarks and reaches up to 15 for Ω baryons (see Fig.3.22). A
study of smaller colliding nuclei revealed that it is also present in relatively
small systems (C+C, S+S) and rises quickly to a saturation value [160].

Fig. 3.22 Enhancement of hyperons in Pb+Pb collisions at the SPS with respect to p+p
collisions [157]

Enhanced strangeness production in nuclear collisions arises naturally in
the framework of statistical models as a consequence of the increased reac-
tion volume, which relaxes the impact of exact strangeness conservation on
the strange particle yields [161]. In fact, all measured hadron abundances
measured at midrapidity at SPS are well described by a hadron resonance
gas in chemical equilibrium as shown in Fig. 3.23. The temperature Tchem is
obtained to be about 170 MeV, thus coinciding with the critical temperature
for color decon�nement as deduced from lattice QCD calculations. The fact
that the hadronic �nal state resembles a hadron gas in or close to equilibrium
was attributed to a hadronisation process from colored quarks to hadrons,
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Fig. 3.23 Particle ratios measured in central Pb+Pb collisions at 158S GeV compared to
the predicition of a hadron resonance gas in full equilibrium [144]

because microscopic simulations using hadron-string degrees of freedom fail
to create an equilibrium out of the non-equilibrium initial state [162].

When considering particle multiplicities in full phase space instead of
midrapidity yields, the agreement of data and hadron gas model is less
good, in particular for strange hadrons. This lead to the introduction of a
strangeness undersaturation parameter γs, which parameterises the deviation
from strangeness equilibrium [145]. As by de�nition, this parameter acts on
the number of strange valence quarks of the hadron species, its successful
application suggests that the �nal state strangeness content is determined in
a partonic stage of the collision.

3.3.4 J/ψ suppression

The suppression of charmonium due to Debye screening by free color charges
was considered to be a key signature for the quark-gluon plasma [15]. Such a
suppression indeed was observed by the NA50 experiment [146] on top of the
expected "normal" absorption in hadronic matter. This normal absorption
was studied by the same experiment in p+A collisions and found to follow
an exponential attenuation law. Fig. 3.24 shows the ratio of observed over
expected J/ψ yield as a function of the path length in cold nuclear matter L.
While for peripheral collisions, the J/ψ production follows the expectations
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from normal nuclear absorption, additional suppression clearly sets in for
more central events.

Fig. 3.24 Anomalous J/ψ suppression as a function of the nuclear thickness parameter
L [146]

High-precision measurements performed by the NA60 experiment, the suc-
cessor of NA50, con�rmed these results and could pin down the onset of
anomalous suppression at a number of participant nucleons of about 80 [163].
The corresponding initial energy density, again derived using the Bjorken for-
mula, is approximately 1.5 GeV/fm3, strikingly close to the critical energy
density predicted by lattice QCD.

3.3.5 In-medium modi�cation of the ρ meson

In contrast to �nal-state hadrons, short-lived vector mesons decaying into
lepton pairs, in particular the relatively abundant ρ, provide information on
the entire evolution of the �reball due to the absence of �nal state interac-
tion of the lepton daughters. Modi�cations of the properties of such vector
mesons in a hot and dense environment were proposed as a signature for the
restoration of chiral symmetry in quark matter [34].

The di-electron spectrummeasured by the CERES collaboration in Pb+Au
collisions at 158A GeV showed no ρ peak at all, but a broad excess of elec-
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tron pairs over the expectations from a hadronic cocktail [147]. This excess
even increased at lower incident beam energy [148]. The excess is generally
attributed to two-pion annihilation with an intermediate ρ meson, requiring
a strong modi�cation of the latter in the medium. Later results of the NA60
experiment in the di-muon channel [164] con�rmed these �ndings and allowed
to discriminate the various theoretical scenarios in favor of collisional broad-
ening of the ρ through interaction with hadrons, while a shift of the ρ pole
mass as expected from explicit connection to the chiral condensate seems to
be excluded by the data.

3.3.6 Energy dependence of relative strangeness
production

Since many experimental results obtained by the various experiments at top
SPS energy (158A GeV) suggest that in central collisions of heavy nuclei a
decon�ned state of strongly interacting matter is produced, the NA49 experi-
ment embarked on an energy scan down to 20A GeV in search for the onset of
decon�nement. Fig. 3.25 shows the most striking result of this programme,
a narrow maximum in the K+/π+ ratio at around 30A GeV bombarding
energy. This ratio corresponds approximately to the total strangeness-to-
entropy ratio. Such a feature was indeed predicted by the statistical model of
the early stage assuming that the phase boundary between con�ned and de-
con�ned matter is �rst crossed at that collision energy [165], while hadronic
models fail to describe the detailed shape of the K+/π+ excitation function.

Further evidence is provided by the inverse slope parameters (or, alter-
natively, mean transverse masses) of the produced pions, kaons and protons
which are found to be approximately constant over the entire SPS energy
range, in contrast to the steep rise at AGS energies and the subsequent in-
crease towards RHIC energies (see Fig. 3.26). This constancy can be inter-
preted as feature of a mixed phase with latent heat, where additional beam
energy is converted into the phase transition instead of increasing pressure
or temperature.

3.3.7 Conclusions and perspectives for FAIR

The results obtained in the SPS heavy-ion programme strongly support the
conclusion that the matter created in central collisions of heavy nuclei at
top SPS energy is transiently in a decon�ned state of quarks and gluons. In
addition, there are indications that the phase boundary is �rst reached at
beam energies around 30A GeV. Thus, the SIS-300 energy domain appears
well suited for the in-depth study of the onset of decon�nement.
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Fig. 3.25 Energy dependence of the K+/π+ ratio in central Pb+Pb / Au+Au collisions,
and in p+p collisions (open circles) [159, 166]

Fig. 3.26 Energy dependence of the mean transverse mass of pions, kaons and protons in
central Pb+Pb / Au+Au collisions [159]

The SPS results show that both strangeness and charmonium production
remain essential observables with direct connection to a phase transition.
Systematic, high-precision measurements of these observables as function of
collision energy appear the most promising strategy for the detailed investi-
gation of the decon�nement phase transition, which can be expected to yield
discontinuities in the excitation functions. A sudden change e. g. in the J/ψ
suppression pattern would be a clear signal for such a phase transition. Open
charm will add a new and important observable, which was not covered at
the SPS at all.

Another possible signature is anisotropic �ow of identi�ed hadrons, includ-
ing open charm. The results obtained at SPS, in particular in the context of
the NA49 energy scan, were not conclusive, mostly because of insu�cient
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statistics and precision. It will be a task for CBM to look for the possible
breakdown of baryonic �ow near the phase transition with high accuracy.

E�ects of the medium on the properties of low-mass vector mesons seem to
be governed by baryon density rather than by temperature. Hence, the max-
imal e�ects can be expected at the highest achievable net-baryon densities
as created in heavy-ion collisions in the SIS-300 energy domain. Experience
from SPS (and from RHIC) shows that for the discrimination of theoretical
models, a good signal-to-background ratio, high resolution, and high statis-
tics are essential. As a next-generation experiment, CBM should outperform
its predecessors in these respects. It should be noted that the connection
of in-medium modi�cations to the restoration of chiral symmetry is not yet
unambiguous and subject to further theoretical developments.

The search at SPS for event-by-event �uctuations of several quantities
like K/π ratio, mean transverse momentum, charged multiplicity etc. yielded
no signi�cant e�ects beyond the statistical expectations, with maybe the
exception of the increase of dynamical �uctuations of the K/π ratio at lower
beam energies as reported by NA49 [167]. Non-statistical �uctuations are
expected in the vicinity of a critical point separating the region of a �rst-
order phase transition from that of a smooth cross-over. Moreover, dynamical
�uctuations might also develop in the coexistence phase of a �rst order phase
transition. Therefore, the search for such �uctuations is an important part of
the CBM research programme.

3.4 Probing partonic matter: results from RHIC

Over the past decade RHIC has established the existence of a strongly in-
teracting collective partonic states, termed the sQGP [168]. The evidence is
largely based on three fundamental measurements, the strong suppression of
high momentum particles traversing the medium (jet quenching), the large
azimuthal anisotropy of particle emission in non-central collisions (elliptic
�ow), and the scaling properties of the anisotropy for high momentum par-
ticles (constituent quark scaling). When nearing a critical point by lowering
the collision energy one can assume that these indicators of a decon�ned
partonic state should weaken or disappear altogether. One of the main ob-
jectives of CBM will therefore be the mapping of these measurements as a
function of collision energy. We will in the following detail the physics content
of the RHIC QGP signatures. In addition we will propose the measurement of
hadronic resonances, which were applied at RHIC energies to determine the
lifetime and medium properties of the partonic and hadronic phases during
the �reball evolution.
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3.4.1 Jet quenching

The basic RHIC results regarding partonic energy loss in the medium are
shown in Fig. 3.27.
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Fig. 3.27 RAA(pT ) measured in central Au+Au collisions at 200 A GeV for η, π0, and
direct γ (from [169]).

The so called nuclear suppression factor RAA is shown as a function of par-
ticle transverse momentum. The suppression factor is the ratio of the particle
spectrum measured in A+A collisions over the scaled particle spectrum mea-
sured in pp collisions. In case of a simple superposition of pp collisions, in
order to describe the AA spectra, the ratio should be unity. High momentum
particle suppression can be attributed to energy loss in the medium. A refer-
ence measurement even in central Au+Au collisions is given by determining
the suppression factor for direct photons. Due to their negligible interaction
cross section photons should not be suppressed at all, and the results shown
in Fig. 1 con�rm this assumption. The quantitative analysis of the suppres-
sion of hadrons can be used to determine the nature of the medium and its
transport coe�cient. It was shown [170] that the energy loss is about �fteen
times higher than in cold nuclear matter, which unambiguously determined
that the plasma is of partonic nature. The exact transport coe�cient in the
partonic medium is somewhat more di�cult to determine and di�erent the-
oretical approaches yield di�ering results [171, 172], but a recent detailed
analysis of the available experimental data helps to constrain such models
[173].
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The relevant measurement for CBM is to determine the energy dependence
of the quenching. RHIC has results for 22.4, 62.4 and 200 A GeV, and there
are also some data from SPS, but they lack the statistics at high momentum.
Fig. 3.28 represents the present knowledge of the energy dependence based
on CuCu data [174]. It seems that at least for the π0 the quenching e�ect
disappears at SPS energies. CBM will be able to contribute a much more
detailed measurement at even lower collision energy. We expect the charged
particle momentum spectrum to reach out to 4-5 GeV/c.
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Fig. 3.28 (a.) measured π0 RAA as a function of pT for the 0-10% most central CuCu
collisions at various collision energies, b.) average RAA in the integral from 2.5 < pT <
3.5 GeV/c as a function of centrality for CuCu collisions at various energies (from [174]).

3.4.2 Hydrodynamical elliptic �ow

One of the early discoveries of RHIC was that the magnitude of the az-
imuthal anisotropy in momentum space, measured by the second moment of
the Fourier transform of the emission spectrum (v2 = elliptic �ow) reaches,
for the �rst time, the hydrodynamical limit [175]. Fig. 3.29 shows the collision
energy dependence of the elliptic �ow over eccentricity ratio in comparison
to hydrodynamical calculations [176].

The planed CBM experiment will cover the AGS and low energy CERN
SPS regime. However, the high-rate capability of the CBM detector will result
in superior statistics, and, hence, will open challenging perspectives even for
multi-di�erential measurements. One of the interesting questions is, whether
the elliptic �ow just steadily drops as a function of collision energy or whether
the existence of a critical point does not only a�ect the magnitude of v2 but
also its �uctuations [177, 178], see Sect. 9.8. Generally, hydrodynamic models
assuming zero mean free path and negligible shear viscosity are capable of
describing the elliptic �ow data at RHIC [176]. Modi�ed string models such
as UrQMD are even successful in describing the general trend of v2 as a



3.4 Probing partonic matter: results from RHIC 733

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

/dy ch 1/S dN

ε/
2 v HYDRO (EoS Q)

HYDRO (EoS H)
/A=11.8 GeV, Au+Au, E877 labE

/A=40 GeV, Pb+Pb NA49 labE

/A=158 GeV, Pb+Pb, NA49 labE

STAR Prelim.,
=200 GeV, Au+AuNNs
=62 GeV, Au+AuNNs
=200 GeV, Cu+CuNNs
=62 GeV, Cu+CuNNs

STAR Prelim.,
=200 GeV, Au+AuNNs

{2}partε/{FTPC}2v

std
ε/{ZDC}2v

Fig. 3.29 v2/ε as a function of the overlap density for various collision systems and
collision energies compared to hydrodynamic model calculations (from [175]).

function of collision energy [179]. The main new objective at CBM might
thus be to investigate the evolution of the v2 �uctuations. STAR was able to
measure the v2 �uctuations in

√
sNN = 200 GeV Au+Au collisions [180] and

found that the v2 �uctuations are almost fully accounted for by assuming
standard eccentricity �uctuations based on a Glauber model. The question
arises whether additional contributions will appear at lower energies. Several
theory papers have related the level of �uctuations to the initial conditions
in heavy ion collisions [181, 182].

3.4.3 Constituent Quark (NCQ) Scaling of elliptic �ow

The remarkable scaling of the v2 of high momentum hadrons with the number
of constituent quarks has led to a general acceptance of the notion that the
initial matter at RHIC is partonic. Fig. 3.30 shows the latest results from
STAR and PHENIX that include measurements from the pion all the way to
the multi-strange hyperons [183].

The general consensus is that the quark scaling hints at a unique produc-
tion mechanism for higher momentum particles, namely the recombination
of quarks into hadrons in the decon�ned phase [184, 185]. This mechanism is
distinctly di�erent from thermal production of lower momentum hadrons and
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Fig. 3.30 Elliptic �ow as a function of the transverse momentum (left) and of the trans-
verse kinetic energy (right), both axes scaled with the number of constituent quarks (from
[183]).

fragmentation production of higher momentum hadrons. Neither hadroniza-
tion mechanism is theoretically well described but the empirical evidence for
recombination seems overwhelming at this point, and for quarks with negli-
gible quark masses the scaling formalism is well established. But the NCQ
scaling of, in particular, the D-meson is truly remarkable and not well under-
stood (see [186]], because even if the charm quark is thermalized and �ows
with the light quarks, one should see a current quark mass scaling as long as
the mass is not negligible compared to the particle momentum [187]. Thus,
the determination of the validity of quark scaling at CBM energies, for parti-
cles ranging from light to heavy quark hadrons, will be very relevant. Fig. 6.9
shows simulations of this e�ect at CBM/FAIR energies. One would assume
that the recombination of partons from the medium should not be applicable
below the critical point and then show a transition behavior at the critical
point. How many of the produced particles species above the critical point
will exhibit NCQ scaling will determine the level of strange and charm ther-
malization in the decon�ned phase. It will also show whether, in particular,
the charm quark results at RHIC are misinterpreted.
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3.4.4 Hadronic resonance measurements

The advances in hadronic resonance reconstruction during the RHIC years
have led to novel measurements of exotic resonances in relativistic heavy ion
collisions. Besides the established results for ρ,φ and K∗, STAR was able to
reconstruct strange baryonic resonances such as the the Σ(1385), Λ(1520),
and the Ξ(1530) [188, 189]. By establishing such a long list of resonances with
di�ering lifetime and decay properties STAR was able, in conjunction with its
HBT measurements, to determine the lifetimes of the partonic and hadronic
phases at RHIC [188]. Furthermore the resonances can be used to establish
interaction cross sections in medium by modeling the interplay of rescattering
and regeneration during the hadronic de-excitation phase. Fig. 3.31 shows the
actual measurements of resonant over non-resonant ratios.
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Fig. 3.31 Resonances to stable particle ratios for pp and Au+Au collisions at 200 A GeV
(from [188]).

At CBM we expect the partonic phase to be shorter and the hadronic
phase to last considerably longer. A systematic study of the resonance to
particle ratios as a function of collision energy will determine the lifetime
dependencies as well as the in-medium interaction cross sections, not only for
light quark hadrons but also for the more exotic strange baryons.





Chapter 4

Hadron production

In this chapter we will discuss excitation functions of hadron production in
heavy-ion collisions and their interpretations. As outlined in Part I, particle
yields and ratios can be analyzed with a statistical (thermal) model in order to
extract the �reball freeze-out temperature T and the baryo chemical potential
µb. Fig. 4.1 presents a recent compilation of thermal model �ts to measured
particle yields and ratios, and parameterizations of the energy dependence of
T and µb [6].

It is worthwhile to note that the freeze-out temperature T exhibits a sharp
rise up to

√
sNN = 7-8 GeV and then stays constant, while µb sharply de-

creases all the way up to RHIC energies. The observation of a limiting freeze-
out temperature is nontrivial, and may indicate a change of the degrees-of-
freedom in the �reball which happens at FAIR (low SPS) beam energies.
More detailed comparisons of thermal model calculations to particle yields
and ratios, in particular for strange particles, are presented in this chapter.
In order to obtain detailed information on the particle production mecha-
nisms, and on the early, hot and dense phase of a nucleus-nucleus collision,
the experimental data on hadron multiplicities have to be analyzed using
microscopic transport models. Results will be discussed in this chapter.

4.1 Excitation functions of hadron yields

A compilation of measurements of yields at mid-rapidity for the most abun-
dant hadron species is shown in Fig. 4.2 for central nucleus-nucleus (Au+Au
or Pb+Pb) collisions [26]. These data have been used to extract the freeze-
out temperature and the baryo chemical potential shown in Fig. 4.1. As the
centrality selection di�ers between various measurements, the data are scaled
at the same number of participating nucleons, Npart=350. At AGS energies
the �reball is dominated by the incoming nucleons, while the yield of the
produced pions, with a strong energy dependence, dominates at higher ener-

737
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Fig. 4.1 The energy dependence of freeze-out temperature and baryo chemical potential.
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Fig. 4.2 The energy dependence of experimental hadron yields at mid-rapidity for various
species produced in central nucleus-nucleus collisions. Taken from [26]
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gies. The yield of strange hadrons shows a sharp rise at AGS energies, with
characteristic features for various species, determined by their quark content.
The yields of K+ mesons and Λ hyperons (both with only the strange quark
newly produced) are larger compared to K− mesons, which has two newly
produced quarks. The remarkable similarity of the yields of K+ mesons and
Λ hyperons, despite their large mass di�erence, is determined chie�y by their
(anti)strange quark content, leading to their associated production. The yield
of antiprotons and antihyperons (containing three newly produced quarks) is
very similar and with a strong energy dependence (onset of production) at
SPS energies. At the RHIC energies, due to a rather small net baryon content
of the �reball, these di�erences almost disappear.

The excitation functions of hadron production in central collisions of heavy
nuclei (Au+Au or Pb+Pb) measured in (or extrapolated to) the full solid
angle are presented in Fig. 4.3 (taken from [35]). An interesting feature is
the maximum of the Λ yield around

√
sNN = 7-10 GeV which is caused by

the decrease of the baryon-chemical potential indicating the transition from
baryon to meson dominated matter.
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The meson abundances measured in central Au+Au collisions from SIS
to RHIC energies (solid symbols) are show in Fig. 4.4 together with HSD
transport model predictions. The multiplicities for π+, η,K+,K−, φ as well
as D, D̄, J/ψ mesons increase monotonically with bombarding energy. The
increase is very steep at 'subthreshold' energies, i.e. at beam energies per
nucleon below the threshold for meson production in nucleon-nucleon colli-
sions. The predicted cross sections for K− merge at subthreshold energies
with those for φ mesons since the antikaon is produced dominantly together
with a kaon, i.e. the invariant mass of the K+K− or K0K− pair of ∼ 989
MeV is close to the mass of the φ meson of 1020 MeV. On the other hand
kaons (K+,K0) are dominantly produced with a hyperon (Λ or Σ) since the
relevant invariant mass is mK +mΛ −mn ≈ 671 MeV or mK +mΣ −mn ≈
745 MeV and thus lower than the invariant mass of a KK̄ pair of ∼ 989 MeV.

The situation in the charm sector is rather similar except for the fact that
the masses of the ηc and J/ψ (2.98 GeV and 3.097 GeV, respectively) are
well below the mass of a D meson pair which is 3.739 GeV. Accordingly, the
formation of a ηc or a J/Ψ from an initial cc̄ pair is the only allowed process
(in vacuum) close to the charm threshold since the production of a D+D̄ pair
is suppressed by its large invariant mass. But again the associated production
of a D̄ meson (which contains a c̄ quark) with a charmed hyperon (Λc, Σc, Σ∗

c )
is more favorable due to the e�ective invariant masses of 3.216 GeV and 3.386
GeV, respectively, than the production of a DD̄ pair. This explains why in
Fig. 4.4 the D̄ cross section is larger than the D cross section at subthreshold



4.1 Excitation functions of hadron yields 741

100 101 102 103 104
101

102

100 101 102 103 104
101

102

103

100 101 102 103 104
101

102

100 101 102 103 104
101

102

103

100 101 102 103 104
10-1

100

101

102

100 101 102 103 104

100

101

102

100 101 102 103 104

10-2

10-1

100

101

102

100 101 102 103 104

10-2

10-1

100

101

102

100 101 102 103 104

0

5

10

15

100 101 102 103 104

0

20

40

60

80

100

E866
E895
NA49
PHENIX
BRAHMS
STAR

 

 

  ππππ+ 

E895
NA49
BRAHMS

 HSD
 UrQMD

  ππππ+ 

  4ππππ yield 

E895
NA49
PHENIX
BRAHMS
STAR

  ππππ−−−− 

 dN/dy (y=0) 

E895
NA49
BRAHMS

  ππππ−−−− 

 HSD
 UrQMD
 GiBUU

E866
NA49
PHENIX
BRAHMS
STAR

  K+ 

 

E866
NA49
BRAHMS

  K+ 

 

E
lab

/A [GeV]

E866
NA49
PHENIX
BRAHMS
STAR

  K−−−− 

E866
NA49
BRAHMS

  K−−−− 

E877
NA49
WA97

 

ΛΛΛΛ+ΣΣΣΣ0

E877
NA49

E
lab

/A [GeV]

ΛΛΛΛ+ΣΣΣΣ0

Fig. 4.5 The excitation function of π+, π−,K+,K− and Λ + Σ0 yields from central
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(AGS), [159, 166, 195�198] (SPS) and [199�204] (RHIC) for midrapidity (left column) and
rapidity integrated yields (right column). The solid lines with open squares show the results
from HSD whereas the dashed lines with open triangles indicate the UrQMD calculations.
(The HSD and UrQMD results are taken from Ref. [30].) The solid lines with the stars
corresponds to the GiBUU calculations [205].

energies and the J/ψ formation dominates in the far subthreshold domain.
At higher bombarding energies the meson abundances group according to
their quark content, i.e. the multiplicities are reduced (relative to π+) by
about a factor of 4�5 for a strange quark, a factor of ≈ 50 for ss̄ ≡ φ and a
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factor of ≈ 2 · 104 for cc̄ ≡ J/ψ. The early predictions of the HSD transport
model for the production of light mesons [190] have been close to the actual
experimental data, as illustrated in Fig. 4.4.

Fig. 4.5 depicts the excitation functions of π+, π−,K+,K− and Λ + Σ0

yields at midrapidity (left panel) and integrated over rapidity (right panel) for
central Au+Au (Pb+Pb) collisions. The symbols refer to experimental data,
whereas the lines correspond to results of calculations [30] within the HSD
[42, 206], UrQMD [124, 207], and the GiBUU model [205, 208]. As can be seen
from Fig. 4.5 the di�erences between the di�erent transport models are less
than 20%; the maximum deviations between the models and the experimental
data are less than ∼ 30%. In addition, a systematic analysis of model results
and experimental data for central nucleus-nucleus collisions from 2 to 160
A·GeV [209] has shown that also the rapidity distributions of protons, pions,
kaons, antikaons and hyperons are quite similar and in reasonable agreement
with available data. The exception are the pion rapidity spectra at the highest
AGS energy and lower SPS energies, which are overestimated [209]. For a
more detailed comparison of transport calculations with experimental data
see [30, 205, 209�213].

Particle excitation functions have been also calculated within a 3-�uid
hydrodynamical model [32] for a hadronic EOS. The results are shown in
Fig. 4.6. The agreement with data is quite satisfactory except for the an-
tikaons (and possibly Λ̄'s).

4.2 Excitation functions of hadron ratios

In order to correct for temperature e�ects and to magnify the details of
strangeness formation one can look at the ratios of the yields of strange par-
ticles over pions. Fig. 4.7 depicts the excitation function of the particle ratios
K+/π+,K−/π− and (Λ + Σ0)/π from central Au+Au (Pb+Pb) collisions
calculated with HSD [30], UrQMD [30] and GiBUU [205] in comparison to
the experimental data available. The deviations between the transport mod-
els and the data are most pronounced for the midrapidity ratios (left column)
since the ratios are very sensitive to actual rapidity spectra. The K+/π+ ra-
tio in UrQMD shows a maximum at ∼ 8 A·GeV and then drops to a constant
ratio of 0.11 at top SPS and RHIC energies. In the case of HSD (and GiBUU)
a continuously rising ratio with bombarding energy is found for the midra-
pidity ratios. The 4π ratio in HSD is roughly constant from top SPS to RHIC
energies, and is larger than the UrQMD ratio due to the lower amount of pion
production in HSD. This e�ect essentially is caused by an energy-density cut
of 1 GeV/fm3 in HSD which does not allow to form hadrons above this criti-
cal energy density [209]. Moreover, HSD produces a slightly higher K+ yield
than UrQMD (cf. Fig. 4.5). The experimental maximum in the K+/π+ ratio
is missed both by the HSD and the UrMD calculation. The disagreement be-
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Fig. 4.6 The excitation function for the multiplicities of pions, K+,K−, φ, Λ, Λ̄ and
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taken from Ref. [32].

tween data and model calculations can be dominantly attributed to an excess
of pions in the transport codes at top AGS energies (for HSD) and above ∼ 5
A·GeV (for UrQMD). Qualitatively, the same argument - due to strangeness
conservation - also holds for the (Λ+Σ0)/π ratio.

The maximum in the (Λ+Σ0)/π ratio is essentially due to a change from
baryon to meson dominated dynamics with increasing beam energy. Similar
arguments hold for the experimentally observed maxima in the ratio Ξ/π (cf.
Ref. [214]). The enhancement in the measured K+/π+ ratio at ∼30 A·GeV
cannot described by hadron transport models.
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Fig. 4.8 depicts the Λ/π ratio as a function of collision energy
√
sNN . The

experimental data are confronted here with predictions from the statistical
(hadron gas) model [20, 217�220] and from the microscopic transport models
UrQMD [209] and HSD [221]. While UrQMD falls signi�cantly low with re-
spect to the data the HSD calculations perform better due to an inclusion of
multi-meson fusion channels for baryon+antibaryon production. The experi-
mental Λ/π ratio shows a monotonic increase up to RHIC energies [202�204]
without any signi�cant structure (similar to the K−/π− ratio).

The measured excitation functions of hadron abundances with respect to
pion yields are presented in Fig. 4.9 in comparison to thermal model results
[6]. The calculations are based on the parameterizations of freeze-out temper-
ature and baryon-chemical potential as shown in the right panel of Fig. 4.1. In
contrast to previous studies [26], these thermal model �ts include very high-
mass resonances (m > 2 GeV), and the scalar σ meson (for details see [6]). No
contribution from weak decay feed-down is included in the model calculations
as well as in the data. The ratios shown in Fig. 4.9 re�ect the evolution of
the �reball composition at freeze-out as a function of energy. The steep de-
crease of the p/π+ ratio directly re�ects the decrease as a function of energy
of stopping of the incoming protons, implying a decrease of µb. The increase
of pion production also plays a role in this ratio. Beyond

√
sNN '100 GeV,

the �attening is a consequence of the dominance of newly created baryons.
The steep variation of the K+/π+ and K−/π− ratios at the lowest energies
re�ects the threshold for strangeness production, determined in the model
by the steep increase of the temperature. The canonical suppression plays an
important role as well. The ratio K−/π− shows a monotonic increase with
energy followed by a saturation, essentially determined by the temperature
(as both particles are newly created). In contrast, the ratio K+/π+ exhibits
a peak around

√
sNN '8 GeV which has been interpreted as a signature for

the onset of QGP [165, 222, 223]. As the K+ meson contains a u and a s̄ va-
lence quark, it can be produced either associated with a Λ (or a Σ hyperon),
or together with a K− meson. Therefore, K+ meson yield results from the
convolution of two competing contributions as a function of energy: i) the
decreasing net light quark content (i.e. baryo chemical potential), and ii) the
increasing production quark-antiquark pairs.

The thermal model predicts a rise and fall of the energy dependence of
the relative hyperon yields Λ/π−, Ξ−/π− and Ω−/π− which is caused by
the interplay of rising temperature and decreasing baryon-chemical potential.
Within the thermal model the peaks for the more massive hyperon species
are less pronounced and located at higher energies, in agreement with the
data. The mass hierarchy of the width and the location of the peaks, as
recently discussed by Cleymans et al. [224], awaits experimental con�rmation
by improved data (see right panel of Fig. 4.9).

A more general way to represent the ratio of strange to non-strange
hadrons is the strangeness (σ) to entropy (S) ratio [6]. Its excitation function
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Fig. 4.9 The energy dependence of strange hadron yields relative to pions, including
the most recent results from NA49 [166, 195] and RHIC [225]. In the right panel, note
the scaling factors of 10 and 100 for the Ξ−/π− and Ω−/π− ratios, respectively. The
measured yields at midrapidity are compared to the thermal model calculations of ref. [6].

is presented in Fig. 4.10. The two quantities have been calculated from the
yields at mid-rapidity as:

σ = 2(K+ + K−) + 1.54(Λ+Λ̄)
S = 1.5(π+ + π−) + 2p̄

The strangeness has in principle to be complemented with the yields of φ,
Ξ, and Ω (and Ξ̄, and Ω̄), but, since the measurements for these yields are
scarce (as seen in Fig. 4.9) they were left out for the strangeness count. The
factor 2 multiplying the kaon yields takes into account K0, while the factor
1.54 for Λ hyperons accounts for the contribution ofΣ± and was deduced from
the model calculations (the yield of Σ0 which decays with 100% branching
ratio into Λγ is always included in the Λ yield.). The factor 1.5 for the pion
yields accounts for the π0 yield, while in case of p̄ yields the factor 2 is used to
account for the produced protons. As expected from the individual particle
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ratios studied above, the ratio strangeness/entropy is well reproduced by the
model, with the exception of the NA49 data taken at high SPS energies.

Fig. 4.10 Energy dependence of the strangeness to entropy ratio (see text). The solid
line corresponds to a thermal model �t to the data, the model includes very high-mass
resonances (m > 2 GeV), and the scalar σ meson [6]

4.3 Conclusions and perspectives for FAIR

The most intriguing feature in the excitation function of particle yields and
ratios is the peak-like structure in the K+/π+ ratio at beam energies of
20-30 AGeV. A con�rmation of these data by an independent experiment
would certainly stir up the debate on a possible signature for the decon�ne-
ment phase transition at low SPS or FAIR energies. The excitation function
of multi-strange hyperon production has to be measured with better accu-
racy in order to shed light on the strangeness production mechanisms. The
measurements require a large detector acceptance over the full beam energy
range, and excellent particle identi�cation capabilities.





Chapter 5

Transverse mass spectra

Apart from particle yields also the phase space distributions of particles pro-
vide relevant information on the reaction dynamics. The transverse mass
spectra of hadrons (heavier than pions) measured at AGS, SPS and RHIC
energies can be parameterized by

1
mT

dN

dmT
∼ exp

(
−mT

T

)
(5.1)

with mT = (p2
T +m2)1/2. The mT spectra measured in central Au+Au col-

lisions exhibit substantial "harder" slopes as those from pp interactions (cf.
[226]). This increase of the inverse slope parameter T (see Eq. (5.1)) for low
transverse mass or momentum is commonly attributed to strong collective
�ow, which is absent in pp or pA collisions.

5.1 Beam energy dependence of transverse mass
distributions

Fig. 5.1 depicts the inverse slope parameters T as a function of
√
s ex-

tracted fromK+ andK− meson transverse mass spectra measured for central
Au+Au (Pb+Pb) collisions (l.h.s.) and pp reactions (r.h.s.) using Eq. (5.1)
[226, 227]. The data are compared to results of various transport model calcu-
lations. The two solid lines with open circles on the l.h.s. in Fig. 5.1 represent
results of HSD calculations corresponding to upper and lower limits due to
the �t accuracy of the slope T , an uncertainty in the repulsive K± potential,
and the e�ect of possible string overlaps. The HSD calculations also demon-
strate that the 'partonic' Cronin e�ect plays a minor role at AGS and SPS
energies for the parameter T . The slope parameters from pp collisions (r.h.s.
in Fig. 5.1) increase smoothly with energy both in the experiment (full trian-
gles) and in the transport calculations (full lines with open circles), and are
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Fig. 5.1 Comparison of the inverse slope parameters T for K+ and K− mesons from
central Au+Au (Pb+Pb) collisions (l.h.s.) and pp reactions (r.h.s.) as a function of the
invariant energy

√
s from HSD (upper and lower solid lines) [30] and UrQMD (open trian-

gles) [30] with data from Refs. [191, 199�204, 226, 228] for AA and [202�204, 227, 229] for
pp collisions. The open diamands show the Oslo-Tübingen QGSM [230�235] results, the
solid line with the stars corresponds to the GiBUU calculations [205] while the solid line
stands for the 3-�uid hydrodynamical model [236] that performs best at FAIR energies.

signi�cantly lower than those from central Au+Au reactions for
√
sNN > 3.5

GeV.
The inverse slope parameters of kaon and antikaon transverse mass spectra

measured in pp collisions satisfactorily agree with HSD and UrQMD trans-
port calculations (see right panels of Fig. 5.1). The same is true for central
C+C and Si+Si collisions [237]. For central Au+Au (or Pb+Pb) collisions,
however, the situation is quite di�erent (see left panels of Fig. 5.1). Whereas
at a collision energy of

√
sNN = 3.3 GeV (corresponding to a beam energy of

4 A·GeV for �xed target experiments) the agreement between the transport
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model calculations and the data is still acceptable, the data are severely un-
derestimated by the transport models from

√
sNN = 7.7 to 17.3 GeV (SPS

energies 30 and 160 A·GeV) [237]. Note that the π± spectra are reasonably
well described. Within the calculations, the increase of the inverse K± slopes
in heavy-ion collisions with respect to pp collisions is generated by rescatter-
ing of the produced hadrons. However, this e�ect provides only little addi-
tional transverse momentum at midrapidity because the elastic meson-baryon
scattering is strongly forward peaked. Similar results are obtained with the
GiBUU model [205] (up to 40 A· GeV) and with the QGSM model [230�235].
For a more detailed discussion and other alternative scenarios implemented
in the HSD, UrQMD and GiBUU models we refer to Refs. [30, 205].

The RQMD and UrQMD 2.1 models [30, 238] produce harder kaon spectra
(i.e. larger inverse slope parameters) at AGS and SPS energies than HSD,
UrQMD 2.0 and GiBUU. This e�ect essentially can be traced back to the
implementation of e�ective resonances with masses above 2 GeV as well as
'color ropes' which decay isotropically in their rest frame [239]. These heavy
resonances preferentially decay into pions and nucleons or into kaons and
nucleons (in UrQMD). In this way the pion number is reduced (which is
in agreement with experimental data) and the hadron slope parameters are
increased. However, in this case the pion and antikaon slope parameters are
overestimated. Therefore, no conclusive picture emerges from the comparison
of the experimental data to transport model calculations. One may speculate
whether the additional pressure - which leads to the enhanced �ow and, hence,
to the large slope parameter - is generated in the early partonic phase of the
collision. A more detailed discussion of this issue is presented in Ref. [30].

5.2 Particle mass dependence of transverse mass
distributions

It was observed that the slope parameters do not follow a simple scaling
with particle mass as expected for a radial collective �ow. This �nding is
illustrated in Fig. 5.2 where the slope parameters T measured in

√
sNN= 200

GeV Au + Au (full-circles) and
√
sNN= 17.2 GeV Pb + Pb (open-circles)

central collisions are presented as a function of the particle mass. The slope
parameters rise with particle mass up to about 1 GeV, and then saturate for
heavier particles. A similar observation has been made for particles decaying
into lepton pairs (see chapter "Dileptons"). The light hadrons - up to masses
of 1 GeV - get additionally accelerated in the hadronic phase by resonant
rescattering. Multi-strange and charmed hadrons, however, cannot pick up
�ow in the hadronic phase as their hadronic reaction cross sections are too
small. Therefore, the mT spectra of multistrange and charmed hadrons are
determined by the pressure in the early (partonic) phase of the collision.
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Fig. 5.2 Hadron inverse slope parameters T from
√
sNN= 200 GeV Au + Au (full-circles)

and
√
sNN= 17.2 GeV Pb + Pb (open-circles) central collisions [240].

5.3 Conclusions and perspectives for FAIR

The transverse-mass inverse-slope parameters of strange particles measured
in heavy-ion collisions are largely underestimated by hadron transport models
for beam energies above 4 AGeV. Whether this discrepancy is due to missing
heavy baryon resonances in the transport codes, or due to additional pressure
generated in an early partonic phase, is still an open question. A possible
experimental approach to study the early phase of the collision is to measure
with high precision the phase-space distributions of φ mesons, multi-strange
hyperons, D mesons and charmonium. These particles are only little a�ected
by hadronic rescattering, and, therefore, their transverse mass distributions
still re�ect the initial conditions of a heavy-ion collision. Further progress
requires the measurement of these rare probes in large data samples, and for
various beam energies and collision systems.



Chapter 6

Collective �ow

6.1 General considerations

Hydrodynamic �ow and shock formation have been proposed early [241] as
the key mechanism for the creation of hot and dense matter during relativis-
tic heavy-ion collisions. However, the full three-dimensional hydrodynamical
�ow problem is much more complicated than the one-dimensional Landau
model [242] used in many of the present hydrodynamical calculations. The
3-dimensional compression and expansion dynamics yields complex triple dif-
ferential cross-sections, which provide quite accurate spectroscopic handles
on the equation-of-state. The �bounce-o��, the �squeeze-out� and the �anti-
�ow� [243] (third �ow component [244]) have been suggested as di�erential
barometers for the properties of compressed, dense matter from SIS to RHIC.
Presently, the most employed �ow observables are the �in-plane �ow� and the
�elliptic �ow� [245]:

v1 =
〈
px
pT

〉
, v2 =

〈
p2
x − p2

y

p2
x + p2

y

〉
. (6.1)

Here, px denotes the momentum in x-direction, i.e. the transverse momen-
tum within the reaction plane and py the transverse momentum out of the re-

action plane. The total transverse momentum is given as pT =
√
p2
x + p2

y; the
z-axis is in the beam direction. Thus, v1 measures the "bounce-o�", i.e. the
strength of the directed �ow in the reaction plane, and v2 gives the strength
of the second moment of the azimuthal particle emission distribution, i.e.
"squeeze-out" for v2 < 0 [241, 243].

Microscopic (pre-)hadronic transport models describe the formation and
distributions of many hadronic particles from SIS to SPS energies reason-
ably well [209]. The observed proton �ow v2 below ∼ 5 A·GeV is less than
zero, which corresponds to the squeeze-out predicted by hydrodynamics [241].
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The AGS data exhibit a transition from squeeze-out to in-plane �ow in the
midrapidity region. The change in sign of the proton v2 at 4-5 A·GeV is in
accordance with transport calculations � UrQMD [246], HSD [247, 248], ART
[249] and BUU [250]. Calculation without nuclear potentials severely under-
estimates the elliptic �ow up to SPS energies as demonstrated by a UrQMD
calculation (in the cascade mode) in Fig. 6.1 for midrapidity nucleons in
comparison to the available data (cf.p also [251]).
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Fig. 6.1 Excitation function of v2 for midrapidity nucleons in the UrQMD model in the
cascade mode [252] in comparison to the available data.

6.2 Nucleon �ow and the nuclear equation-of-state

The directed and elliptic collective �ow is generated in the very early phase
of the collision, and thus is a promising probe for the properties of hot and
dense matter. The disappearance or the "collapse" of �ow has been discussed
as a signature for a �rst order phase transition [243, 253]. The collective �ow
of nucleons is driven by the pressure in the reaction volume, and, hence,
is sensitive to the equation-of-state (EOS) of (symmetric) nuclear matter.
Values for the nuclear incompressibility have been extracted from �ow data up
to AGS energies by comparison to transport models [244, 246�248, 254, 255].
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As discussed in Part III, microscopic transport models reproduce the ex-
citation function of the proton elliptic �ow v2 measured at SIS energies when
incorporating a soft, momentum-dependent equation-of-state [212, 213, 256�
258]. This result is consistent with the interpretation of data on subthreshold
kaon production. Both observables imply that the nuclear EOS is soft in the
density range probed by heavy-ion collision at SIS energies, i.e. up to 2-3
times saturation density.

Proton �ow data obtained in heavy-ion collisions at BEVALAC/SIS and
AGS energies are shown together with the results of the transport model
calculations in Fig. 6.2. Values for the nuclear incompressibility of κ = 170
MeV - 380 MeV have been extracted from the data [132, 134]. According to
the model calculations, nuclear densities between ρ = 2 - 5 ρ0 are reached in
the central �reball volume at these beam energies. The large range of κ values
re�ects the fact that the interpretation of proton �ow data using transport
models is not straight forward because the strength of the collective proton
�ow does not only depend on the EOS, but also on the in-medium nucleon-
nucleon cross section, and on momentum-dependent interactions [132]. At
SIS energies and below there is the additional complication that nucleonic
clusters - which carry a substantial fraction of the nucleon �ow - cannot be
described satisfactorily by transport calculations.

Fig. 6.2 Left panel: Sideward �ow excitation function for Au+Au. Data and transport
calculations are represented, respectively, by symbols and lines. Right panel: Elliptic �ow
excitation function for Au+Au. Data and transport calculations are represented, respec-
tively, by symbols and lines (taken from [132]).
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6.3 Elliptic �ow and partonic collectivity

One of the most intriguing observations at RHIC is the scaling of the strength
of the elliptic �ow v2 with the number of constituent quarks when studied as a
function of transverse kinetic energy, as shown in the left panel of Fig. 6.3 for
Au+Au at

√
sNN = 200 GeV [259]. This scaling scheme has been extended to

the v2 of positive and negative pions, kaons and protons measured in Au+Au
collisions at

√
sNN = 62.4 GeV and Cu+Cu collisions at

√
sNN = 200 GeV

[260]. The middle panel of Fig. 6.3 shows that the constituent quark scaling
of v2 works well for π±, K±, p and p̄ in Au+Au collisions at

√
sNN = 62.4

GeV. The scaling of v2 is observed also for the smaller Cu+Cu system at√
sNN = 200 GeV (see right panel of Fig. 6.3). These observations suggest

that partonic degrees of freedom exist in the matter formed at lower beam
energy and in the smaller colliding system.

 

Fig. 6.3 Elliptic �ow v2/nq as a function of transverse kinetic energy KET /nq (both
divided by the number of constituent quarks) for charged pions, kaons and protons in
minimum bias Au+Au collisions at

√
sNN= 200 GeV (left panel), in Au+Au collisions

at
√
sNN= 62.4 GeV for centrality 10 - 40% (middle panel) and Cu+Cu at

√
sNN= 200

GeV for centrality 0 - 50% (right panel).

The elliptic �ow of v2 of φ mesons as measured in Au+Au collisions at√
sNN= 200 GeV is depicted in Fig. 6.4. The value of v2 of φ mesons is

surprisingly large. If the φ meson has a small cross-section with hadrons as
suggested by the analysis of φ photo-production data (σφN ≈ 10 mb [261]),
it would not participate in the late stage hadronic interactions in contrast to
hadrons such as pions, kaons and protons (or antiprotons) which freeze-out
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Fig. 6.4 Elliptic �ow v2 of mesons as function of transverse momentum measured at
midrapidity in Au+Au collisions at

√
sNN = 200 GeV [267].

later. This indicates that the large elliptic �ow of φ mesons must have been
developed in the earlier partonic stage.

The φ meson plays a particular role as a probe of the dense and hot nuclear
medium. The proper lifetime of the φ meson is about 45 fm/c and it decays
into charged kaons K+K− with a branching ratio of 49.2%, and more rarely
into the dilepton pairs e+e− (B. R. of 2.97 × 10−4) and µ+µ− (B. R. of
2.86 × 10−4). In an environment with many strange quarks, φ mesons can
be produced through coalescence. Therefore, the enhancement of φ meson
production due to the coalescence of ss̄ pairs in the hot medium has been
predicted to be a probe of the QGP in ultra-relativistic heavy-ion collisions
[150, 262�264]. On the other hand, φ meson production via KK̄ → φ in
the hadronic rescattering stage may also lead to φ meson enhancement in
heavy-ion collisions. Indeed, hadronic transport models such as RQMD [238]
and UrQMD [207] have predicted an increase of the φ to K− production
ratio at midrapidity as a function of the number of participant nucleons.
This prediction, however, was disproved for Au+Au collisions at

√
sNN =

200 GeV by a measurement of the STAR collaboration [265, 266].
Fig. 6.4 presents also the predictions of hydrodynamics (grey shaded area)

and ofquark number scaling (dashed-dotted lines). In the low pT region (<2
GeV/c), the v2 value of the φ is between that for the K0

S and the Λ in Au+Au
200 GeV collisions, consistent with the expectation of a mass ordering for v2
in hydrodynamic models. These observations support the hypothesis of the
development of partonic collectivity and possible thermalization in the early
stages of heavy-ion collisions at RHIC. In the intermediate pT region (≈ 2-5
GeV/c), the v2 of the φ meson is consistent with that for the K0

S rather than
for the Λ. The fact that the v2(pT ) of φ is the same as that of other mesons
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Fig. 6.5 Excitation function of the average directed �ow for baryons from central Au +
Au collisions calculated with two-�uid hydrodynamics with the EoS from the Mixed-Phase
(MP) model, with one-�uid [268] with and without the phase transition (PT) (upper panel)
and three-�uid [269] (lower panel) hydrodynamics with the bag-model EoS. (The �gure is
taken from [270]).

indicates that the heavier s quarks �ow as strongly as the lighter u and d
quarks.

6.4 Collective �ow and phase transitions

Several hydrodynamic models have been used in the past to calculate �ow
observables, starting with the one-�uid ideal hydrodynamic approach. It is
well known that the latter model predicts far too large �ow e�ects from SIS
to SPS energies. To obtain a better description of the dynamics, viscous �uid
models have been developed [271�273]. In parallel, so-called three-�uid mod-
els, which distinguish between projectile, target and the �reball �uids, have
been introduced [32, 274, 275]. Here viscosity e�ects appear only between
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the di�erent �uids, but not inside the individual �uids. The future aim is to
develop a reliable, three-dimensional, relativistic three-�uid model including
viscosity [32, 272, 273].

Ideal hydro calculations predict the appearance of a so-called �third �ow
component� [244] or �anti�ow� [269] in central collisions if the matter under-
goes a �rst order phase transition to the QGP. In this case it is expected that
the directed �ow of protons px(y) develops a negative slope around midra-
pidity [276]. This e�ect is not present in calculations based on a hadronic
EoS without QGP phase transition. An example for an ideal hydrodynamics
calculation with a �rst order phase transition is presented in Fig. 6.5 which
illustrates the behavior of the directed proton �ow px as function of beam
energy: px becomes negative between 8 and 20 A·GeV, and turns positive
again with increasing energy when the compressed QGP phase is probed.
These early hydrodynamical calculations have predicted the collapse of �ow
at the �softest point� to happen at beam energies of ELab ≈ 8 A·GeV; this
has not been veri�ed by the AGS data. However, a linear extrapolation of
the AGS data suggest that a collapse of the directed proton �ow might occur
at ELab ≈ 30 A·GeV (see arrow in Fig. 6.6).

It should be noted that the hydrodynamical predictions for the negative
values of px(y) have to be taken with caution. Fig. 6.5 demonstrates the
sensitivity of the hydrodynamical calculations to the model ingredients, in
particular to the initial and "freeze-out" conditions. For example, modi�ca-
tions of the "freeze-out" conditions such as the merging of the �nal 3 �uids
to a single one, can lead to the disappearance of the "anti�ow" e�ect.

Fig. 6.6 Proton �ow dpx/dy as a function of beam energy. Open symbols: data measured
at AGS. Solid line: (2+1)-�uid hydro calculation [276]. A linear extrapolation of the data
(arrow) suggests a collapse of �ow at ELab ≈ 30 A·GeV.
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Fig. 6.7 Directed �ow v1 (left row) and elliptic �ow v2 (right row) of protons as function
of rapidity measured in central, semi-central and peripheral (from top to bottom) Pb+Pb
collisions at 40 AGeV in comparison to transport model results [277].

Experimental indication for the collapse of proton �ow has been found
by the NA49 collaboration [277]. Fig. 6.7 presents the directed �ow v1 (left)
and elliptic �ow v2 (right) of protons as function of rapidity as measured in
Pb+Pb collisions at 40 AGeV, in comparison to results of transport models.
The 3-�uid hydrodynamic model [32, 236] with a hadronic EOS (solid line
without symbols) overestimates both the slope of v1 and the strength of v2
for noncentral collisions. The hadronic transport models UrQMD and HSD
explain reasonably well the v1 �ow component, but predict too large posi-
tive values for the elliptic �ow v2. Future experimental studies will have to
systematically map out the �ow components in heavy-ion collisions at di�er-
ent bombarding energies in order to determine precisely the "softest point"
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of nuclear matter, and, eventually, to locate the �rst order phase transition
between hadronic and partonic matter.

Though collective �ow can be described very elegantly in hydrodynam-
ics by a proper choice of initial conditions [278�281], most hydrodynamical
calculations - describing �ow - fail to reproduce the hadron spectra with the
same initial conditions (and vice versa). Therefore, it is reasonable to consider
also microscopic transport theory, e.g. models like UrQMD [124, 207], HSD
[42, 206], GiBUU [208, 212, 213], RQMD [238], QGSM [230�235, 282, 283], or
AMPT [284, 285] as complementary approaches to study the degree of equi-
libration, the in-medium particle properties, self energies, and cross sections.
The comparison of data to hydrodynamical calculations with and without
quark matter equation-of-state, and to hadron transport models with and
without early partonic phase, will help to answer the question whether quark
matter has been formed in heavy-ion collisions.

6.5 Conclusions and predictions for FAIR energies

The measurement of the collective �ow of particles emitted in heavy-ion colli-
sions provides unique information on the space-time evolution of the �reball.
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Fig. 6.8 Elliptic �ow v2 versus transverse momentum pT of charged hadrons as cal-
culated using various transport models: AMPT without and with string melting, QGSM
(Dubna and Oslo-Tuebingen), UrQMD, HSD, and GiBUU. The calculations are performed
at midrapidity |y| < 1) for mid-central Au+Au collisions (impact parameter b=7 fm) at
25 AGeV .
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For example, the strength of the elliptic �ow v2 and its dependence on the
particle transverse momentum sheds light on the degrees of freedom which
prevail in the early stage of the collision. In particular, the scaling of v2 with
the number of constituent quarks observed at RHIC (see Figs. 3.30 and 6.3)
is interpreted as a direct signature for partonic collectivity.

Large values of v2 are expected due to the partonic pressure built up in the
early phase of the collision. This e�ect is illustrated in Fig. 6.8 which depicts
a compilation of transport model results on elliptic �ow v2 of charged hadrons
at midrapidity for mid-central (b= 7 fm) Au+Au collisions at a typical FAIR
beam energy of 25 A·GeV. The Fig. includes results from AMPT [286] without
and with string melting, QGSM / Dubna [287], QGSM / Oslo-Tübingen [230�
235], UrQMD [252], HSD [288] and GiBUU [289]. The transport models based
on hadron/string degrees of freedom predict very similar values for v2(pT )
(except for QGSM which predicts a larger v2 value at transverse momenta
of 0.3 - 0.4 GeV/c). However, when including 'string melting' in AMPT,
corresponding to partonic degrees of freedom in the early phase, the elliptic
�ow increases almost by a factor of 2, which results from partonic interactions
prior to hadronization. Thus, the precise measurement of v2(pT ) as function of
beam energy already may provide information on the onset of decon�nement.

The full string-melting option of the AMPT code assumes that the initially
produced matter is 100% partonic. The hot and dense partonic medium gen-

Fig. 6.9 Elliptic �ow v2 for charged hadrons normalized to the constituent quark number
versus transverse momentum per constituent quark as calculated with the AMPT transport
model with string melting, for Au+Au collisions at a center of mass energy

√
sNN = 7

GeV for an impact parameter b=7 fm (at midrapidity |y| < 1).
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erates a pressure which drives the quark �ow. The v2 �ow component of
hadrons is obtained from the v2 of the corresponding quarks using the co-
alescence model. Fig. 6.9 depicts the elliptic �ow v2 for charged hadrons
normalized to the constituent quark number as function of transverse mo-
mentum per constituent quark calculated at midrapidity (|y| < 1) with the
AMPT transport code with string melting. The calculations were performed
for mid-central Au+Au collisions at

√
sNN = 7 GeV (corresponding to 25

AGeV �xed target beam energy).
The calculations presented in Fig. 6.9 demonstrate that approximate con-

stituent quark number scaling is expected in the case of an early partonic
phase. In order to locate the phase transition from hadronic to partonic mat-
ter, future experiments will have to scan carefully the beam energies measur-
ing the elliptic �ow of many particles (including multi-strange and charmed
particles), and search for the onset of constituent quark number scaling of
the elliptic �ow.





Chapter 7

Dileptons

7.1 General overview

Electromagnetic decays to virtual photons (decaying further into e+e− or
µ+µ− pairs) have been suggested long ago as a possible signature for a phase
transition to the QGP [280, 290�293], or as a probe for in-medium vector
meson properties and chiral symmetry restoration.

We recall that chiral symmetry restoration does not necessarily imply that
vector-meson masses have to drop with baryon density, ρB , or temperature, T
[294, 295]. More generally, chiral symmetry restoration dictates that the spec-
tral functions in the vector-isovector and the axialvector-isovector channel
(usually associated with the chiral partners ρ and a1) become identical at high
ρB and/or T . Possible realizations of chiral symmetry restoration, therefore,
include [296] a "chiral mixing" of the ρ and a1 spectral functions [297, 298] or
a degeneracy via a strong broadening induced by hadronic many-body e�ects
[299�302]. In either case, a direct experimental measurement of in-medium
vector-meson properties is not easy and needs to be augmented by systematic
theoretical analysis as outlined in Sec. 2.3 of Part II.

Dileptons provide the key to vector-meson measurements in the hot and/or
dense medium. As pointed out in Refs. [301, 303, 304] the dilepton invariant
mass spectra re�ect the imaginary part of the ρ-meson propagator which is
proportional to the isovector current-current correlation function. Further-
more, the di�erential rate for dilepton radiation o� hot and dense matter can
be cast into a form [305] which highlights the direct connection between an
observable (dilepton spectra) and the (in-medium) electromagnetic spectral
function, which is dominated by the light vector mesons (ρ, ω, φ), especially
the ρ, up to invariant masses of M '1 GeV.

Since dileptons can leave the reaction volume essentially undistorted by
�nal-state interactions, they carry information about potential in-medium
modi�cations of vector-meson properties out of the violent phases of a high-
energy heavy-ion collision to the detectors. Indeed, the lepton-pair studies in
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heavy-ion collisions by the DLS Collaboration at the BEVALAC [306�309],
by the HADES Collaboration at GSI-SIS [310, 311], by the CERES [312, 313],
HELIOS [314�316], NA38 [317, 318], NA50 [319], and NA60 Collabora-
tions [320] at the CERN-SPS, and �rst results from the PHENIX Collabora-
tion at RHIC [321, 322] have created a vivid interest in the nuclear physics
community.

The experimental challenge of dilepton measurements is twofold. First, lep-
tons need to be cleanly identi�ed and separated from the large background
of hadrons, mainly pions. Then, substantial physical and combinatorial back-
grounds have the be determined and subtracted from the invariant pair-mass
spectrum.

Electron measurements have been performed at all laboratories that have
investigated dilepton production in heavy-ion collisions. Typically, electron
identi�cation relies on Cherenkov detectors, transition radiation radiators,
and electromagnetic calorimeters. A dominant source of physical background
of electron-positron pairs at all beam energies is the Dalitz decays of light
neutral mesons, mainly π0 and η mesons. At BEVALAC and SIS beam en-
ergies around 1 AGeV additional contributions from ∆ resonance decays
and from proton-neutron bremsstrahlung are important. At RHIC, even di-
electron pairs from correlated charm decays can not be ignored towards higher
pair mass. These (and other less important) sources compose the so called
hadronic cocktail. A typical example from the CERES experiment at the
CERN-SPS is shown in Fig. 7.1 for proton-gold collisions at 450 GeV. In
general, this background has to be determined through independent mea-
surements of the di-electron sources, e.g. the measurement of neutral pions
and η mesons via their γγ decays. Another important contribution to the
physical background is due to the conversion of photons in the target (in
case of a �xed target experiment) and in the detector material. To minimize
this background, di-electron experiments usually put special emphasis on de-
signing their setups such that the amount of material within their acceptance
is as small as possible. The remaining conversion background can partly be
suppressed by removing electron-positron pairs with small opening angles
which are dominated by γ conversions.

Non-physical background from the combination of uncorrelated electrons
and positrons can overwhelm the physical signal by large factors. With in-
creasing available energy the multiplicity of produced particles grows and,
consequently, the combinatorial background rises rapidly, such that e.g. at
RHIC signal to background ratios below one percent have to be dealt with.
Techniques to determine combinatorial background with high precision in-
clude event mixing, where electrons are combined with positrons from dif-
ferent events, or the measurement of like-sign lepton pairs within the same
event. The latter resemble the combinatorial background in case the geomet-
rical acceptance of the apparatus is the same for unlike-sign and like-sign
pairs.
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Fig. 7.1 Invariant mass spectrum of electron-positron pairs measured in p+Au collisions
at 450 GeV. The contributions from known di-electron sources ("hadronic cocktail") are
indicated [323].

Dimuon measurements in the mass range relevant in the context of in-
medium modi�cations of vector mesons have been done at the CERN-SPS. In
these experiments muons are identi�ed as the only charged particles punching
through a thick hadron absorber located in front of a spectrometer. In the
case of muon pairs the physical background is very much reduced compared to
electron pairs. Since pion decays and photon conversions do not contribute
to the muon-pair spectrum the most important source that remains is the
Dalitz decay of η mesons. A large combinatorial background is created by
muons from weak decays of pions and kaons, and by remaining hadrons which
punch through the absorber and are misidenti�ed as muons. As in the case
of electron pairs the combinatorial background is determined by the analysis
of like-sign pairs from the same event, and of unlike-sign pairs using particles
from di�erent events.
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7.2 Lessons from the CERN-SPS

7.2.1 Invariant mass spectra

Until now, the most complete studies of dilepton production have been con-
ducted at the CERN-SPS both in the electron and muon channel using pro-
ton, sulphur, indium, and lead beams incident on various nuclear targets.
In proton induced reaction the measured dilepton invariant-mass distribu-
tions are in good agreement with the expected hadronic cocktail as shown
in Fig. 7.1 for the CERES dielectron data measured in p+Au collisions at
450 GeV beam energy [323]. Dilepton continuum yields clearly beyond the
hadronic cocktail were observed for the �rst time in sulphur induced reactions
with heavy target nuclei. These early �ndings from the SPS are documented
in Fig. 7.2 which shows dielectron spectra measured by the CERES Collabo-
ration in S+Au collisions at 200 GeV/u [324] and dimuon spectra measured
by the HELIOS-3 Collaboration in S+W reactions at the same energy [325].

Various microscopic transport calculations without in-medium modi�ca-
tions of the vector mesons but involving bare vector-meson masses only [326�
333] are not able to reproduce the substantial enhancement observed in the
low-mass region as demonstrated in the upper panels of Fig. 7.2. Only when
dropping vector-meson masses in the dense nuclear medium are considered
in the model calculations from Refs. [327, 332, 334] a reasonable agreement
with the data is achieved as shown in the lower panels of Fig. 7.2.

However, this "dropping ρ mass" scenario is not the only possible expla-
nation for the observed low-mass dilepton enhancement. It has been pointed
out in Refs. [42, 295] that the previous experimental data can be described
equally well within the "melting ρ" picture, which implies a large spreading
in mass of the ρ spectral function due to its couplings to baryons and/or
mesons. This is demonstrated in Fig. 7.3, which shows a comparison of the
dielectron spectrum measured by the CERES Collaboration in semicentral
Pb+Au collisions at 158 AGeV [336] with results from a thermal evolution
model [296, 337, 338]. In this calculation three di�erent types of ρ spectral
functions have been convoluted over a �reball expansion and the resulting
dilepton spectra from the hadronic phase are supplemented with a hadronic
decay cocktail accounting for �nal state decays after thermal freeze-out, as
well as a small contribution due to dilepton emission from the QGP. The
enhanced dielectron yield at low mass can be attributed to thermal radi-
ation from the �reball which is dominated by the pion annihilation process
π+π− → ρ→ l+l− with an intermediate ρ meson that is subject to strong in-
medium modi�cations. However, the quality of these data in terms of statis-
tics, invariant mass resolution and signal-to-background ratio neither allows
to decisively distinguish between a dropping-mass and a broadening scenario
nor is it su�cient to disentangle the contributions of the di�erent vector
mesons to the mass spectra or to perform a multi-di�erential analysis.
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Fig. 7.2 Comparison of dilepton data from the CERES and HELIOS-3 Collaborations to
various calculations [326�333]. The upper panels show the calculations with bare meson
masses, whereas the lower panels show the results from Refs. [327, 332, 334] which assume
dropping meson masses in the dense nuclear medium. The �gures are taken from Ref. [335].

The experimental situation improved dramatically in 2005 when the NA60
Collaboration presented their dimuon spectra for In+In collisions at 160
A·GeV [320]. The NA60 apparatus combines the previous NA50 muon spec-
trometer, which provides a very selective dimuon trigger, with a high granu-
larity silicon pixel vertex spectrometer. The latter leads to a larger dimuon
acceptance at low mass and low pT with signi�cantly improved mass reso-
lution and a reduced combinatorial background. The measured unlike-sign
dimuon mass spectrum is shown in the left panel of Fig. 7.4 together with
the combinatorial background, the contribution of fake tracks, and the signal
muon pairs after background subtraction. The signal mass spectrum contains
about 440000 muon pairs. The ω mass resolution is 20 MeV. It is worthwhile
to note that even the η meson is resolved. In the right panel of Fig. 7.4 the
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Fig. 7.3 CERES/NA45 dielectron spectra from semicentral Pb+Au collisions at
158 AGeV [336] in comparison with thermal dilepton spectra evaluated in an expanding
�reball model [296, 337, 338]. Thermal emission from the hadronic phase is calculated with
three di�erent models for the ρ spectral function (vacuum, dropping mass and hadronic
many-body theory), and supplemented with the hadronic decay cocktail and QGP emission
(assuming Tc = 175 MeV).

Fig. 7.4 NA60 dimuon invariant mass distributions measured in In+In collisions at 160
AGeV. Left panel: Mass spectra of the opposite-sign dimuons (upper histogram), combi-
natorial background (dashed), signal fake matches (dashed-dotted), and resulting signal
(histogram with error bars). Right panel: Total data (open circles), individual cocktail
sources (solid), di�erence data (thick triangles), sum of cocktail sources and di�erence
data (dashed). (from Ref. [164]).
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Fig. 7.5 NA60 dimuon excess mass spectrum measured in In+In collisions at 160 AGeV
(full triangles). Thin solid line: cocktail ρ. The data are compared to calculations [340, 341]
of the vacuum ρ (thick dashed-dotted line), in-medium broadened ρ (thick solid line), and
the dropping mass of the ρ (dashed line). The calculations are absolutely normalized, Taken
from Ref. [343]).

excess spectrum is shown which is obtained by subtracting known dimuon
sources (η → µµγ, η′ → µµγ, ω → µµπ0, η → µµ, ω → µµ and φ → µµ)
from the signal spectrum. The ρ meson is not subtracted. Due to the high
statistic this procedure could be applied for several bins in centrality and
transverse momentum.

The mass spectrum in Fig. 7.4 is qualitatively consistent with the interpre-
tation of the excess being mainly due to ππ annihilation. For a quantitative
analysis two theoretical scenarios for the in-medium spectral properties of
the ρ, broadening [295] and dropping mass [339], have been calculated for
the same �reball evolution keeping the original normalization [340, 341]. The
results are shown in Fig. 7.5. The predictions based on the hadronic many-
body ρ spectral function [296], are in good agreement with the experimen-
tal spectrum, while the dropping-mass scenario which described the CERES
data reasonably well fails to describe the NA60 data [342]. At masses beyond
M ' 1 GeV, multi-pion annihilation as following from the free e.m. spectral
function have been identi�ed as a relevant source.

The importance of baryon e�ects is highlighted in �gure 7.6 where the re-
sults of the calculations with (left panel) and without (right panel) medium
e�ects due to baryons are shown. In the latter case, the calculated dimuon
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Fig. 7.6 Thermal dilepton emission evaluated in an expanding �reball model [340] in
comparison to NA60 excess spectra [164] in central In+In collisions at 158 AGeV. Thermal
emission from the hadronic phase includes both in-medium isovector (rho meson) and
isoscalar (ω and φ meson) channels, and is supplemented by open-charm decays and QGP
emission (assuming Tc = 175 MeV). Left panel: employing the full hadronic many-body
vector-meson spectral functions; right panel: employing vector-spectral functions without
medium e�ects due to baryons, or without any medium e�ect, i.e. the vacuum e.m. spectral
function.

invariant spectra is too narrow, and misses yield at low masses. The average
ρ broadening of the full in-medium ρ spectral function is approximately half
of the ρ mass, Γ̄medρ ' 350 MeV, implying that in the early phases (i.e., close
to the expected phase boundary), the ρ resonance has essentially melted,
Γmedρ (Tc) ' mρ. It is furthermore important to note that the absolute dilep-
ton yield is a rather sensitive measure of the �reball lifetime, which for central
In+In collisions at 158 AGeV amounts to about ∼ 7± 1 fm/c [340].

It should be noted that the CERES collaboration has provided dielec-
tron excess spectra from their latest run in central Pb+Au collisions at
158 AGeV [344] as shown in Fig. 7.7. Although su�ering from limited statistics
these data con�rm the preference for the broadening over the dropping-mass
scenario (left panel) as well as the importance of baryon-induced medium
e�ects (right panel). Model calculations predict the latter to become partic-
ularly pronounced for small invariant masses, M ≤ 0.2 GeV. It is noteworthy
that this regime is not accessible with dimuon spectra. A recent analysis of
the CERES and NA60 results within an o�-shell transport model is presented
in [345].

The NA60 data certainly pose a new constraint on the theoretical models
which will have to simultaneously account for the CERES and NA60 re-
sults. But the deeper impact of these results is their possible relevance to
the broader context of chiral symmetry restoration. If the system reaches,
or is near to, chiral symmetry restoration then the dilepton results could
be telling us that the approach to such a state proceeds through broadening
and eventually subsequent melting of the resonances rather than by dropping
masses.
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Fig. 7.7 Dielectron excess spectra in central Pb+Au collisions at 158 AGeV.
CERES/NA45 data [344] are compared to thermal emission spectra using hadronic many-
body and dropping-mass ρ spectral functions (left panel), as well as many-body ρ spectral
functions with and without baryonic medium e�ects (right panel).

7.2.2 Transverse mass spectra

Lepton pairs are not only characterized by their invariant mass, but also by
their transverse momentum. The latter contains information on the temper-
ature and the radial �ow of the expanding �reball. In contrast to hadrons
which reach the full asymptotic �ow at the moment of decoupling, lepton
pairs are continuously emitted during the evolution. Therefore, lepton pairs
re�ect small �ow and high temperatures from early times, and increasingly
larger �ow and smaller temperatures from later times. The resulting space-
time folding over the temperature-�ow history o�ers access, through the mea-
surement of pT spectra, to the emission region of the dileptons and may thus
di�erentiate between a hadronic or a partonic nature of the emitting source.

Fig. 7.8(left) displays the acceptance corrected and centrality integrated
invariant transverse mass,mT , spectra withmT =

√
(p2
T +M2) for four mass

windows measured in In+In collisions at 160 AGeV by the NA60 collabora-
tion [346]. The inverse slope parameter Teff extracted from the mT spectra
is shown in the right part of Fig. 7.8 as function of mass. The data for ω
and φ mesons are also plotted. The parameter Teff rises nearly linearly with
mass up to the pole position of the ρ meson, followed by a sudden decline.
The e�ective temperatures of the excess dileptons below the ρ pole mass are
quite close to Teff for ω and φ mesons which follow the entire evolution of
the �reball until they decay. The rise and fall of Teff as function of mass
is very similar for dileptons and hadrons (see Fig. 5.2) where the e�ective
temperatures of the Ω hyperon and of the J/ψ meson are found to be lower
than the one for protons.
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The sudden decline of Teff at masses above 1 GeV is a very remarkable
feature in Fig. 7.8. If the rise is due to �ow, the rapid fall of Teff indicates that
the heavy dileptons are emitted prior to the development of collective hadron
�ow. The same explanation might hold for the heavy particles consisting of
strange or charm quarks which decouple early from the collective expansion
of the �reball (Fig. 5.2). Whether or not the fall of Teff is related to an early
phase with partonic degrees of freedom is discussed controversially. However,
this intriguing interpretation would be supported by the model calculations
which predict a substantial QGP contribution to the yield of heavy dileptons
(see Fig. 7.6).

Fig. 7.8 Left panel: Acceptance corrected transverse mass spectra of excess dimuons (in
four mass windows), the ω and the φ meson integrated over collision centrality. Right
panel: Inverse slope parameter Teff as function of dimuon mass M. (taken from [346])

7.3 Dielectrons at RHIC

The situation becomes more complex at the higher RHIC energy, where the
production of electron-positron pairs has been investigated by the PHENIX
Collaboration in p+p and Au+Au collisions at a center-of-mass energy of√
sNN = 200 GeV per nucleon-nucleon pair. The data from p+p colli-

sions [322] can fully be accounted for by the contribution from expected
sources as demonstrated in Fig. 7.9. In addition to the light meson decays
which dominate the cocktail at SPS energy, at RHIC additional sources be-
come relevant, including open heavy �avor production as well as prompt
virtual photon emission.
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Fig. 7.9 Dielectron yield as function of mass as measured by PHENIX in p+p collisions
at
√
s = 200 GeV. The data are compared to a cocktail of known sources (upper panel).

The lower panel shows the ratio of data to cocktail. (taken from [322]).

In contrast, as shown in Fig. 7.10 the Au+Au data exhibit signi�cant ad-
ditional contributions to the dielectron continuum over a wide range in mass
and transverse momentum [321], which is currently discussed controversially.
Qualitatively, the enhancement observed in the low-mass region between 0.15
and 0.75 GeV/c2 is quite consistent with the enhancement observed at the
CERN-SPS, which was modelled successfully by ππ annihilation including a
broadening of the ρ spectral function in medium. However, the enhancement
observed at RHIC is signi�cantly larger than predicted by such model calcula-
tions [345]. Furthermore, its yield increases signi�cantly faster with collision
centrality than the number of participating nucleons. Also the transverse
momentum spectra of the excess dielectrons exhibit unusual features, in par-
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ticular inverse slopes of about 100 MeV/c only which is nearly independent
on the dielectron mass.
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Fig. 7.10 Dielectron yield as function of mass as measured by PHENIX in Au+Au colli-
sions at

√
sNN = 200 GeV. The data are compared to a cocktail of known sources. (taken

from [321]).

7.4 Dielectrons at BEVALAC and SIS

Also in the BEVALAC and SIS energy range around 1 AGeV only dielec-
tron measurements have been performed up to now. At the BEVALAC the
DLS Collaboration has measured dielectron spectra in p+p and light ion
collisions with limited statistics and mass resolution. As it is the case at
higher energies, the dielectron data from p+p collisions in the beam energy
range between 1 and 5 GeV [347] can be reasonably well accounted for with
known hadronic sources [348�350]. In nuclear collisions with ions as light as
carbon, an unexpected but signi�cant low-mass dielectron enhancement was
observed [306�309] that could neither be described in a dynamical spectral
function approach [351] including collisional broadening nor in a dropping-
mass scheme [349, 352].

This so called "DLS puzzle" was one of the motivations to build HADES as
a second generation dielectron experiment with signi�cantly improved mass
resolution and larger acceptance at the GSI-SIS, which would also allow to
study heavier collision systems.
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The present experimental studies of the HADES Collaboration for C+C
collisions at 1 [311] and 2 AGeV [310] indeed con�rm an excess of dilepton
pairs from 0.3 to 0.7 GeV invariant mass as observed by DLS. In fact, the large
acceptance of the HADES spectrometer allows for a direct comparison of the
dielectron cross section and transverse momentum distributions measured in
C+C collisions at 1 AGeV by HADES and at 1.04 AGeV by DLS within the
smaller DLS acceptance as shown in Fig. 7.11. The two data sets are found
to be in good agreement.

The dielectron mass spectrum measured in C+C collisions at 1 AGeV
is shown in the left panel of Fig. 7.12 in comparison with two cocktails of
known sources. Data and cocktails are in good agreement in the π0 region but
a strong enhancement of the data relative to the expected contributions from
the decays of η and ω mesons (cocktail A) is observed for M > 0.15 GeV/c2.
The addition of contributions from the decays of ∆ resonances and ρ mesons
(cocktail B) does not improve the agreement between cocktail and data sig-
ni�cantly. The remaining enhancement relative to both cocktails is stronger
at 1 AGeV compared to collisions at 2 AGeV. Going beyond the cocktail
calculations, a comparison with various transport models has been published
for the 2 AGeV case [310]. Microscopic models do not only treat the colli-
sion dynamics in a realistic way, in principle they also can deal with mul-
tistep processes, broad resonances, and related o�-shell e�ects. While HSD,
RQMD, and UrQMD calculations assuming vacuum spectral functions only
qualitatively reproduce the trends observed in the data they fall short in a
quantitative description of the excess yield over the full mass range [310]. In
particular, all considered models overestimate the pair yield around the ρ and
ω meson masses. Final conclusions have to wait for more re�ned calculations
taking in-medium spectral functions into account.

A �rst quantitative assessment of the beam energy dependence of the
excess dielectron yield has been published in Ref. [311] and is shown in the
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right panel of Fig. 7.12 in comparison with the excitation function of π0

and η mesons. It turns out that the shape of the excess dielectron excitation
function is in good agreement with the shape of the π0 excitation function,
but not with the one of η mesons. From this observation one might conclude
that in the BEVALAC/SIS energy range the dielectron excess is not driven
by heavy resonances, which are relevant for the η meson yields, but maybe
by the ∆ resonance, which is the dominant source of neutral pions.

A prerequisite for further conclusions is to better constrain the elementary
input, i.e. the elementary vector meson and dilepton production sources. Cur-
rently, these are partially based on data but to a large extent also on model
assumptions, e.g. the resonance model [353�355], which show still some vari-
ance due to the lack of su�cient experimental constraints. The HADES pro-
gram at the SIS will allow for a more thorough understanding of dilepton
emission from elementary and complex reactions.
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7.5 Conclusions and predictions for FAIR energies

Further progress in the understanding of the ρ meson dynamics in the hot
and dense medium and its relation to the onset of chiral symmetry restoration
requires detailed information on:

• the �reball evolution,
• the contribution of ρ mesons from the late and dilute stage of the collision

("freeze-out ρ"),
• the contribution of ρ mesons from the very early non-equilibrated stage of

the collision ("primordial ρ").

The experimental approach to achieve these goals seems straight forward.
However, as discussed above, precision measurements of dileptons in heavy-
ion collisions are notoriously di�cult. In order to constrain the �reball evo-
lution one has to measure - in addition to the vector mesons - the yield and
phase space distributions of hadrons (pions, kaons, protons, lambdas, ...) un-
der identical conditions as the vector mesons (projectile-target combination,
beam energy, centrality). The yield, momentum and mass distribution of the
"freeze-out ρ" mesons can be determined by measuring their hadronic decays
into pions and kaons. Information on the "primordial ρ" can be obtained by
measuring dilepton pairs in p+p and p+A collisions.

No experimental information on dilepton production in heavy-ion colli-
sions is available in the FAIR beam energy range from 2 to 35 AGeV. Of
particular interest are the highest FAIR energies where one expects to cre-
ate the highest baryon densities that can be reached in heavy-ion collisions.
Since baryon density has been identi�ed as a crucial parameter related to
the observed low-mass dilepton enhancement it is mandatory to investigate
dilepton production in a systematic manner at FAIR.

This experimental program has to go hand in hand with a careful the-
oretical modelling of dilepton production at FAIR. As was shown, e.g. for
the CERN-SPS case, the interpretation of measured spectra relies heavily on
theoretical guidance. In that respect, the FAIR energy range is a di�cult
one. Thermal evolution models that have been applied very successfully at
SPS energy require that (local) thermal equilibrium is reached in the col-
lisions studied. While there is ample evidence that equilibrium is reached
already early in heavy-ion collisions at SPS and, in particular, at RHIC this
is not necessarily the case at FAIR energies and very questionable in the
BEVALAC and SIS energy range. At these low energies microscopic trans-
port model calculations are clearly the tool of choice. However, the proper
treatment of in-medium spectral functions and the related o�-shell e�ects is
far from trivial and needs further development to be applicable for FAIR. A
comprehensive discussion on the status of o�-shell transport calculations and
dilepton production at SIS energies is given in [356].

Some guidance is given by the only dielectron measurement that has been
performed at a beam energy of 40 AGeV by the CERES Collaboration [148].



780 7 Dileptons

The obtained dielectron invariant mass spectrum is depicted in Fig. 7.13 in
comparison with contributions from known sources and a calculation in a
thermal evolution model employing three di�erent choices for the ρ meson
spectral function, i.e. the vacuum spectral function, the dropping-mass sce-
nario, and the hadronic many-body broadening scenario. The enhancement
over the hadronic decay cocktail and the vacuum ρ evolution model appears
to be even larger than at full SPS energy, albeit with rather large statistical
errors. Given the fact that baryon density has been established as an impor-
tant parameter driving the low-mass dilepton enhancement this observation
is not surprising, but one is far from drawing any de�nite conclusion. Clearly,
a measurement of the quality of the NA60 data could provide detailed infor-
mation on the ρ line shape, potentially also a determination of the �reball
lifetime, which, in turn, could carry valuable information on the onset of an
extended QGP-hadronic mixed phase.
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Finally, we want to comment on the question whether electrons or muons
are better suited for low-mass dilepton spectroscopy. Electron-positron pairs
can be measured down to almost zero invariant mass whereas the dimuon
mass spectrum naturally starts at twice the muon mass. The advantage of
muon measurements is the possibility to generate a trigger which is required
for the collection of data with high statistics. The optimum strategy is to
measure both electrons and muons, and to combine the advantages of both
probes.





Chapter 8

Open and hidden charm

8.1 General overview

The investigation of the formation and propagation of particles containing
charm and/or anticharm quarks in heavy-ion collisions opens the possibility
to probe the early phase of the �reball due to the large mass of the charm
quarks which can be produced in hard processes only. The suppression dy-
namics of charmonium, i.e. the dissociation of J/ψ and ψ′ mesons is expected
to be sensitive to the matter properties in the reaction volume, and the chal-
lenge is to disentangle absorption mechanisms in hadronic matter from color
screening in a partonic phase. The elliptic �ow of charm is another important
diagnostic probe of the early �reball and its prevailing degrees of freedom.
The propagation of open charm in the �reball provides information about
the transport properties of hot and dense matter.

At FAIR energies the charm sector becomes accessible, and measurements
of open and hidden charm will be performed for the �rst time in heavy-ion
collisions close to (nucleon-nucleon) threshold energies. At low beam energies
the charm production mechanisms and yields depend sensitively on the con-
ditions inside the �reball, because the absolute production threshold for a cc̄
pair in a partonic environment is lower than the minimum energy needed to
create a pair of charmed hadrons. Therefore, both the total and the relative
yields of hadrons containing charm quarks measured in heavy-ion collisions
at threshold energies are very sensitive to the degrees of freedom in the early
�reball.

Charm production cross sections have been measured in proton-proton,
proton-nucleus and pion-nucleus collisions, mostly at top SPS energies [357�
368]. Examples for charmonium measurements via µ+µ− pairs in proton-
nucleus collisions are shown in the left panel of Fig. 8.1 for p+W collisions
at 200 GeV [315], and in the left panel of Fig. 8.2 for p+Ag collisions at
450 GeV [369]. One of the early dimuon measurement in nucleus-nucleus
collisions is presented in the right panel of Fig. 8.1 for S+W collisions at 200

783
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GeV [315]. The right panel of Fig. 8.2 depicts the most recent charmonium
data measured in In+In collisions at 158 AGeV by NA60 [370].

Fig. 8.1 Dimuon invariant mass spectra from p+W and S+W collisions at 200AGeV
measured by the HELIOS-3 Collaboration [315]. The lines represent calculations of the
individual contributions [42].

Fig. 8.2 µ+µ− invariant mass spectra including the background contributions integrated
over centrality measured in p+Ag collisions at 450 GeV (left panel, NA50 collaboration,
[369]) and in In+In collisions at 160 AGeV (right panel, NA60 collaboration, [370]).

The dissociation of charmonia J/ψ, χc, ψ′ in the quark-gluon plasma due
to color screening of cc̄ states has been proposed as a signature for the de-
con�nement phase transition [15, 371]. In order to identify possible e�ects of
color screening on the measured J/ψ meson yield one has to understand the
absorption mechanisms in nuclear matter. These e�ects have been studied
experimentally and theoretically in proton-nucleus collisions, and are used as
a reference for data obtained in nucleus-nucleus collisions. Fig. 8.3 depicts the
ratio of measured over expected J/ψ mesons as a function of the number of
participants. Here, "expected" refers to the number of J/ψ mesons which sur-
vive normal nuclear absorption processes as parameterized from p+A mea-
surements. For semi-central and central collisions the ratio is smaller than
unity, an e�ect which is called anomalous J/ψ suppression. This e�ect was
observed in S+U and Pb+Pb collisions by the NA38 [372] and NA50 Collab-



8.1 General overview 785

orations [373, 374], and has been experimentally con�rmed by NA60 [375] in
In+In collisions at 160 A GeV (see Fig. 8.3).

Fig. 8.3 Measured over expected J/ψ ratio versus number of participants in A+A colli-
sions at SPS energies as function of the number of participants.

In order to visualize absorption e�ects the medium, the charmonium yield
in A+A collisions is often presented in terms of the nuclear modi�cation fac-
tor, RAA, which is the ratio between the charmonium yield in A+A collisions
and that in p+p collisions scaled with the number of binary collisions,

RAA = N
J/ψ
AA

N
J/ψ
pp Ncoll

.

The upper panel of Fig. 8.4 depicts the pT integrated RAA as a function
of the number of participants Npart measured at mid and forward rapidity
in Au+Au collisions at an energy of

√
sNN = 200 GeV by the PHENIX col-

laboration at RHIC [376]. It was found that for each bin of rapidity, RAA
decreases with increasing Npart. For the most central collisions, RAA is be-
low 0.3 (0.2) at mid (forward) rapidity. The lower panel of Fig. 8.4 shows
the ratio of forward/mid rapidity RAA versus Npart. The ratio �rst decreases
then reaches a plateau of about 0.6 for Npart > 100. A signi�cant J/ψ sup-
pression relative to binary scaling of proton-proton is observed for central Au
+ Au collisions at RHIC. The magnitude of the suppression is similar to that
observed at the CERN-SPS and greater than the suppression expected by
extrapolating the cold nuclear matter e�ects measured in d + Au collisions
[377]. Models that describe the SPS data using a J/ψ and ψ′ suppression
based on the local density predict a signi�cantly larger suppression at RHIC
than at SPS, and more suppression at mid rapidity than at forward rapidity.

Apart from the total and relative abundances of charmonia and open
charm mesons also their phase space distributions provide valuable insight
in the collision dynamics. In particular, the transverse momentum (or mass)
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Fig. 8.4 Upper panel (a): RAA versus Npart for central Au + Au collisions at
√
sNN

= 200 GeV. Mid (forward) rapidity data are shown with open (�lled) circles. Lower panel
(b): Ratio of forward/mid rapidity J/ψ RAA versus Npart. For the two most central bins,
mid rapidity points have been combined to form the ratio with the forward rapidity points.
Taken from [376].

spectra are sensitive to the evolution and the degrees-of-freedom of the �re-
ball [190, 378�380]. As discussed in the previous chapters, the spectral slopes
of dilepton pairs with invariant masses above 1 GeV/c2 do not follow the
mass ordering of the radial �ow. The same e�ect is observed for hadrons like
multi-strange hyperons and charmonium. This observation supports the pic-
ture that these particles are emitted in the early (probably partonic) phase of
the collision. The most recent data on acceptance corrected pT distributions
of J/ψ mesons measured in In+In collisions at 158 AGeV are shown in Fig.
8.5 for various centrality bins [381]. The plots refer to the rapidity region
0.1 < yCM < 0.9. The lines represent the function 1/pT dN/dpT = e−mT /T

�tted to the data. The resulting T values increase with centrality and range
from 204 to 234 MeV. The centrality integrated distribution corresponds to
T = 231± 2 MeV .

8.2 Charm in transport models

Open charm and charmonium production at SPS and RHIC energies has been
calculated within the AMPT[382], HSD [190, 210, 383, 384] and UrQMD
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Fig. 8.5 The acceptance corrected pT distributions of J/ψ mesons measured for di�erent
centralities in In+In collisions at 158 AGeV. The lines correspond to �ts to the function
1/pT dN/dpT = e−mT/T [381]

[385, 386] transport approaches using parameterizations for the elementary
production channels including the charmed hadrons D, D̄,D∗, D̄∗, Ds, D̄s,
D∗
s , D̄

∗
s , J/ψ, ψ(2S), χc2 from NN and πN collisions. The latter parameter-

izations have been �tted in [190] to PYTHIA [387] calculations above
√
s

= 10 GeV and extrapolated to the individual thresholds, while the absolute
strength of the cross sections has been �xed by the experimental data. For
example, the lowest threshold for charm production in hadronic collisions is
de�ned by the process p+p→ D̄+Λc+p resulting in a value of

√
sthr=1.8646

GeV + 2.285 GeV + 0.938 GeV = 5.07 GeV. In Fig. 8.6 the data from proton
and pion induced reactions are presented as elementary production cross-
sections for D mesons and charmonia. These "cross sections per nucleon"
(see [368]) are used as input for calculations of charm production in nucleus-
nucleus collisions [190].

The results of the UrQMD and HSD transport calculations for Pb+Pb
collisions at 160 A·GeV, both from , are in reasonably good agreement with
the data of the NA50 Collaboration as illustrated in Fig. 8.7, where the
cross-section ratio of muon pairs from J/ψ decays over Drell-Yan pairs is
shown as a function of the transverse energy ET . The ratio decreases with
increasing transverse energy, indicating enhanced suppression of J/ψ mesons
in central collisions. The solid line stands for the HSD result within the
'comover absorption scenario' which describes the dissociation of charmonia
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via interaction with comoving mesons [388]. The symbols represent the NA50
data from the year 2000 (analysis A,B,C) that agree reasonably well with the
HSD and UrQMD calculations [385, 386] (dashed histogram in Fig. 8.7). Note
that the 'comovers' should not be identi�ed with hadronic states in vacuum,
but rather should be considered as a common synonym for either strongly
interacting (bound) quark-antiquark states in the high temperature hadronic
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phase, or resonant quark-antiquark correlators for temperatures above Tc.
These correlators are expected to survive the transition in a similar fashion
as e.g. the J/ψ up to rather high energy densities.

Lattice QCD calculations predict that at least the J/ψ may survive at
temperatures above Tc(≈ 0.18 GeV). The predictions for the J/ψ dissoci-
ation temperature Tdiss vary between Tdiss = 1.2 - 1.5 Tc such that the
lowest cc̄ states remain bound up to energy densities of about 2 - 5 GeV/fm3

[16, 17, 389�391]. It is presently not clear if also the D or D∗ mesons will sur-
vive at temperatures above Tc but strong correlations between a light quark
(antiquark) and a charm antiquark (quark) are likely to persist also above Tc.
One may speculate that similar correlations survive also in the light quark
sector above Tc such that 'hadronic comovers' - most likely with di�erent
spectral functions - might show up also at energy densities above 1 GeV/fm3,
which is taken as a characteristic scale for the critical energy density.

In order to simulate e�ects of charmonium suppression in a partonic phase
within hadron transport calculations, the "QGP threshold scenario" was im-
plemented in HSD [392]. In this scenario the J/ψ and ψ′ mesons dissociate if
the energy density exceeds critical values of 16 GeV/fm3 and 2 GeV/fm3 (or
6.55 GeV/fm3), respectively. The charmonium yields for In+In and Pb+Pb
collisions at 158 AGeV have been calculated using the HSD transport model
within this `QGP threshold scenario', and within the 'hadronic comover sce-
nario'. The comparison of the model results to the data is shown in Fig. 8.8
for J/ψ suppression, and in Fig. 8.9 for the ψ′ to J/Ψ ratio in Pb+Pb. The
data can be described best by the comover absorption model with a single
parameter |M0|2 for the matrix element squared for charmonium-meson dis-
sociation [384, 392]. The `QGP threshold scenario' roughly reproduces the
J/ψ suppression for both systems at 160 A·GeV but fails in the ψ′ to J/ψ
ratio since too many ψ′ already melt at a critical energy density of 2 GeV/fm3

at 160 A·GeV. Only when assuming the ψ′ to dissolve above ∼ 6.5 GeV/fm3 a
reasonable description of all data is achieved in the `QGP threshold scenario'.

8.3 Charmonia from kinetic rate equations

Charmonium production and propagation has also been extensively studied
in thermal �reball evolution models. In the same spirit as for dilepton produc-
tion, rate equations for charmonium dissociation and regeneration are folded
over a thermally evolving "background". In a simpli�ed form, the rate equa-
tion for the time evolution of charmonium state ψ, Nψ(τ), can be written
as

dNψ
dτ

= −Γψ
[
Nψ −Neq

ψ

]
. (8.1)

The �rst key quantity is the inelastic charmonium reaction rate, Γψ, which, by
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to the comover absorption model (right part), and to the `QGP threshold scenario' (left
part) with εJ/ψ = 16 GeV/fm3, εχc = 2 GeV/fm3, εψ′ = 6.55 GeV/fm3 neglecting
comover absorption. The �gure is taken from Ref. [392].

detailed balance, governs both gain and loss terms. In the QGP, the leading-
order (LO) process is the well-known gluo-dissociation, g + ψ → c+ c̄. How-
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Fig. 8.9 (color online) The ψ′ to J/ψ ratio as a function of the transverse energy ET for
Pb+Pb at 160 A GeV with Bµµ the branching ratios and σ the production cross-sections.
The full dots and stars denote the data from the NA50 Collaboration [393]. The HSD result
for the comover absorption model is shown as the (red) line with open circles, whereas the
(blue) line with open squares correspond to the `QGP threshold scenario' with εJ/ψ = 16
GeV/fm3, εχc = 2 GeV/fm3 = εψ′ . The (light blue) line with open triangles re�ect the
`QGP threshold scenario' with εJ/ψ = 16 GeV/fm3, εχc = 2 GeV/fm3 and εψ′ = 6.55
GeV/fm3 while neglecting comover absorption. The �gure is taken from [392].



8.3 Charmonia from kinetic rate equations 791

ever, as has been �rst emphasized in Ref. [394], the gluo-dissociation process
becomes ine�cient for small J/ψ binding energies as expected due to color
screening in the QGP (and even without screening for ψ′ and χc states).
Therefore, the quasi-free dissociation process, p+ ψ → c+ c̄+ p (p = q, q̄, g)
has been introduced [394], which naively is of next-to-leading order in αs
but provides a much larger phase space, and, consequently the dominant
dissociation rate for small charmonium binding (for gluo-dissociation, the
phase space vanishes in the limit of vanishing binding energy). The other key
quantity is the charmonium equilibrium limit, Neq

ψ (τ), which depends on the
charm content and temperature of the system. The typical procedure is to
assume charm production to be a hard process and thus to be restricted to
primordial N -N collisions. The statistical model is then used to distribute
the �xed number of cc̄ pairs over the available charmed states in the system
(either quarks or hadrons). This introduces both temperature and volume de-
pendencies into Neq

ψ (T (τ)), as well as a sensitivity to medium modi�cations
of the charm states (e.g., reduced D-meson masses lead to a reduction in the
charmonium equilibrium numbers) [395, 396].

In Ref. [397] the rate equation (8.1) has been solved for Pb+Pb collisions
at 158 AGeV using the same �reball evolution as described above (including
primordial nuclear absorption and suppression in the hadronic phase). The
resulting centrality dependence for J/ψ production (including feed-down form
χc and ψ′) is shown in the left panel of Fig. 8.10. The only free parameter
is the strong coupling constant �guring into the quasi-free dissociation cross
section in the QGP which has been �xed to αs ' 0.25. The NA50 data [373]
are fairly well reproduced, with a small contribution from regeneration. The
main e�ect for the direct J/ψ's is their suppression which is largely restricted
to the QGP (after nuclear absorption as inferred from p-A data).

The investigation and interpretation of the transverse momentum spectra
of J/ψ mesons will shed further light on charmonium production and sup-
pression mechanisms. The average <p2

t > of J/ψ mesons is shown in the
right panel of Fig. 8.10 as function of transverse energy. The symbols rep-
resent NA50 data [398, 399], whereas the lines correspond to results of a
thermal �reball evolution model [397]. Most of the observed pt dependence
follows from the Cronin e�ect of the primordial component, represented by
the dotted line. The QGP suppression, which is stronger at high pt due to the
increase of the dissociation rate with increasing momentum, leads to a slight
reduction of <p2

t >, improving the agreement with data. The coalescence
component is rather insigni�cant.

According to the solution of rate equations within a thermal �reball evo-
lution model the ψ′ suppression is substantially a�ected by the hadronic
phase [396]. However, it is interesting to note that in this approach the NA50
data [400] can only be reproduced if in-medium D-meson masses are imple-
mented which open the direct ψ′ → DD̄ decay. The comparison of the data
to the results of the calculations is shown in Fig. 8.11.
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Fig. 8.10 J/ψ production in Pb+Pb collisions at SPS energies as a function of centrality
quanti�ed by the measured transverse energy of produced particles ET . The lines corre-
spond to results of the rate equation within an expanding thermal �reball with quasifree dis-
sociation in the QGP and meson-induced break-up in the hadronic phase [397]. Left panel:
NA50 data [373, 400] for J/ψ/Drell-Yan dimuons compared to the calculations. Right
panel: Average <p2

t > of J/ψ mesons as a function of centrality. NA50 data [398, 399]
are compared to results the model calculations. The <p2

t > for the direct component
(dashed line) and coalescence component (dash-dotted line) are compared to the <p2

t >
with nuclear absorption only including the Cronin pt-broadening e�ect (dotted line).
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Fig. 8.11 NA50 data [373, 400] on ψ′/J/ψ in Pb(158 AGeV)+Pb collisions at the SPS,
compared to solutions of a kinetic rate equation in a thermal �reball background [396]
starting from initial yields subject to primordial nuclear absorption.

A widely debated issue is whether the NA50 data support the notion of a
more or less sharp �onset behavior� of J/ψ suppression, possibly related to
the formation of a decon�ned medium. The NA60 collaboration has scruti-
nized this issue by measuring the J/ψ suppression pattern in a medium-size
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system, i.e., In+In at 158 AGeV. The data [381], normalized to the J/ψ
yield expected after primordial nuclear absorption, are compared to theoret-
ical predictions in Fig. 8.12. The latter approaches have been adjusted to
the NA50 Pb-Pb data, but it turns out that none of them fully describes
the In-In measurements. The hadronic comover scenario [401] over-predicts
the suppression throughout, the schematic percolation model [402] misses the
onset signi�cantly, while the kinetic rate equation approach [403] somewhat
over-predicts the suppression for the most central collisions. Overall, the pre-
dictions of the kinetic approach (in a thermal �reball background) do not
fare too badly with the data.
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Fig. 8.12 NA60 data for J/ψ production in In(158 AGeV)-In [381] compared to theo-
retical model predictions that are in approximate agreement with the NA50 Pb-Pb data:
percolation model (upper (dashed) line) [402], kinetic rate equation (middle (dash-dotted)
line) [403] and hadronic comovers (lower (dotted) line) [401]. Data and theory curves are
normalized to an �expected yield� which includes the e�ects of primordial nuclear absorp-
tion as extracted from p-A data.

8.4 The statistical hadronization model

The statistical hadronization model (SHM) as described in Part II [19, 143,
404�406] is based on the following assumptions: 1) The charm and anticharm
quarks are produced in primary hard collisions. 2) Primordial production of
charmonia and D mesons is neglected, i.e. it is assumed that these particles
are completely dissociated. 3)Charmonium suppression in cold nuclear matter
(i.e. after hadronization) is also neglected.

One should note that the assumption of complete dissociation of char-
monium and D mesons is ful�lled only if the plasma temperature exceeds
the J/ψ dissociation temperature. In this sense the statistical hadronization
model describes the extreme case that all of the hadrons containing charm
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quarks are born out of the QGP by hadronization, and do not su�er from
interaction with cold matter afterwards.

The input parameters of the statistical hadronization model are the charm
production cross section in pp collisions as shown in Fig. 8.13, and the chem-
ical freeze-out parameters temperature, T , baryochemical potential, µb, and
volume corresponding to one unit of rapidity V∆y=1 (the calculations are for
midrapidity). The charm production cross section is extrapolated towards
the production threshold using the following expression:

σcc̄ = k(1−√sthr/
√
s)a(
√
sthr/

√
s)b

with k = 1.85 µb,
√
sthr = 4.5 GeV (calculated with a charm quark mass of

mc = 1.3 GeV assuming the process p+ p→ p+ p+ 2mc), a = 4.3, and b =
-1.44. The parameters a, b, k were tuned to reproduce the low-energy part of
the (scaled) NLO curve. The extrapolated curves for charm production cross
section are shown with continuous lines in Fig. 8.13 [19, 143, 404�406].

Fig. 8.13 Energy dependence of the charm production cross section in pp collisions. The
NLO pQCD values [407] are compared to calculations using PYTHIA and to data in
pA collisions, taken from ref. [408]. The extrapolations for low energies are shown with
continuous lines, for total and midrapidity (dσcc̄/dy) cross section. The open square is
a midrapidity measurement in pp collisions [409]. The dashed line with dots indicates a
parameterization of the measured energy dependence of the J/ψ production cross section
[410].

The results of the model are presented in Fig. 8.14. The left panel shows
the predictions for the excitation functions of midrapidity yields for charmed
hadrons. In the right panel of Fig. 8.14 the yields are normalized to the
number of initially produced cc̄ pairs. The striking feature is the decrease of
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the Λ+
c and Ξ+

c yields with increasing beam energy. This e�ect is caused by
the decrease in baryo-chemical potential towards higher energies. In order to
prove these predictions experimentally it is necessary to measure the total
charm production cross section which includes also the charmed baryons.
The relative abundance of charmed hadrons, however, is independent of the
absolute value of the cc̄ yield within this model.
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Fig. 8.14 Energy dependence of charmed hadron production at midrapidity. Left panel:
absolute yields, right panel: yields relative to the number of cc̄ pairs. Note, in both panels,
the scale factors of 10 and 100 for J/ψ and ψ′ mesons, respectively.

8.5 Open charm in dense matter

In the previous chapter we discussed charm production within the frame-
work of the thermal �reball model which could explain the measured data
on ψ′ meson production only when taking into account in-medium e�ects on
open charm. The in-medium modi�cation of D-mesons opens the decay of
ψ′ mesons into DD̄ pairs, and, hence, contributes to the suppression of ψ′
mesons (see right panel of Fig. 8.11).

Within the SHM approach - which is a pure QGP model - in-medium mass
modi�cations of open charm hadrons can be considered at the phase bound-
ary. Two di�erent scenarios∗ are assumed: i) a common decrease of 50 MeV

∗ The scenarios are constructed by modi�cation of the constituent quark masses of light
(u and d) quarks in the charmed hadrons by �xed amounts. Reducing, for example, the
light quark masses by 50 MeV will lower D-meson masses by 50 MeV and the Λc(Ξc) mass
by 100 (50) MeV.
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for all charmed mesons and their antiparticles and a decrease of 100 MeV
for the Λc and Σc baryons (50 MeV decrease for Ξc); ii) a decrease of 100
MeV for all charmed mesons and a 50 MeV increase for their antiparticles,
with the same (scaled with the number of light quarks) scenario as in i) for
the baryons. Scenario i) is more suited for an isospin-symmetric �reball pro-
duced in high-energy collisions and was used in [190], while scenario ii) may
be realized at low energies. In both scenarios, the masses of the Ds mesons
and of the charmonia are the vacuum masses. One should note that if one
leaves all D-meson masses unchanged but allows their widths to increase, the
resulting yields will increase by 11% (2.7%) for a width of 100 MeV (50 MeV).
If the in-medium widths exhibit tails towards low masses, as has been sug-
gested by [411], to �rst order the e�ect on thermal densities is quantitatively
comparable with that from a decrease in the pole mass.

In Fig. 8.15 it is demonstrated that the total open charm yield (sum over
all charmed hadrons) exhibits essentially no change if one takes into account
mass shifts, while the e�ect is large on charmonia. For this comparison, a third
case has been added, namely considering that the mass change of charmed
baryons is the same as for the mesons. Because of total charm conservation,
with lowering of their masses the open charm hadrons eat away some of the
charm quarks of the charmonia but, since the open charm hadrons are much
more abundant, their own yield will hardly change.
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Within transport calculations one can calculate the e�ect of in-medium
modi�cations of open charm both on their yields and spectral distributions.
HSD transport calculations predict that the mT -spectra for pions, kaons, D-
mesons and J/ψ show a scaling behavior in central collisions of Au + Au at
top SPS energies which is essentially due to an approximate mT -scaling in pp
collisions at

√
s = 17.3 GeV and D, D̄ and J/ψ �nal state interactions [190].

Furthermore, �nal state elastic scattering changes this result to a moderate
extent since the relative meson abundances are not altered anymore and
their spectra only get modi�ed due to a common collective acceleration. The
approximate mT -scaling for pions, kaons, D-mesons and J/ψ no longer holds
well for central collisions of Au+Au at 25 A·GeV as shown in Fig. 8.16. Here
the HSD calculations show a suppression of D-mesons by a factor of ∼ 10
relative to the global mT -scaling - characterized by a slope of 143 MeV - if
no D-meson self energies are accounted for.
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Fig. 8.16 The transverse mass spectra of pions (full squares), kaons (open triangles),
φ-mesons (full rhombes),D + D̄ mesons (open squares) and J/ψ, ψ′ mesons (full dots)
in the HSD approach for a central Au+Au collision at 25 A·GeV without including self
energies for the mesons. The crosses stand for the D-meson mT spectra when including
an attractive mass shift of −50ρ/ρ0 MeV. The thin dashed line shows an exponential with
slope parameter E0 = 0.143 GeV. Note that �nal state elastic scattering of kaons and
φ-mesons with pions has been discarded in the calculations.

On the other hand, attractive mass shifts of D, D̄ mesons of -50 MeV at ρ0

are expected due to hadronic interaction models when extending SU(3)flavor
to SU(4)flavor symmetry. This is in analogy to the strange meson sector
where the antikaon shows attractive mass shifts (or selfenergies). However,
one should worry about an extrapolation of the hadronic interaction mod-
els to quark densities of 5-8 ρ0 since at these densities the e�ective degrees
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of freedom might be substantially di�erent. This is guided by the idea that
at these densities chiral symmetry should be restored, i.e. the large < qq̄ >
condensate of the nonperturbative vacuum should have disappeared. Accord-
ingly, the production of cc̄ pairs in the 'new' perturbative vacuum might be
enhanced since only the invariant mass of a cc̄ has to be produced e.g. by
gluon-gluon fusion. Note that in the perturbative vacuum no energy has to
be spent for polarizing the nonperturbative vacuum. This vacuum polariza-
tion implies a generation of meson (qq̄) clouds around the constituent quark-
antiquark pairs which is no longer necessary in the perturbative vacuum of
the chirally restored phase. Accordingly the threshold for DD̄ production -
which is ∼ 3.739 GeV in vacuum - might be reduced by ≈ 2 · 0.35 GeV = 0.7
GeV in the chirally restored phase to about 3 GeV, only.

Such a reduction of the cc̄ production threshold leads to an enhancement
of open charm mesons by about a factor of 7 such that an approximate mT -
scaling for all mesons is regained. Thus, a global mT scaling of all mesons
may be regarded as a strong medium e�ect on the charmed hadrons, and as a
signature for a chirally restored phase. As pointed out in Ref. [396] dropping
D, D̄ masses lead also to an increase of J/ψ absorption by mesons and to a
net lowering of the ψ′/J/ψ ratio for central collisions. So the ψ′/J/ψ ratio
might also qualify as a probe of D-meson in-medium e�ects.

One should note, however, that in the statistical model the ψ′/J/ψ ratio
decreases below the value of 0.05 measured by NA50 with decreasing beam en-
ergy due to decreasing temperature. Moreover, the elementary cross sections
for open charm and charmonia in pp and πN reactions have to be measured
in the relevant kinematical regimes before reliable conclusions can be drawn
in the nucleus-nucleus case. Experimental data in the 20 - 30 A·GeV with
light and heavy systems will have to clarify, furthermore, if the quasi-particle
picture of open charm mesons at high baryon density is applicable at all or if
the dynamics is already governed by partonic degrees of freedom rather than
hadronic ones.

8.6 Conclusions and predictions for FAIR energies

The interpretation of charmonium yields measured in nuclear reactions and
their relation to properties of the medium are a matter of ongoing investiga-
tions. In spite of more that 20 years of theoretical and experimental e�orts
no clear picture has emerged yet. Nonetheless, charmonium bound states are
probably one of the most promising probes for the decon�ned state of matter.
However, further progress requires new data on the yields and phase-space
distributions of charmonia, charmed mesons, and charmed baryons as func-
tion of beam energy and collision centrality in p+A and A+A collisions.

The measurement of ratios of hadrons containing charm quarks as a func-
tion of beam energy may provide direct evidence for a decon�nement phase
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transition. This is demonstrated in Fig. 8.17 which depicts the ratio of J/ψ
over the sum of D and D̄ mesons (for central Au+Au collisions) as a function
of available energy in the nucleon-nucleon system as predicted by the HSD
hadronic transport model, and by the statistical hadronization model SHM.
The SHM assumes complete dissociation of charmonium in the quark-gluon
plasma, followed by statistical production of J/ψ mesons (and particles with
open charm) during hadronization.

For a typical FAIR beam energy of
√
sNN = 7 GeV the hadronic trans-

port model (HSD) predicts a J/ψ over D + D̄ ratio which is about 5 times
larger than the result of the statistical hadronization model (see Fig. 8.17).
Within the HSD transport model both the J/ψ meson and the D(D̄) meson
production excitation functions are calculated using independent parameter-
izations which were �tted to experimental data (see Fig. 8.6). Within the
SHM, the J/ψ over D + D̄ ratio depends only on the temperature and the
baryon chemical potential, and, hence, is in �rst order independent of the
total abundance of charm and anticharm quarks in the �reball (at least at
FAIR energies where this number is small). In fact, at a beam energy of√
sNN = 7 GeV the assumed abundance of cc̄ pairs in the SHM is about 7

times higher than the abundance of DD̄ pairs in HSD. This di�erence in the
primordial charm + anticharm (D+D̄) yields re�ects the di�erent threshold
de�nitions in the cross-section parameterizations (see above).
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Fig. 8.17 Ratio of J/ψ overD+D̄ mesons as a function of available energy in the nucleon-
nucleon system predicted for central Au+Au collisions by the HSD hadronic transport
model and by the statistical hadronization model SHM [19] which assumes a QGP initial
state.
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In conclusion, the J/ψ over D+ D̄ ratio as shown in Fig. 8.17 is sensitive
to the conditions inside the reaction volume, and the two models describe
two extreme scenarios: a purely partonic �reball (SHM) versus a hadronic
�reball (HSD). However, if only part of the �reball volume undergoes a de-
con�nement phase transition, or if the primordially produced J/ψ mesons are
not fully suppressed by the plasma, the di�erence between the hadronic and
partonic scenario will be reduced. Nevertheless, when measuring carefully the
excitation function of J/ψ and D (D̄) meson production in heavy-ion colli-
sions, their ratio should exhibit a discontinuity at the energy for which the
decon�ned phase is reached.

Charm production experiments at FAIR energies o�er the possibility to
disentangle the charmonium absorption processes in high-energy nucleus-
nucleus collisions, such as the absorption on hadronic comovers and sequential
melting in the partonic phase. The reason is that the average comover density
increases only moderately with increasing bombarding energy, whereas the
region in space-time with energy densities above critical values of 2 GeV/fm3

increases rapidly for beam energies above 20 AGeV. Therefore, a precise mea-
surement of the excitation function of the ψ′ to J/ψ ratio in central Au+Au
collisions will shed light on the charmonium absorption processes in dense
matter. A smooth excitation function is expected for comover absorption,
whereas sequential charmonium melting in the QGP would cause a structure
in the excitation function of the ψ′ to J/ψ ratio. The HSD predictions for
Au+Au reactions at 25 AGeV are presented in Fig. 8.18 which depicts the
survival probability S(J/ψ)(left panel) and the ratio ψ′ to J/ψ (right plot) as
a function of the number of participants Npart which measures the centrality
of the collision [384, 392].

The J/ψ nuclear modi�cation factorRAA calculated with the rate-equation
approach for Pb+Pb collisions at 40 AGeV (

√
s = 8.77 AGeV) is displayed

the left panel of Fig. 8.19 as a function of collision centrality. In this model
the �reball features a mixed phase of about 4 fm/c duration at Tc = 160
MeV for central Pb+Pb collisions [412]. According to these calculation the
suppression of the direct J/ψ component at FAIR energies is dominated by
nuclear absorption. Therefore, the accurate measurement of nuclear absorp-
tion e�ects in peripheral nucleus-nucleus and proton-nucleus collisions will be
essential to learn about the QGP suppression. Additional discrimination of
charmonium production and suppression mechanisms can be obtained from
the centrality dependence of the ψ′ to J/ψ ratio as shown in the right panel
of Fig. 8.19. The �gure illustrates results of the thermal kinetic approach for
Pb+Pb collisions at 40 AGeV. The ratio ψ′ to J/ψ drops with increasing
centrality below the ratios obtained for nuclear absorption (assuming that ψ′
and J/ψ mesons are absorbed likewise). The strong anomalous suppression
of ψ′ in central collisions is due to the decay process ψ′ → D + D̄ which is
enhanced if the mass of the D mesons is broadened or reduced in hadronic
matter (see also [396]).
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Fig. 8.18 (color online) The survival probability S(J/ψ)(left panel) and the ratio ψ′ to
J/ψ (right panel) as a function of the number of participants Npart in Au+Au reactions
at 25 AGeV. The (blue) lines with open dots re�ect the `QGP threshold scenario' with
εJ/ψ = 16 GeV/fm3, εχc = 2 GeV/fm3, εψ′ = 6.55 GeV/fm3, while the (violet) lower line
with open dots in the right panel represents the `QGP threshold scenario' with εJ/ψ = 16
GeV/fm3, εχc = 2 GeV/fm3, εψ′ = 2 GeV/fm3 . The solid (red) lines with the full dots
denote the results for the comover absorption model with the standard matrix element
squared |M0|2 = 0.18 fm2/GeV2. The dashed line in the left panel represents the HSD
calculations including only dissociation channels with nucleons. The �gure is taken from
[384, 392]

Fig. 8.19 (Color online) left panel: Results of the thermal kinetic approach for RAA ver-
sus centrality at FAIR. Solid line: total J/ψ yield. Dashed line: suppressed primordial pro-
duction. Dot-dashed line: regeneration component. Dotted line: primodial production with
nuclear absorption only. Double-dot-dashed line: suppressed primordial production with
QGP-induced anomalous suppression only (without hadronic suppression). Right panel:
ψ′/(J/ψ) ratio as computed in the thermal kinetic approach. Solid line: rate-equation.
Dotted line: nuclear absorption. [412].
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Similar to RHIC energies [379, 380] the observation of strong collective
�ow for charm mesons will provide a strong indication for a new phase of
matter at the top FAIR energies. In particular, the elliptic �ow measured as
a function of transverse momentum pT may help to disentangle hadronic from
partonic dynamics. The prediction of the hadronic transport model (HSD)
for the D-meson elliptic �ow v2 at midrapidity for Au+Au reactions at 25
A·GeV is shown in Fig. 8.20 in comparison to v2 of charged hadrons. As seen
from 8.20 the D, D̄ elliptic �ow is smaller than the v2 of the lighter hadrons.
Such a low elliptic �ow is due the small interaction cross section of D, D̄
mesons with hadrons. The observation of a much larger elliptic �ow of D, D̄
mesons would be a signature for an increased pressure built up in an early
partonic phase.
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Fig. 8.20 The HSD predictions for the elliptic �ow v2 of D+ D̄-mesons (solid lines with
full dots) and charged hadrons (solid lines with open triangles) for Au + Au collisions at
25 A GeV for b = 7 fm versus pT for mid-rapidity.

The transport properties of D-mesons - as re�ected in their collective �ow
and their spectral distributions - are instrumental in characterizing the dense
medium produced in the collision. The interaction of a baryon-dominated
medium is stronger for D mesons than for D̄ mesons due to charm-exchange
reactions which involve only c-quarks ( for example D + N → π + Λc).
In consequence, the �ow and the spectral distributions are expected to be
stronger a�ected for D mesons than for D̄ mesons. On the other hand, inter-
actions in the partonic stage via the excitation of mesonic resonances (such
as c̄ + q → D̄ → c̄ + q) are stronger for D̄ than for D mesons. Moreover,
medium modi�ed D-meson spectral functions also will have a large e�ect on
the ψ′ suppression pattern.

In conclusion, the measurement of charmonia and open charm hadrons in
nucleus-nucleus collisions at FAIR energies has a wide discovery potential,
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and justi�es the experimental e�orts which are needed to obtain high qual-
ity data in spite of the low charm production cross sections and the huge
background at threshold beam energies.





Chapter 9

Fluctuations and correlations

The occurrence of �uctuations (or thermal noise) is a normal concomitant
in thermally excited systems. Caused by stochastic processes the actual (lo-
cal) value of a certain observable may deviate from its average value. The
average may be de�ned with respect to an average taken in a larger volume
or averaged with respect to time or in (quantum) statistical systems with
respect to an average over many events of a given statistical ensemble. In
transport theoretical treatments the �uctuations display features character-
istic of a a di�usion process. Generally a created �uctuation will subsequently
be damped out in time by those stochastic processes that lead to dissipation.
The balance between the two counteracting processes is governed by the
dissipation��uctuation theorem which describes the (linear) response of the
system upon an externally initiated �uctuation.

There are, however, interesting dynamical situations where such �uctua-
tions are not damped out but rather grow and build up speci�c correlations.
For example, the passage through a phase transition region causes a restruc-
turing of the matter: certain modes become unstable and grow exponentially
until the systems is carried over into a new regime of stability with corre-
sponding new structures. The presence of a phase transitions is associated
with a rapid change (with temperature and chemical potentials) of the ther-
modynamic susceptibilities, which re�ect the corresponding �uctuations. The
well known phenomenon of critical opalescence is a result of �uctuations at
all length scales due to a second order phase transition. By contrast, the
spinodal instabilities inside the �rst-order phase coexistence region tend to
develop density patterns with a certain characteristic length scale. An in-
structive example is presented by the nuclear liquid-gas phase transition, cf.
Sect. 2.2.3.4 in Part I, for which the spinodal formation of clusters (i.e. light
nuclear fragments) has been studied by means of nuclear collisions. In the case
of the �rst-order con�nement transition, spinodal phase decomposition could
generate kinematic correlations among particles and to enhanced �uctuations
of e.g. strangeness.

805
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The universe went through various transitions during its early evolution.
At each stage, the pre-existing �uctuations largely determined the inhomo-
geneities of the subsequent matter distribution, leading �nally to the present
pattern of galaxies and its substructures. Prominent are the measurements of
the cosmic microwave background radiation (CMB) [413], �rst carried out by
the COBE satellite [414] and later re�ned by WMAP [415]. In inclusive single
particle measurements, namely measuring the mean photon energy arriving
on earth from di�erent celestial angles, it was possible to resolve inhomo-
geneities in the resulting CMB temperature distribution on the level of 10−4

with respect to the angular averaged distribution. Though tiny, these inho-
mogeneities found their remarkable explanation in the primordial quantum
�uctuations that were present prior to the in�ation stage, thus con�rming
the Big Bang picture of the early universe.

In nuclear collision experiments, on the other hand, one collects results
from many events. In addition to inclusive measurements that determine
the asymptotic single-particle spectra, a variety of coincidence measurements
permit the extraction of more detailed properties, such as sources sizes, jet
propagation, or collective �ow. Beyond these standard type of measurements
one even has the chance and challenge to directly observe and exploit the �uc-
tuations of a given observable from one event to another. In principle, any
observable that is not globally conserved �uctuates. Most of these �uctua-
tions, though, are trivial in nature, namely they are of pure statistical origin.
The problem is to dig out the interesting and dynamically relevant event-
to-event �uctuations, that e.g. enable the search for a possible critical point
and for a �rst order co-existence region in the QCD phase diagram. Over
the past two decades quite a number of such observables were suggested for
clarifying the passage of the collision events through the quark-gluon plasma
phase. These either refer to signals from the plasma that are supposed to sur-
vive the phase transition or to observables that experience strong �uctuations
during the phase transition or close to the critical point. As the latter refer
to the order parameters of the phase transition, which are given by conserved
charges, such as baryon or strangeness number, special measures have to be
taken in order to see the e�ects.

In this chapter we shall discuss these strategies and the experimental at-
tempts to observe the proposed signals (which, however, so far were mostly
unsuccessful). We start with a de�nition of the susceptibilities which re�ect
the �uctuations and correlations in section 9.1. The limitations of measuring
�uctuations and correlations of conserved quantities are outlined in section
9.2. In section 9.3 we discuss electric charge �uctuations for which no ex-
perimental indications of phase transitions have been found so far. The only
event-by-event observable that shows a strong beam energy dependence is
the �uctuation of the K/π ratio, as discussed in section 9.4. The correlations
between baryon number and strangeness are discussed in section 9.5. In sec-
tion 9.6 we describe the advantage of measuring higher-order moments which
provide a sensitive measure of the correlation length. The status of the in-



9.1 Fluctuations and correlations in a thermal system 807

vestigation of mean transverse momentum �uctuations - where the measured
data do not show any non-monotonic behavior - is presented in section 9.7.
Finally, in section 9.8 we discuss possible observables of a �rst-order transi-
tion which are based on clumping due to spinodal phase decomposition.

9.1 Fluctuations and correlations in a thermal system

As discussed in Part I a system in thermal equilibrium (for a grand-canonical
ensemble) is characterized by its partition function

Z = Tr
[
exp

(
−
H −

∑
i µiQi

T

)]
(9.1)

where H is the Hamiltonian of the system, and Qi and µi denote the con-
served charges and the corresponding chemical potentials, respectively. In
case of three �avor QCD these are strangeness, baryon-number, and electric
charge, or, equivalently, the three quark �avors up, down, and strange. The
mean and the (co)-variances are then expressed in terms of derivatives of the
partition function with respect to the appropriate chemical potentials∗,

〈Qi〉 = T
∂

∂µi
log(Z) (9.2)

〈δQiδQj〉 = T 2 ∂2

∂µi∂µj
log(Z) ≡ V Tχi,j (9.3)

with δQi = Qi − 〈Qi〉. Here we have introduced the susceptibilities

χi,j =
T

V

∂2

∂µi∂µj
log(Z) (9.4)

which are generally quoted as a measure of the (co)-variances. The diagonal
susceptibilities, χi,i are a measure for the �uctuations of the system, whereas
the o�-diagonal susceptibilities, χi,j with i 6= j characterize the correlations
between the conserved charges Qi and Qj .

One can de�ne and study higher order susceptibilities or cumulants, by
di�erentiating multiple times with respect to the appropriate chemical po-
tentials

χni,nj ,nk ≡ 1
V T

∂ni

∂(µi/T )ni
∂nj

∂(µj/T )nj
∂nk

∂(µk/T )nk
log(Z) (9.5)

∗ Although in this section we will mostly concentrate on susceptibilities involving conserved
charges, we note that one can de�ne susceptibilities involving any well de�ned operator.
One prominent example is the chiral susceptibility χch = T/V ∂2/∂m2

q log(Z) which
characterizes the chiral phase transition in QCD.
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Higher order cumulants up to the sixth [416] and even eighth [417] order have
been calculated in Lattice QCD which provide useful information about the
properties of the matter above the critical temperature as will be discussed
in one of the following sections.

9.2 Fluctuations and correlations of conserved quantities

The notion "�uctuation of conserved quantities" seems contradictory. Look-
ing at the entire system, none of the conserved quantities will �uctuate. How-
ever, by studying a su�ciently small subsystem, the �uctuations of conserved
quantities become meaningful. The small system may exchange conserved
quanta with the rest of the system. This is similar to the assumptions which
govern a thermal system in the grand-canonical ensemble, and Lattice QCD
calculations are carried out in this ensemble. To illustrate this point in the
context of heavy-ion collisions, consider a situation as depicted in Fig. 9.1.

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

∆Ykick
∆Ykick

∆Ycorr

∆Yaccept

∆Y

dN/dY

Fig. 9.1 The various rapidity scales relevant for �uctuations of conserved quantities.Taken
from [418].

The total system corresponds to all particles distributed in rapidity Y over
a range ∆Ytotal, whereas the small subsystem corresponds to the particles
within the accepted rapidity interval ∆Yaccept. For �uctuations of conserved
quantities (charges) to be a meaningful observable the following scales need
to be well separated:

• The range ∆Ytotal for the total charge multiplicity distribution.
• The interval ∆Yaccept for the accepted charged particles.
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• The charge correlation length ∆Ycorr characteristic to the physics of inter-
est.

• The typical rapidity shift∆Ykick charges receive during and after hadroniza-
tion.

Given these scales, �uctuations will be able to tell us about the properties
of the early stage of the system, the QGP, if the following criteria are met:

∆Yaccept � ∆Ycorr

∆Ytotal � ∆Yaccept � ∆Ykick

The �rst criterion is necessary in order to be sensitive to the relevant
physics, whereas the second one ensures that the total charge conservation
does not suppress the signal, and that the signal survives hadronization and
the hadronic phase. In particular the condition ∆Yaccept � ∆Ykick is unique
to conserved charges. For the charge of the system to change, charges need to
be transported through the boundaries of the system. And if the condition
∆Yaccept � ∆Ykick is satis�ed it requires many kicks to change the charge of
the system. Consequently the relaxation time into a new equilibrium state
may be very long, depending on how well the scales are separated. If the
charges would not be conserved, on the other hand, they could be produced
anywhere within the system leading to a much more rapid equilibration. For
a detailed discussion see [418].

The main problematic in the chain or arguments is that the selection of the
subsystem has to be done by the momenta or rapidities of the asymptotically
observed particles. Stochastic processes that permit to explore the accessible
�uctuations, however, are essentially caused by interaction partners in their
spatial proximity irrespective of the momenta involved. Be it by collisions or
even by the color neutralisation process itself. As these processes generally
involve transfers of charges, one has a problem, whenever the asymptotic
hadron resulting from the partner remains undetected. The correlation be-
tween momenta and spatial location, however, is signi�cantly blurred due to
the thermal motion of the particles. Thus a further constraint has to be [419]

∆Yaccept � ∆Ythermal,

where for example

∆Y f.w.h.m.
thermal =

 2.1 for massless quarks and gluons
1.7 for pions at T = mπ

0.8 for nucleons at T = 120 MeV
(9.6)

(all taken at full width half maximum). These are sizable rapidity spreads
that imply a very fuzzy relation between the spatial origin of the particles
and their �nal rapidity. For a clari�cation we refer to the discussion of the
continuous freeze-out dynamics [420, 421] given in Sect. 5.8 of Part III in
particular to the transport results shown in Fig. 5.5 [422].
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Furthermore dynamical hadronisation calculations [423, 424], cf. Sect. 5.3.2
in Part III, showed that due to the signi�cant drop in entropy density the
hadronisation process itself proceeds during a signi�cant time span of 6 fm/c
and more. This then leaves ample time for stochastic processes which can
exchange charges with the rest of the system. Unfortunately no microscopic
hadronisation calculations exist that could further quantify the issue.

9.3 Electric charge �uctuations

The �uctuations of conserved quantities in heavy-ion collisions was �rst dis-
cussed in the context of (electric) net-charge �uctuations [425, 426]. Here the
simple observation was that charge �uctuations per entropy should scale with
the square of the electric charge of the charge carrying particles and, conse-
quently, they should be sensitive to the fractional charges of the quarks. In
the following we discuss brie�y the �uctuations of the ratio of positively over
negatively charged particles, which is directly related to the net-charge �uc-
tuations. The �uctuations of the ratio of positively over negatively charged
particles

R+− =
N+

N−
(9.7)

are given by

σ2
+− =

4
〈Nch〉2

〈δN2
+ + δN2

− − 2δN+δN−〉 =
4〈δQ2〉
〈Nch〉2

(9.8)

in the limit of small net charge 〈Q〉 = 〈N+ −N−〉 � 〈Nch〉 = 〈N+ +N−〉.
The main assumption of the charge-�uctuation signal is that a well char-

acterized subsystem of the plasma hadronises as if this subsystem is on the
whole isolated from the rest. Then one can use entropy arguments to link
the number of original quarks and antiquarks in the QGP essentially to the
resulting number of mesons in the hadronic matter, since the formation of
baryons is largely suppressed at mid-rapidity. Assuming a free gas of quarks
and gluons for the QGP with a degeneracy ratio of 〈Ng〉 = 16

24 〈Nq +Nq̄〉 and
a pion gas at T ≈ mπ, where Sπ/Nπ ≈ 4.2, one �nds within a few percent
that

〈Nch〉 ≈ 〈Nq +Nq̄〉. (9.9)

Together with the neutral pions it implies that during hadronisation the
number of plasma quarks and antiquarks is essentially tripled. Thus quark-
antiquark pairs have to be created in order to form the constituents of the �nal
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mesons. Estimating the �uctuations of the total charge δQ2 of the subsystem
by employing Poisson statistics in both phases leads to

〈δQ2〉QGP =
5
18
〈Nq +Nq̄〉 ≈

1
3.6
〈Nch〉 ≈

1
3.6
〈δQ2〉hadrons. (9.10)

where on the QCD side the fractional charges of the quarks enter. This dis-
plays the advocated signal: the charge �uctuations in the plasma are essen-
tially a factor four smaller than those of the hadron gas. Even considering
a couple of e�ects that can moderate the large factor in relation (9.10), like
the inclusion hadronic resonances, Ref. [425] still claims a suppression factor
in the order of 3. Similar arguments were given for baryon number �uctu-
ations [426], where one is sensitive to the fractional baryon number of the
quarks. In this case an actual measurement would require the detection of
neutrons, which is rather di�cult. On the other hand, it may be su�cient to
study proton number �uctuations, as the iso-vector channel does not show
critical behavior [427]. This may also soften the limitations due to global
baryon-number conservation.

Electric charge �uctuations have been measured in experiments both at
the SPS and at RHIC [428�431] by the CERES, NA49, PHENIX, and STAR
collaborations. The results at the SPS are di�cult to interpret as the neces-
sary separation of rapidity scales at these energies is not satis�ed and global
charge conservation e�ects dominate the signal. The RHIC measurements by
PHENIX and STAR were still found consistent with the predictions for a
hadron resonance gas. Here the main obstacle for an observation of the QGP
�uctuations are certainly the narrow pseudo-rapidity windows of ∆η = 0.7
and 1.0 [430, 431], in comparison to the thermal spread (9.6) induced by
the pions. Even for the ∆η = 2 window investigated in Ref. [432] a sizable
fraction of the particles emitted from the central collision volume remained
undetected.

Electric charge �uctuations have also been investigated by microscopic
event-by-event transport calculations using the HSD code [433]. The charge
�uctuations ∆Φq are de�ned as

∆Φq = Φq − Φq,GCC, (9.11)

Φq =

√
〈Z2〉
〈N〉

−
√
z2, z = q − q, Z =

N∑
i=1

(qi − q), (9.12)

where q denotes a single particle variable, i.e. electric charge q; N is the
number of particles of the event within the acceptance, and over-line and 〈...〉
denote averaging over a single particle inclusive distribution and over events,
respectively. The trivial �uctuations due to the global charge conservation
(GCC) is
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Φq,GCC =
√

1− P − 1, where P =
〈Nch〉
〈Nch〉tot

(9.13)

with 〈Nch〉 and 〈Nch〉tot the mean charged multiplicity in the detector accep-
tance and in full phase space (excluding spectator nucleons), respectively.

The HSD results [433] show a good agreement with the NA49 data at
SPS energies (Fig. 9.2). Thus, this observable is dominated by the �nal stage
dynamics, i.e. the hadronization phase and the resonance decays, and rather
insensitive to the initial QGP dynamics.
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Fig. 9.2 The dependence of the Φq (l.h.s.) and ∆Φq (r.h.s.) on the fraction of accepted
particles for central Pb+Pb collisions at 20-158 AGeV. The NA49 data [428] are shown
as full symbols, whereas the open symbols (connected by lines) stay for the HSD results.
The dashed line shows the dependence expected for the case if the only source of particle
correlations is the global charge conservation Φq,GCC .

As mentioned above, microscopic transport simulations should be per-
formed in order to properly account for detector geometries and centrality
classes of events in accordance with the experimental setup and analysis. To
this aim the event-by-event multiplicity �uctuations in Pb+Pb collisions at
158 A·GeV have been studied within the HSD and UrQMD transport models
in Ref. [434].

The average values of negative, positive, and all charged hadrons 〈Ni〉, (i =
+,−, ch) and variances σ2(Ni) ≡ 〈N2

i 〉−〈Ni〉2 have been calculated for sam-
ples of collision events with �xed values of projectile participants, Nproj

P [435].
The scaled variances are by de�nition

ωi ≡ σ2(Ni)/〈Ni〉 (9.14)
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Fig. 9.3 (Color online) The results of the HSD (left) and UrQMD (right) simulations are

shown for ω−, ω+, and ωch in Pb+Pb collisions at 158 AGeV as functions of NprojP . The
black points are the NA49 data. The di�erent lines correspond to the model simulations
with the original NA49 acceptance, 1.1 < y < 2.6, in the projectile hemisphere (lower
lines), the NA49-like acceptance in the mirror rapidity interval, −2.6 < y < −1.1, in the
target hemisphere (middle lines), and full 4π acceptance (upper lines).

Note that ω = 1 for a Poisson multiplicity distribution: P (N) = e−N N
N
/N ! .

In Fig. 9.3 the HSD and UrQMD results are shown and compared with the
NA49 data.

The samples with Nproj
P = 20−60 show large �uctuations of the number of

target nucleons,N targ
P , which participate in inelastic collisions, ωtargP ≥ 2. The

�nal hadron multiplicity �uctuations exhibit an analogous behavior, which
explains the large values of the HSD and UrQMD scaled variances ωi in
the target hemispheres and in the full 4π acceptance. On the other hand,
the asymmetry between the projectile and target participants � introduced
in the data samples by the trigger condition of �xed N targ

P � can be used
to explore di�erent dynamics of nucleus-nucleus collisions by measuring the
�nal multiplicity �uctuations as a function of rapidity. This analysis reveals
that the recent NA49 data might indicate a rather strong mixing of the
longitudinal �ows of the projectile and target hadron production sources.
This is so not only for central collisions � in line with the HSD and UrQMD
approaches � but also for rather peripheral reactions.

Nevertheless, the �rst study in Ref. [434] (cf. Fig. 9.3) has also demon-
strated that trigger conditions have a large impact on �uctuation observables
and imply conditional �uctuations that are not easy to interpret. Only in case
of 'full' acceptance this might be the case.
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9.4 Particle multiplicity ratio �uctuations

The �rst study of event-by-event �uctuations in a heavy-ion collision exper-
iment was the measurement of the K/π �uctuations by the NA49 collabora-
tion [439]. The original motivation for this analysis was to look for separate
event classes, for example, one with enhanced strangeness and one with-
out. The observed �uctuations, however, are rather small, ≈ 2%, indicating
that the events generated in these collision are rather similar. Subsequently,
the NA49 collaboration has measured the K/π �uctuations over the entire
CERN-SPS energy range [436], and together with the preliminary measure-
ments from STAR at RHIC [437] we have an excitation function for this
observable over a wide range of energies. The di�erence between the actual
variance of the system and that of an uncorrelated (mixed event) ensemble
is usually referred to as

σ2
dynamic = σ2 − σ2

uncorrelated. (9.15)

Fig. 9.4 Energy dependence of the event-by-event nonstatistical �uctuations of the K/π
ratio (top panel) and the (p+ p̄)/π ratio (bottom panel). Filled symbols show data, open
symbols show calculations with the UrQMD transport code, using NA49 acceptance tables.
Systematic uncertainties are shown as brackets. Taken from [436]
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This observable is depicted in the upper panel of Fig. 9.4 for the K/π ratio
as measured at the SPS and RHIC. The K/π �uctuations increase steeply
as the center of mass energy is decreased below

√
sNN = 10A GeV. This

rise coincides with a maximum of the inclusive K/π ratio. In contrast, the
�uctuations of the (p+ p̄)/π ratio measured at SPS decrease with decreasing
beam energy as shown in the lower panel of Fig. 9.4. Both the data sets are
compared to results of UrQMD transport calculations which fail to reproduce
the K/π �uctuations but agree with the �uctuations of the (p+ p̄)/π ratio.

The question is whether the increase of the K/π �uctuation is related to
the critical point. However, in this case one would expect the �uctuations
of the pion number to be enhanced. But this would imply also enhanced
�uctuations of the proton-to-pion ratio, which is not observed in experiment,
as shown in the lower panel of Fig. 9.4.

In Fig. 9.5 the �uctuations of the K/π ratio are compared to results of
HSD calculations [438]. In contrast to the UrQMD calculations the HSD
model at least reproduces the trend of the data towards lower beam energies,
although the data points taken at high SPS energies cannot be reproduced.
While the increase of theK/π �uctuations towards lower beam energies might
indeed be a �rst experimental indication for interesting structures in the QCD
phase diagram, one should raise a note of caution. As discussed in [440], ratio
�uctuations scale roughly as the inverse of the accepted multiplicity,

σ2
dynamic ≈

1
〈N〉accepted

(9.16)

Fig. 9.5 Left panel: The excitation function of σdynamic measured by the NA49 Col-
laboration at the SPS CERN [436] and by the STAR Collaboration at BNL RHIC [437],
together with results from HSD calculations for the K/π ratio for full acceptance (dotted
line) and within the experimental acceptance (solid line). Right panel: The HSD results
(circles) and two di�erent versions of UrQMD (triangles) calculations for σdynamic in com-
parison to the NA49 data. Statistical uncertainties in the transport calculations are shown
by error bars. Taken from [438]
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Consequently, the observed rise may partially be due to the change of
the actual acceptance with beam energy, which is always the case in a �xed
target experiment such as NA49. As proposed in [440], the observed rise in
the �uctuations would be more convincing if it showed up in the ratio of the
measured variance over that from mixed events:

F ≡ σ2

σ2
uncorrelated

. (9.17)

This ratio does not exhibit any trivial multiplicity dependence, and is much
less sensitive to acceptance e�ects.

9.5 Correlation between baryon number and strangeness

The correlation between the strangeness S and the baryon number B provides
a useful diagnostic for the presence of strong correlations between quarks and
anti-quarks [441]. To understand this, consider �rst a situation in which the
basic degrees of freedom are weakly interacting quarks and gluons. Then
strangeness is carried exclusively by the s and s̄ quarks which in turn carry
baryon number in strict proportion to their strangeness, Bs = − 1

3Ss, thus
rendering strangeness and baryon number strongly correlated. This feature is
in strong contrast to a hadron gas in which the relation between strangeness
and baryon number is less intimate. For example, at small baryon chemical
potential the strangeness is carried primarily by kaons, which have no baryon
number. Thus one expects baryon number and strangeness to be stronger
correlated in a Quark Gluon Plasma than in a hadron gas.

Such elementary considerations suggest the introduction of the following
correlation coe�cient [441],

CBS ≡ −3
σBS
σ2
S

= −3
〈BS〉 − 〈B〉〈S〉
〈S2〉 − 〈S〉2

= −3
〈BS〉
〈S2〉

. (9.18)

In terms of quark �avors the correlation coe�cient CBS can be written as

CBS = −3
〈BS〉
〈S2〉

=
〈(u+ d+ s)(s)〉

〈s2〉
= 1 +

〈us〉+ 〈ds〉
〈s2〉

= 1 +
χus + χds

χss
(9.19)

since the baryon number of a quark is 1
3 and the strangeness of a strange

quark is −1. Note that the quark operators u, d, s here represent the net-
quark number of a given �avor, i.e 〈u〉 ≡ 〈u− ū〉 etc. The last expression in
Eq. (9.19) is obtained by using the de�nition for the susceptibilities as de�ned
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in the previous section. For uncorrelated quark �avors like in a simple Quark-
Gluon-Plasma we have

〈us〉 = 〈ds〉 = 0 (9.20)

and hence

CBS = 1 (9.21)

In contrast, a gas of uncorrelated hadron resonances gives

CBS ≈ 3
〈Λ〉+ 〈Λ̄〉+ . . . + 3〈Ω−〉+ 3〈Ω̄+〉
K0 + K̄0 + . . . + 9〈Ω−〉+ 9〈Ω̄+〉

. (9.22)

Here, the numerator receives contributions from only (strange) baryons
(and anti-baryons), while the denominator receives contributions also from
(strange) mesons. As a result, one obtains CBS = 0.66 for T = 170 MeV and
µB = 0. On the other hand, at very high µB and low T where strangeness is
carried exclusively by lambdas and kaons, the correlation coe�cient increases
to CBS ≈ 3/2 due to strangeness neutrality (〈Λ〉 = 〈K〉). This dependence of
CBS on the hadronic environment is in sharp contrast to the simple Quark-
Gluon Plasma where the correlation coe�cient remains strictly one for all
temperatures and chemical potentials. The left panel of Fig. 9.6 depicts the
result for CBS as function of µB for both an ideal Quark-Gluon Plasma as
well as for a hadron gas along the empirical chemical freeze-out line [441].

The right panel of Fig. 9.6 depicts the predicted energy excitation function
of CBS in both p+p and central Au+Au (Pb+Pb) collisions as calculated in
the UrQMD model [442]. As shown in the left panel, CBS increases with in-
creasing baryon chemical potential µB which is the case when going to lower
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beam energies. With increasing collision energy, and therefore decreasing µB ,
CBS decreases to CBS ≈ 0.4 at the highest RHIC energy available. Surpris-
ingly, the general trend is the same for both p+p and Au+Au (Pb+Pb).
Measuring the energy dependence of CBS correlation around midrapidity
might therefore allow to map out the onset of QGP production.

9.6 Higher-order moments of the �uctuations

Most �uctuation measures discussed to-date can be related to quadratic vari-
ances of event-by-event observables, such as particle multiplicities, net charge,
baryon number, particle ratios, or mean transverse momentum. In the vicin-
ity of the QCD critical point, these variances are proportional to the square
of the correlation length which is expected to diverge at the critical point.
However, the magnitude of the correlation length is limited by the system
size and by �nite time e�ects (critical slowing down), and could be as small
as 2 - 3 fm. Hence, the contribution to the �uctuations from the critical point
might be too weak as to be discovered experimentally, if only the second
moments are measured. Therefore, it has been proposed to measure higher,
non-Gaussian moments of the �uctuations which are expected to be much
more sensitive to the critical point [443]. For example, it has been estimated
that the third and fourth moment ("skewness" and "kurtosis") of the event-
wise measured pion and proton multiplicity distribution are proportional to
the 4th - 5th and 7th power of the correlation length [443]. Thus if the corre-
lation length increases only by 10% in the vicinity of the critical point, one
should see an enhancement by a factor of two in the fourth order cumulant,
whereas the second order cumulant, i.e. the �uctuations, would only increase
by 20%.

For example, the ratio of the fourth order susceptibility (kurtosis) over the
second order susceptibility for baryon number

RB4,2 ≡
χ

(4)
B

χ
(2)
B

(9.23)

has been determined by lattice QCD calculations with three �avors and al-
most physical light quark masses [444]. The result is shown in Fig. 9.7. The
full line indicates the estimate for a hadron gas (labelled "HRG") at low
temperatures, and the limit of non-interacting quarks at high temperatures
(labelled "SB"). The peak close to the transition temperature softens consid-
erably when going to smaller lattice spacings, i.e, from Nτ = 4 to Nτ = 6.

The results shown in Fig. 9.7 can be easily understood in terms of hadrons
on the low temperature side and independent quarks on the high temperature
side. Consider a classical ideal gas of particles with baryon number b. Then
we have
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Fig. 9.7 [color online] Ratio of fourth order to second susceptibilities for baryon number.
The line at low temperature, labelled "HRG" indicates the results for a hadron gas. The
limit of free quarks is shown on the right and denoted by "SB". Figure taken from [444]

χ
(2)
B = b2

(
χ

(2)
N + χ

(2)

N̄

)
(9.24)

χ
(4)
B = b4

(
χ

(4)
N + χ

(4)

N̄

)
(9.25)

where χ(2)
N and χ(2)

N̄
are the particle-number cumulants for particles and anti-

particles, respectively.

χ
(2)
N = 〈N2〉 − 〈N〉2 = 〈N〉 (9.26)

χ
(4)
N = 〈N4〉 − 3〈N〉2 = 〈N〉 (9.27)

Consequently, the ratio of the cumulants is RB4,2 = b2, and since all baryons
in the hadronic phase have baryon number |Bhadronic| = 1 and all quarks
have baryon number |Bquark| = 1/3 the �nal result is RB4,2 = 1 for the
hadronic phase and RB4,2 = 1/9 for the quark-Gluon Plasma. Since baryons
are fermions, one would have to correct the above result for quantum statis-
tics. In case of massless particles this can be done analytically and one would
have to multiply the results by a factor of 6/π2 ' 0.6. The e�ect of quantum
statistics for the massive baryons in the hadronic phase can only be evaluated
numerically and for baryons with mass M = 1GeV and a temperature of T =
170 MeV the correction is less than 1%. The results of this simple estimate
are also shown in �gure 9.7 as the full lines at low (hadron gas) and high
(QGP) temperatures.

According to Fig. 9.7 the system is well described by a gas of independent
quarks above ∼ 1.5Tc. If the calculation with Nτ= 6 is indeed close to the
continuum limit, then we see a rapid change from hadrons to independent
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quarks, both in the �avor o�-diagonal susceptibilities as well as in the fourth
order baryon number cumulants. This would lend theoretical support of the
rather surprising �nding of the so-called quark number scaling at RHIC which
can be simply understood within a recombination/coalescence picture. In this
picture hadrons are formed at Tc by simple phase-space coalescence, which
is consistent with the rather rapid buildup of correlations around Tc seen in
the lattice results for the susceptibilities as discussed here.

Finally, it is important to note that non-Gaussian moments of the �uctua-
tions like skewness and kurtosis may receive contributions from other sources
like remnants of initial �uctuations, �ow, and jets - to name just a few obvi-
ous contributors. The experimental challenge will be to identify and evaluate
these background contributions, and to extract the genuine critical point ef-
fect.

9.7 Fluctuations of the mean transverse momentum

Event-by-event �uctuations of the mean transverse momentum pt have been
discussed in the literature as a measure of energy �uctuations, which should
show a peak close to the QCD phase transition, where the speci�c heat has a
maximum [445]. Transverse momentum �uctuations have also been discussed
in the context of a search for the QCD critical point where one expects
long range �uctuations which would result in enhanced transverse momentum
�uctuations, especially for small momenta [446]. The signature in this case
would be a maximum in the excitation function of pt-�uctuations at the
energy corresponding to the location of the critical point.

Experimentally, pt-�uctuations have been investigated by the CERES col-
laboration [447], the NA49 collaboration [448, 449] at the CERN SPS and
by the STAR [450], and the PHENIX [451, 452] collaborations at RHIC.
These measurements cover a wide range of beam energies. The resulting pt-
�uctuations are shown in Fig. 9.8 They are small and show virtually no
beam-energy dependence.
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Fig. 9.8 [color online] Transverse momentum �uctuations for di�erent center of mass
energies. Here ΣpT = σdynamical. The �gure is adapted from [453].

In addition to the transverse momentum �uctuations for all charged par-
ticles, one can investigate the pt �uctuations of the negative and positive
charges independently as well as the cross correlation between them. This
aspect is discussed in detail in [454]. Such an excitation function has been
measured by the NA49 collaboration, and it is shown in �gure 9.9 for dif-
ferent charge combinations and di�erent cuts on the transverse momentum
[455]. Critical �uctuations, corrected for critical slowing down and expansion
of the system, would lead to a bump which should be at least a factor of
two larger than the statistical background [456]. Obviously, the data shown
in Fig. 9.9 do not show such a behavior, even for small transverse momenta.
The results at RHIC [43], shown in Fig. 9.8, are consistent with the data
from SPS. Hence, so far there is no indication of a critical point in the trans-
verse momentum �uctuation measurements. Of course it could be that the
signal is too weak to be seen and it may also be washed out by subsequent
hadronic interactions. To address this issue, higher cumulants, as discussed
above, need to be measured as they should show a stronger enhancement
close to the critical point. Furthermore, on the theoretical side, one needs to
get a better understanding of the degradation of the proposed signals in the
hadronic phase.
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Fig. 9.9 [color online] Preliminary data on the energy dependence of pt �uctuations from
the NA49 collaboration [455] for all charged particles and for positively and negatively
charged particles. The panels show the �uctuations for di�erent cuts in the transverse
momentum. The �gure is adapted from [455].

9.8 Observable consequences of a �rst-order transition

The presence of a �rst-order phase transition may, if the bulk of the sys-
tem can be brought into the associated spinodal region, cause a clumping
to develop. We discuss here how such a phenomenon may have observable
consequences that could form the basis for an experimental investigation of
the phase structure of strongly interacting matter. However, it is important
to recognize that our quantitative understanding of the equation of state and
the collision dynamics is still only rudimentary. Therefore, the development of
practical experimental signals requires more precise calculations of the equa-
tion of state in the relevant baryon-rich environments, to better locate the
expected phase coexistence region. Furthermore, re�ned calculations of the
collision dynamics are needed to help ascertain whether the spinodal region
is in fact likely to be encountered and, if so, to what degree the phase decom-
position may actually develop and lead to signals that survive the further
expansion dynamics. The discussion below should therefore be regarded as
only qualitative.

Moreover, it should be emphasized that the hadrons considered have not
(yet) been propagated from their creation through the expanding hadronic-
gas stage until no further interactions or decay processes occur. Such �af-
terburner� simulations could be carried out with fairly good con�dence by
existing hadronic transport codes.

9.8.1 Kinematic observables

The development of clumping may a�ect the �nal momenta of the resulting
hadrons. The discussion below is based on the schematic studies made in
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Ref. [457], which addressed scenarios where the expanding system has (some-
how) transformed itself into an assembly of plasma �blobs� that proceed to
hadronize separately. These blobs are formed at di�erent locations in space
and the local �ow velocities will di�er correspondingly. Thus, blobs formed at
di�erent longitudinal locations will tend to move with di�erent rapidities and
they may also be endowed with a transverse motion re�ecting their transverse
location.

In order to facilitate illustrative calculations, it is assumed that these blobs
hadronize statistically, with the emerging hadrons being boosted by the �ow
velocity of the mother blob. Since the thermal velocity of the hadrons will
tend to wash out the clumped structure of the multi-blob source, it is ad-
vantageous to consider relatively heavy hadrons. Thus pions are unsuitable,
while protons, which are relatively abundant, may be preferable. For any
type of hadron considered, it is then elementary to calculate the resulting
single-particle spectrum and the projected rapidity distribution of protons.
The studies in Ref. [457] suggest that it will generally be di�cult to discern
the clumpiness of the source from single-particle observables. One may thus
expect that correlation observables need to be considered.

Various candidate correlation observables were introduced and analyzed
in Ref. [457], as brie�y summarized below. A relatively simple correlation
observable that exhibits a sensitivity to a clumping of the source is the dis-
tribution of the rapidity di�erence between two hadrons, y12 ≡ y1 − y2. As
one would expect, the resulting distribution, P1D(y12), when divided by the
corresponding mixed-event result, Pmix

1D (y12), exhibits a peak at y12 = 0, with
a width re�ecting the thermal width of a single source (see Fig. 9.10 (left)).

When the individual sources are endowed with transverse �ow motion as
one would usually expect, one may obtain a stronger signal by generalizing
the relative rapidity to three dimensions and thus consider
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y12(p1, p2) ≡ ln[γ12 +
√
γ2
12 − 1] , (9.28)

where γ12 is the Lorentz factor for the relative motion of the two observed
hadrons, m1m2γ12 = p1 · p2 = E1E2 − p1 · p2. The resulting correlation
function, C3D(y12) ≡ P3D(y12)/Pmix

3D (y12)− 1 is shown in Fig. 9.10 (left) for
a number of scenarios considered in Ref. [457]. While the detailed behavior
of the correlation function depends on the particular clumping scenario, the
enhancement around zero remains a rather robust feature, thus suggesting
that this kind of observable may be useful.

The relative-rapidity observables have been examined in a number of
schematic scenarios that incorporate some degree of transverse �ow in ad-
dition to the overall longitudinal expansion. For this purpose, ensembles of
source con�gurations are generated by making random variations relative
to suitable sca�old con�gurations of individual thermal sources in rapidity
space. A sca�old con�guration consists of sources situated at the vertices of
Nφ-sided equilateral polygons (e.g. squares) that are oriented perpendicular
to the z axis and placed with regular spacings ∆y in longitudinal rapidity.
(The (mean) azimuthal separation between two neighboring sca�old sources
in a given polygon is thus ∆φ = 2π/Nφ and each polygon is rotated by
half that amount relative to its neighbors.) On the average, each individ-
ual thermal source emits the same number of particles ν̄n, and the magni-
tude of its transverse �ow rapidity is yT . The mean rapidity density is thus
dν̄/dy = Nφν̄n/∆y. Relative to the sca�old con�guration, the actual velocity
of each source n is obtained by adding a random deviation with regard to
both its longitudinal rapidity and its transverse �ow vector, as well as to the
number of particles emitted.

As a standard illustrative scenario, let us take the polygons to be squares
(i.e. Nφ = 4) that are placed with rapidity separations of ∆y = 1 and whose
corners are endowed with a transverse �ow rapidity of yT = 0.6. It then
follows that the relative rapidity between two neighboring sources in the same
polygon is approximately the same as that between neighboring sources in
adjacent polygons (namely ≈1.20). Relative to this sca�old con�guration,
the actual number of protons emitted by a given source is governed by the
corresponding Poisson distribution, and the dispersion of the longitudinal
rapidity of a given source, σ‖, as well as the dispersion of its transverse �ow
rapidity, σ⊥, are taken to be 0.3.

The sensitivity to a clumping structure of the source can generally be en-
hanced by considering correlations of ever higher order. A particularly simple
N -body observable is the invariant mass of the detected N hadrons [457].
Speci�cally, in each particular event, one may extract the kinetic energy per
particle in the CM system of the observed N -particle system,
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κN{pn} ≡
1
N


( N∑

n=1

En

)2

−

(
N∑
n=1

pn

)2
 1

2

−
N∑
n=1

mn

 , (9.29)

where the N observed particles have four-momenta {pn = (En,pn)}, with
E2
n = p2

n−m2
n. The motivation for considering this observable is the expecta-

tion that when the N -body momentum distribution is clumped, the sampling
of κN will yield an enhancement around the typical (i.e. thermal) kinetic en-
ergy in the individual source, relative to what would occur for a structure-less
distribution. In order to bring out this signal, we compare the correlated dis-
tribution PN (κ), obtained by sampling all the N particles from the same
event, with the corresponding uncorrelated distribution Pmix

N (κ) obtained by
sampling the N particles from N di�erent events. This yields the reduced cor-
relation function for the internal kinetic energy, CN (κ) ≡ PN (κ)/Pmix

N (κ)−1.
The result is illustrated in Fig. 9.10 (right) for N = 2, 3, 4 protons. The cor-
relation signal grows more prominent as the correlation order N is increased
(its strength approximately doubles for each �detector� added), as expected
because it becomes increasingly unlikely that N momenta sampled from a
structure-less distribution would all be nearly similar. This feature is the
reason why higher-order correlations may be advantageous.

However, generally, the correlation signal receives its support from a rel-
atively small region of the N -body phase space and the required counting
statistics therefore increases factorially with N , thus presenting a practical
limit to the order of correlation that can be addressed with a given set of
data. However, the information conveyed by the higher-order correlations is
progressively more e�ective as a discriminator between various possible un-
derlying dynamical mechanisms.

9.8.2 Chemical observables

We turn now to the e�ect of a dynamical clumping on the abundances of the
various hadron species and, following Ref. [223], we speci�cally consider the
distribution of strangeness. The basic picture is as follows: If the clumping is
su�ciently rapid, then whatever net strangeness happens to reside within the
region of the plasma that forms a given blob will e�ectively become trapped
within that blob and, consequently, the resulting hadronization of the blob
will be subject to a corresponding constraint on the net strangeness. Such
a canonical constraint will enhance the multiplicity of strangeness-carrying
hadrons, relative to the conventional (grand-canonical) scenario where global
chemical equilibrium is maintained through the hadronic freeze-out. [The en-
hancement is qualitatively easy to understand, since a non-zero amount of
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strangeness in the hadronizing blob enforces the production of a correspond-
ing minimum number of strange hadrons.] The �uctuations in the multiplicity
of strange hadrons, such as kaons, are enhanced even more, thus o�ering a
possible means for the experimental exploration of the phenomenon.

Of particular interest is the ratio between the number of kaons and the
number of pions in a given event. When µB is positive there is a preference
for K+ over K− and hence 〈K+/π+〉 will increase while 〈K−/π−〉 decreases.
This dependence of the average ratios on the chemical potential is practically
linear, because although an increase of the freeze-out value of µB implies a de-
crease in the corresponding freeze-out value of the temperature, the suppres-
sion from the decreasing temperature a�ects all hadrons species. However,
the e�ect of the canonical constraint is rather small for the ratio averages.
Furthermore, since there is a (small) tendency for the π and K multiplicities
to vary in concert, the di�erence between the scenarios is further reduced. In
particular, there is hardly any di�erence to be seen for 〈K−/π−〉.
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Fig. 9.11 The variance in the K/π ratio (multiplied by the average pion multiplicity
to make the result size invariant) for either positive (increasing) or negative charges (de-
creasing) as a function of the baryon chemical potential µB for an expansion factor of
χ ≡ Vh/Vq = 3 (l.h.s.) and as a function of χ for µB = 300 MeV (r.h.s.) (from Ref.
[223]).

The situation is more favorable for the corresponding �uctuations, as
shown in Fig. 9.11 (left). Since the variance of the K/π ratio decreases in
inverse proportion to the size of the system, it is convenient to multiply by
the mean pion multiplicity and thus consider a quantity that approaches a
constant for large volumes, 〈π±〉σ2(K±/π±). The resulting ratio variances for
the positively charged hadrons are qualitatively similar to the ratio averages
〈K±/π±〉. But although the variances in the ratios are less sensitive to the
speci�c scenario than the kaon variances themselves, the di�erences are still
clearly brought out, as seen in Fig. 9.11 (left). Furthermore, if the clumping
occurs at a higher temperature than assumed here, the �uctuation in the
blob strangeness would increase and, as a result, the ratio variances would
be larger. The �uctuations in the K+/π+ ratio may thus o�er a suitable
observable that is sensitive to a clumping-induced trapping of strangeness in
the expanding matter prior to the hadronization.
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The above results were obtained for a given value of the expansion factor,
the relative increase in the volume from the time of the blob formation to
the thermal freeze-out, χ ≡ Vh/Vq = 3. Since the results are sensitive to this
yet poorly known quantity, it is of interest to consider also other values of
χ. This aspect is illustrated in Fig. 9.11 (right), where the variance of the
K+/π+ ratio is shown as a function of χ for µB=300 MeV.

It is easy to see that 〈π+〉σ2(K+/π±) is a decreasing function of χ, though
this dependence is not dramatic: a doubling of χ from 2 to 4 reduces the
variance by less than 10%. Thus the results in the left panel are fairly robust
against changes in χ.

Thus, the studies made in Ref. [223] suggest that a spinodal decomposi-
tion might indeed lead to enhancements of the magnitude observed by NA49.
However, before any statements could be made with con�dence, further stud-
ies would be required. In particular, both strong resonance decays and weak
decays should be taken into account. Moreover, the enhancement of the K/π
�uctuations should be correlated with other expected e�ects, such as N -body
kinematic correlations (such as those studied in Ref. [457] and discussed above
or those put forward by Mishustin in Ref. [458]).

9.9 Observable consequences of a critical end point

The above discussion addresses the challenge of identifying signals of a �rst-
order phase transition, focussing on the fact that bulk matter is unstable
inside the associated spinodal region. A complementary approach is to explore
signals of the critical endpoint. Below we critically review an example of the
latter, recently suggested by Asakawa et al. [459].

The work of Asakawa et al. is based on the idea that the presence of a
critical end point may distort the expansion trajectories in the µ− T plane,
resulting in a focussing towards the end point in the cross over region. Such
a focussing e�ect was �rst suggested by Nonaka and Asakawa [177], who con-
sidered an isentropic �uid dynamical expansion for various equations of state.
As illustrated in the left panel of Fig. 9.12, slightly supercritical trajectories
may exhibit a local de�ection towards the critical end point.

Such a modi�cation of the expansion trajectory may lead to observable
e�ects in the hadron spectra. For a given (observed) freeze-out condition,
a system which follows a distorted trajectory has experienced a di�erent
thermodynamical environment, than a reference system, where the expansion
trajectory smoothly cuts across the transition region, as illustrated in the
right panel of Fig. 9.12. A distorted trajectory passing near the critical end
point, has experienced an environment of higher entropy per baryon than in
the reference case. As a consequence, hadron abundances may di�er.

In particular, in Ref. [459] it is suggested that the expected modi�cation of
the transverse rapidity dependence of the p̄/p ratio may be observable. Since
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Fig. 9.12 Left: Isentropic ideal-�uid trajectories in the µ−T phase plane. Trajectories in
the absence of a critical end point are shown for a crossover phase transformation (solid line)
and a �rst-order phase transition (dash-dotted line). The dashed line shows the trajectory
when the critical point is present. Right: The p̄/p ratio along the phase trajectories shown
in the left panel, as a function of the evolving entropy density [459].

fast hadrons (those having a high transverse rapidity) are emitted earlier, they
would be more sensitive to the bending of the trajectories near the critical
end point. Consequently, for an expansion trajectory, which passes close to
the critical end point, the p̄/p ratio would fall with increasing transverse
rapidity rather than rise or stay constant, as would otherwise be expected.
(For instance, UrQMD, which does not describe the QCD phase transition,
yields a steady increase of the p̄/p ratio with yT .) The transverse rapidity is
particularly well suited for exhibiting this e�ect, since it readily permits the
observer to distinguish between fast and slow baryons.

We conclude this section with a critical assessment of the robustness of
this e�ect. In Ref. [177] it was argued that the focussing of the isentropic tra-
jectories is a universal property. Hence, all systems with a critical end point
in the same universality class as the three-dimensional Ising model, in partic-
ular hot and dense QCD matter, would exhibit focussing near the critical end
point. However, this conclusion was recently challenged in the work of [178],
where the isentropic trajectories were explored in a renormalization group
approach applied to a model of the same universality class, the quark-meson
model. These authors �nd smooth isentropic trajectories also near the criti-
cal end point. They point out that while the critical behaviour at the critical
end point is universal, this does not mean that the focussing e�ect is also
universal. The point is that the entropy per baryon does not diverge at the
critical end point. Hence, the appearance of the focussing e�ect depends on
the competition between the singular but �nite contribution to the entropy
per baryon, which is universal, to the background, which is model dependent.
Consequently, it is not impossible that in QCD the singular part dominates
over the background and the isentropic trajectories are focussed towards the
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critical endpoint, as suggested in Ref. [177]. On the other hand, the isentropic
trajectories in QCD matter may well be smooth, just like in the quark meson
model. As noted above, universality arguments are not useful for addressing
this particular problem; this issue can only be settled by studying QCD, e.g.
in lattice gauge theory.

9.10 Summary and concluding remarks

As far as observables are concerned we have discussed electric charge �uctua-
tions, transverse momentum �uctuations, and the �uctuations of the kaon-to-
pion ratio. All these have been measured over a wide range of beam energies,
from the CERN SPS to RHIC, and none of the excitation functions, with
the possible exception of the kaon-to-pion ratio, show any signi�cant beam
energy dependence. In the case of the event-by-event �uctuation of the kaon-
to-pion ratio a rapid rise towards the lowest energies is observed, which may
or may not be due to simple scaling of the observable with the acceptance.
If the observed rise is real, then this may very well be the �rst hint for some
non-trivial phase structure probed at these lowest energies.

Concerning the QCD critical point there is only limited theoretical guid-
ance clarifying the relevant beam-energy range for an experimental search.
The model predictions for its location in the phase diagram vary quite a bit.
Employing the proposed strategies the present data set does not provide any
hint for the critical point's location in the region probed so far. The transverse
momentum �uctuations do not show any non-monotonic behavior, as origi-
nally predicted. However, it could very well be that the signal is too weak, as
there is not su�cient time to develop a large correlation length in these �nite
size systems. Therefore, it is imperative to measure the higher cumulants as
well. For example, the fourth order cumulant scales like the seventh power of
the correlation length, whereas the second order, which controls the trans-
verse momentum �uctuations, only scales like the square of the correlation
length [443].

It is important to note that a �rst-order phase-coexistence region might
be much easier to detect than the critical point. Both phenomena are equally
important for our understanding of the QCD phase diagram. The �rst-order
phase transition corresponds to a large region in the T−ρ phase diagram, and
the system most probably spends su�cient time in this region to develop mea-
surable signals. Moreover, �uctuations caused by spinodal instabilities [460]
- which are a generic phenomenon of �rst-order phase transitions - may be
much less suppressed by the �nite size and the short lifetime of the system, as
compared to critical �uctuations. Spinodal instabilities have been studied and
successfully identi�ed in the context of the nuclear liquid-gas phase transi-
tion [461]. In the case of the QCD �rst-order transition, spinodal instabilities
could lead to kinematic correlations among particles [457] and to enhanced
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�uctuations of strangeness [223]. And indeed the observed enhancement of
the kaon-to-pion �uctuations may be due to these enhanced �uctuations in
the strangeness sector [223]. Therefore, the search for kinematical and chem-
ical observables which re�ect the clumping of the system in the coexistence
region is a promising experimental task.

Nevertheless, one should keep in mind that the �uctuations and correla-
tions induced by the critical point or by a phase transition may be masked
by other e�ects like impact parameter (or volume) �uctuations, and correla-
tions due to collective �ow. Moreover, the signals may be severely degraded
by subsequent hadronic processes such as rescattering and resonance interac-
tions and decays. Therefore, the hadronic e�ects and the background sources
should be carefully studied in transport simulations in order to correct the
measurements for, and to reveal the primordial information. However, the ex-
isting transport codes need further development before they can reliably treat
scenarios where a phase transition is present. This presents several distinct
challenges, particularly the following three: 1) The development of a realistic
equation of state that displays the expected phase structure with a �rst-order
phase transition and an associated critical end point at a �nite chemical po-
tential. 2) The ability to describe the change in the active degrees of freedom
as the system enters and leaves the decon�ned phase region. 3) The proper
dynamical evolution of the system as it encounters the thermodynamic and
mechanical instabilities associated with the presence of a phase transition, in
particular the growth and further development of the correlated �uctuations
that ultimately form the basis for observable signals.

Although in the case of heavy-ion collisions one observes correlations in
momenta rather than in space, the situation may be quite similar. To �rst
order thermal spectra and radial �ow are measured. Next, one observes a
large quadrupole correlation due to elliptic �ow. The interesting question
then remains whether it will be possible to identify smaller correlations due
to a phase transition and the QCD critical point after subtracting the two
dominant backgrounds, namely thermal emission and elliptic �ow.



Chapter 10

Dibaryons, hypernuclei and strange
nuclear systems at FAIR

Massive heavy-ion reactions provide an abundant source of strangeness. More
than 50 hyperons and about 30 Anti-Kaons (i.e.K−+K0 carrying the strange
quark) are produced in a single central collisions of lead nuclei at the CERN-
SPS low energy program and before that at the AGS (see e.g. [462]). In the
near future, the Facility for Anti-proton and Ion Research (FAIR) will start
to investigate this energy regime closer with much higher luminosity and
state-of-the-art detector technology. This opens the exciting perspective to
explore the formation of composite objects with multiple units of strangeness
so far not achievable with conventional methods.

Exotic forms of deeply bound objects with strangeness have been proposed
long ago (see [463]) as collapsed states of matter, either consisting of baryons
or quarks. For example the H di-baryon (a six quark state) was predicted by
Ja�e [464]. Later a multitude of bound di-baryon states with strangeness were
proposed using quark potentials [465, 466] or the Skyrme model [467]. How-
ever, the (non-)observation of multi-quark bags, e.g. strangelets and (strange)
di-baryons is still one of the open problems of intermediate and high energy
physics. Most noteworthy in this respect has been the hunt for the Pen-
taquark over the last 10 years, which re-stimulated this �eld and resulted in
a reported observation at the CERN SPS accelerator [468].

The early theoretical models based on SU(3) and SU(6) symmetries [469,
470] and on Regge theory [471, 472] suggest that di-baryons should exist.
More recently, even QCD-inspired models predict di-baryons with strangeness
S = 0, -1, and -2. The invariant masses range between 2000 and 3000 MeV
[464, 473�479]. Unfortunately, masses and widths of the expected 6-quark
states di�er considerably for these models. Nevertheless, most QCD-inspired
models predict di-baryons and none seems to forbid them.

On the conventional hadronic side, however, hypernuclei are known to exist
already for a long time [480, 481]. The double Λ hypernuclear events reported
so far are closely related to the H di-baryon [482] and recent simulations of
the strongly attractive ΛΞ interaction suggest that the 6

ΛΞHe hypernuclei
marks the onset of nuclear stability for Ξ hyperons [483]. Metastable exotic
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multi-hypernuclear objects (MEMOs) as well as purely hyperonic systems
of Λ's and Ξ's were introduced in [484, 485] as the hadronic counterparts
to multi-strange quark bags (strangelets) [486, 487]. The Nijmegen soft-core
potential was extended to the full baryon octet and bound states of ΣΣ, ΣΞ,
and ΞΞ di-baryons were predicted [488]. In addition it has been shown that
the hyperon-hyperon binding energy in bulk matter is considerably enhanced
[489].

There are several searches in heavy-ion collisions for the H-di-baryon
[490, 491] and for long-lived strangelets [492, 493] with high sensitivities.
The hypernuclei 3

ΛH and 4
ΛH have been detected in heavy-ion reactions at

the AGS by the E864 collaboration [494, 495]. The invariant yields of the
hypernuclei were determined, by the invariant mass reconstruction of decay
products (3ΛH → π−+3He and 4

ΛH → π−+4He), to be of the order of 10−4

per event.
A major uncertainty for the detection of such speculative states is their

(meta)stability. Metastable exotic multi-hypernuclear objects (MEMOs), for
example, consist of nucleons, Λ's, and Ξ and are stabilised due to Pauli's
principle, blocking the decay of the hyperons into nucleons. The presented
MEMO candidates are expected to possess binding energies up to EB/AB ≈
−22 MeV [487] due to attractive hyperon-hyperon interactions.

Only few investigations about the weak decay of di-baryons exist so far :
In [496], the H-di-baryon was found to decay dominantly by H → Σ−+p for
moderate binding energies. While the (ΛΛ) bound state, which has exactly
the same quantum numbers as the H-di-baryon, was studied in [497]. Here,
the main non-mesonic channel was found to be (ΛΛ) → Λ + n. If the life
time of the (ΛΛ) correlation or H0 particle is not too long, the speci�c decay
channels might be used to distinguish between both states.

For a detection in heavy-ion experiments one is mainly interested in can-
didates whose �nal decay products are charged: as

(Σ+p)b → p+ p
(Ξ0p)b → p+ Λ

(Ξ0Λ)b → p+Ξ− or Λ+ Λ
(Ξ0Ξ−)b → Ξ− + Λ

It has been shown that the decay lengths for all of the above strange
dibaryons is between cτ ≈ 1− 5 cm [478].

(Σ+p)b: There is only one nonmesonic decay channel for (Σp)b → p + p
dominant above 5 MeV binding energy. The dibaryon should show up in the
invariant pp mass spectrum after background subtraction from event-mixing
at M = 2.128 GeV − ε where ε is the binding energy. With this method the
weak decay of the lightest hypernucleus 3

ΛH→3He+π− has been detected in
heavy-ion collisions by the E864 collaboration [494].

(Ξ0p)b: For the (Ξ0p)b bound state only one mesonic but three di�erent
nonmesonic channels contribute. The dominant nonmesonic decay turns out
to be (Ξ0p)b → Λ + p already for a binding energy of 2 MeV or more.
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The decay itself resembles the one for the weak decay of the Ξ− or Ω−,
which have already been detected by several experiments (see contributions
in [462]). Instead of an outgoing π− or K− there is a proton leaving the �rst
weak vertex.

(Ξ0p)b: The dibaryon (Ξ0Λ)b decays to Ξ−+p and, with a small fraction,
to two Λ's. Therefore, it can be seen in Ξ−p or ΛΛ invariant mass plots.

(Ξ0Ξ−)b: The (Ξ0Ξ−)b dibaryon has been predicted to be bound [488]
and its decay to Ξ− + Λ has a branching ratio of a few percent.

Another way of identifying possible MEMO candidates is by directly ob-
serving their decay systematics (i.e. a charged particle decaying in two equally
charged particles, a strong 'kink' in the track of a charged particle or two
charged particles created from nowhere). See [479] for a full discussion and
new estimates for the weak nonleptonic decays of strange di-baryons.

Fig. 10.1 (left)Multiplicities of various types of MEMOs and strangelets in central Pb+Pb
reactions at Elab = 30A GeV from the hybrid approach.
(right)Rapidity distribution of baryons (upper curves) and strange dibaryons (lower curves)
using RQMD2.4 with wavefunction coalescence for Au+Au collisions at

√
s = 200 AGeV.

Upper curves are for a binding energy of Eb = 5 MeV, lower ones for Eb = 1 MeV.

Cluster Mass [GeV] Quark content Cluster Mass [GeV] Quark content

H0 2.020 4q + 2s {2Ξ−, 2Ξ0} 5.268 4q + 8s
{Ξ−, Ξ0} 2.634 2q + 4s 6

ΛΛHe 5.982 16q + 2s
4He 3.750 12q αq{6Λ} 6.060 12q + 6s
4
ΛΛH 4.206 10q + 2s 6

ΛΞHe 6.183 15q + 3s
{4Λ} 4.464 8q + 4s {2n, 2Λ, 2Ξ−} 6.742 12q + 6s

{2Λ, 2Σ−} 4.610 8q + 4s 7
Ξ0ΛΛHe 7.297 16q + 2s

5
ΛHe 4.866 14q + 1s {2Λ, 2Ξ0, 2Ξ−} 7.500 8q + 10s

{2Λ, 2Ξ−} 4.866 6q + 6s

Table 10.1 Properties of light multibaryonic states with strangeness.
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The production rate of multi-strange objects has been studied within
the UrQMD model (v2.3) [124, 498] and a micro+macro hybrid approach
[124, 498�500] to heavy ion reactions, as well as in a thermal model [26]. In
the hybrid model, a full (3+1) dimensional ideal hydrodynamic evolution is
performed using the SHASTA algorithm [501, 502]. An equation of state for a
free hadron gas without any phase transition is used [503]. The EoS includes
all hadronic degrees of freedom with masses up to 2 GeV, which is consistent
with the e�ective degrees of freedom present in the UrQMD model. The mass
of a MEMO was assumed to be the sum of the masses of all hadrons it is com-
posed of. Similarly the total chemical potential is the sum of the constituents,
and is composed of baryon and strange-quark chemical potentials µB and µs.
Table 10.1 gives the properties of all multibaryonic states considered in this
analysis.

Fig. 10.1 (left) provides the total multiplicities per degeneracy factor of
various types of MEMOs and strangelets in central Pb+Pb reactions at
Elab = 30A GeV. The yields obtained are in good agreement to the sta-
tistical model analysis [504], which is describing strange cluster production
at AGS energies.

Because local, as well as global, thermal equilibration are assumptions
not necessarily justi�ed in heavy ion collisions, a microcanonical description,
combined with MEMO production by coalescence, has been proposed. Due to
the restrictions of energy and momentum conservation, resulting in a phase
space reduction for produced strange particles, a (micro)canonical description
of the system strongly decreases strange particle yields at the lowest energies
[505, 506]. Thermal model analysis however show, that canonical corrections

Fig. 10.2 (left): Excitation functions of the multiplicities of various MEMOs in central
Pb+Pb reactions from the hybrid approach.(right): The energy dependence of multistrange
Λ hypernuclei yields relative to the yields of Lambdas at midrapidity for central nucleus-
nucleus collisions, calculated with the statistical model.
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are negligible for all hadron species already for the highest AGS energies
(
√
sNN ≈ 5 GeV) [26].
In [478] MEMO production by coalescence was investigated for RHIC en-

ergy regime (
√
s = 200 GeV). The obtained total yields of strange clusters

are of similar magnitude compared to the hybrid model calculation. Fig. 10.1
(right) shows the rapidity spectra for several strange dibaryons from the
RQMD2.4 model with wavefunction coalescence. Another study predicted
strange cluster formation at AGS energies within a simpli�ed coalescence
model [507]. Compared to data [494, 495] and thermal production [508], the
production of strange clusters within this approach was overpredicted by or-
ders of magnitude.

Investigating strange-cluster production over a range of beam energies
shows a distinct maximum in the yields of several multi strange objects.
Fig. 10.2 (left) displays the excitation function of the multiplicities of various
MEMOs in central Pb+Pb reactions from the hybrid approach. In the right
panel of Fig. 10.2 we show a prediction within the thermal model [26] for the
energy dependence of the production yield of multistrange light hypernuclei
[504]. Shown is the yield relative to that of Λ hyperons, calculated using the
parametrizations for the temperature (T ) and baryochemical potential (µb)
established in [26] based on �ts of midrapidity data in central collisions. The
production shows a pronounced maximum in the FAIR energy regime, which
is the consequence of a competition between a strong increase (followed by
saturation) of T and a strongly decreasing µb. In addition, the canonical
suppression leads to reduced yields at low energies. One easily observes that
the upper FAIR energy region (∼ Elab = 10− 40A GeV) is ideally placed for
the search of exotic multi-strange baryon clusters.

Fig. 10.3 (left) Normalized rapidity density of various MEMOs in central Pb+Pb reac-
tions at Elab = 30A GeV from the hybrid approach.
(right)Transverse momentum spectra at midrapidity (|y| < 0.5) of various MEMOs in
central Pb+Pb reactions at Elab = 30A GeV from the hybrid approach.
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Fig. 10.3 shows the normalized rapidity distribution of various MEMOs in
central Pb+Pb reactions at Elab = 30A GeV from the hybrid approach. The
production of baryon rich clusters is most pronounced in the high baryon
density rapidity region. The rapidity distributions for MEMOs with a larger
strangeness to baryon number fraction tend to look more gaussian like.

Fig. 10.3 (right) depicts the transverse momentum distribution of various
MEMOs at midrapidity in central Pb+Pb reactions at Elab = 30A GeV from
the hybrid approach. The pT spectra are rather broad as compared to usual
hadrons. This is due to the large boost the MEMOs acquire due to their
large mass and the fact, that they are produced predominantly in the hottest
regions of the expanding system.

Another project, dedicated to the study of hypernuclei, formed out of
projectile fragments from heavy ion collsions at the CBM experiment, is
the HypHI project at GSI and FAIR. The secondary beams of exotic nuclei
with unprecedented intensity and clarity will become available at the Super-
Fragment-Separator.

In summary, the presented excitation functions for various MEMO multi-
plicities show a clear maximum at the upper FAIR energy regime making this
facility the ideal place to study the production of these exotic forms of multi-
strange objects. Detector simulations have shown that the CBM experiment
is well suited for the search of exotic multihypernuclear objects either by in-
variant mass reconstruction of strange di-baryons (Fig. 10.4) or observation
decay systematics. This opens the unique opportunity to study the evolution
of nuclear structure into the yet unexplored territory of the nuclear chart and
to determine the properties of many short-lived nuclei which are produced
in explosive astrophysical events and crucially in�uence their dynamics and
associated nucleosynthesis processes.
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Fig. 10.4 Simulation of a possible reconstruction of a multi strange di-baryon.





Chapter 11

Summary

The investigation of nuclear matter at extreme conditions, i.e. at high tem-
peratures and/or at high baryon densities, is a fascinating, growing �eld of
modern physics. Worldwide, major e�orts are devoted to the exploration of
the phase diagram of strongly interacting matter using high-energy nucleus-
nucleus collisions. While the experiments at the Relativistic Heavy Ion Col-
lider (RHIC) at BNL and at the future Large Hadron Collider (LHC) at
CERN focus on the study of high temperatures, the experiments with high-
energy heavy-ion beams at the future Facility for Antiproton and Ion Re-
search will concentrate on the investigation of the highest baryon densities
achievable in the laboratory.

The physics of high baryon densities is of elementary importance for nu-
clear and subnuclear physics, for astrophysics and cosmology. The funda-
mental theory of strong interaction, Quantum Chromodynamics (QCD) has
just recently succeeded in throwing a �rst glance at the phase diagram of
QCD matter at �nite baryo-chemical potential µb. Lattice QCD calculations
�nd a crossover transition at µb = 0, but expect a critical endpoint and a
�rst order phase transition at µb > 0. The experimental discovery of these
prominent landmarks of the QCD phase diagram would be a major break-
through in our understanding of the physics of strongly interaction matter.
Equally important is quantitative experimental information on the proper-
ties of hadrons in dense matter which may shed light on the e�ects of chiral
symmetry restoration and the origin of hadron masses.

Several experimental programs are planned to explore the QCD phase
diagram at large baryo-chemical potentials. The STAR and PHENIX col-
laborations at RHIC propose to scan the beam energies, and to search for
the QCD critical endpoint [509]. For the same reason, future measurements
are envisaged at CERN-SPS with the upgraded NA49 detector (NA61) us-
ing light and medium size beams [510]. At the Joint Institute for Nuclear
Research (JINR)in Dubna, a heavy-ion collider project (NICA) is discussed
with the goal to search for the coexistence phase of nuclear matter [511].
However, due to luminosity limitations these experiments are constrained to
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the investigation of bulk observables. In contrast, the Compressed Baryonic
Matter (CBM) experiment at the Facility for Antiproton and Ion Research
(FAIR) in Darmstadt is designed for the detection of bulk and rare probes,
and will bene�t from the high-intensity heavy-ion beams provided by the
FAIR accelerators.

The CBM experiment will enter a new era of nuclear matter research by
measuring rare diagnostic probes never observed before at FAIR energies, and
thus has a unique discovery potential. In order to obtain a complete picture, a
comprehensive set of observables will be measured in proton-proton, proton-
nucleus, and nucleus-nucleus collisions over the full FAIR energy range. The
observables include:

• Hadron yields, transverse mass spectra and rapidity distribu-
tions
The excitation function (from 2 - 45 AGeV) of hadron yields and phase
space distributions (including multi- strange hyperons) will provide infor-
mation about the �reball dynamics and the nuclear matter equation of
state over a wide range of baryon densities. A non-monotonic behavior
of the inverse slope as function of beam energy would signal a change in
the nuclear matter properties at a certain baryon density. The inverse-
slope distribution as a function of particle mass is related to the particle
freeze-out time, and, hence, may help to disentangle the early from the
late collision stages.

• Collective �ow
The strength of the elliptic �ow v2 measured as a function of transverse
momentum for various particle species re�ects the initial pressure of the
system. The vanishing of directed �ow at a certain beam energy would
indicate a strong softening of the equation-of-state. The scaling of v2 with
the quark content of the particles may serve as indication for �ow gener-
ation in a partonic phase. The onset (or the disappearance) of the scaling
behavior at a certain beam energy would signal a change in the degrees-
of-freedom of the matter. Of particular importance with respect to quark
number scaling is the �ow of φ mesons and Ω hyperons which are only
little a�ected by �nal state interaction.

• Open and hidden charm
The transport properties of open charm mesons in dense matter - which
depend on the interaction with the medium and, hence, on the struc-
ture of the medium - can be studied via the yields, the elliptic �ow and
the momentum distributions of charmed particles. In a baryon-dominated
medium these observables are expected to di�er for D and D̄ mesons. A
global mT -scaling of all mesons - in particular for strange and charmed
particles - indicates in-medium modi�cations which may be related to ef-
fects of chiral symmetry restoration. The crossing of the phase boundary
may be indicated by sudden changes of charm particle ratios such as the
ψ′/(J/ψ) ratio and the J/ψ/D ratio, when measured as function of beam
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energy. The elliptic �ow of charmonium and open charm is sensitive to the
initial pressure which might be of partonic nature.

• Dileptons
A precise measurement of the dilepton invariant mass spectrum up to
about 1 GeV provides information on the in-medium properties of the
vector-meson spectral function as a signal of the chiral symmetry restora-
tion in the hot and dense matter. At higher invariant masses the spectrum
contains a substantial contribution from thermal dileptons from the early
partonic phase. The di�erent origin of the dileptons is also re�ected in the
inverse slopes of their transverse momentum spectra. The experimental
determination of dileptons emitted from the high-density phase of the col-
lision requires the measurement (and subtraction) of contributions from
very early nucleon-nucleon collision, from the dilute corona, and from post
freeze-out decays.

• Fluctuations and correlations
Lattice calculations indicate large variations of the baryon, charge and
strangeness susceptibilities in the vicinity of the QCD critical endpoint.
These phenomena can be related to event-by-event �uctuations of con-
served quantities such as net baryon number, net charge, and net strangeness.
Fluctuations of the kaon, pion and proton multiplicities, in particular of
their higher moments, measured as a function of beam energy, are expected
to be sensitive indicators for the location of the critical point. A promising
experimental task is the search for �uctuations and correlations caused
by a �rst-order phase transition, focussing on the fact that bulk matter is
unstable inside the associated spinodal region.

• Exotica
Exotic forms of deeply-bound multi-strange objects have been proposed
many years ago, but have not been found experimentally. Future experi-
ments should focus on the search for short-lived (weakly decaying) objects.

Most of the predictions discussed in this part are based on hadron-string or
hydrodynamical model considerations without including the phase transition
to the QGP (except for thermal evolution models and for the AMPT model
which includes parton interactions in a perturbative way). The goal is to
extract information about the initial partonic phase of the collision from the
measurement of hadronic observables. The QGP signals might be strongly
distorted by the hadronization process and by �nal state interactions of the
hadrons. Moreover, the �nite size of the �reball and its very short lifetime
might blur the signatures from the partonic matter, in particular the possible
remnants of critical �uctuations near the QCD critical endpoint.

In order to trace the �nal observations back to the early phase of the
collisions, and to subtract the hadronic contribution from the QGP signal, one
needs dynamical models containing the proper degrees of freedom � quarks
and gluons in the initial phase and hadrons in the �nal phase � and dynamics
which includes the phase transition according to the Lattice QCD EOS. The
development of such approaches is in progress [284, 285, 512�514]. Finally,
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the progress in dense matter research using high-energy heavy-ion collision
de�nitely relies on both, novel theoretical tools and a comprehensive set of
high-quality experimental data.
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Chapter 1

Introduction

1.1 Exploring dense baryonic matter in the laboratory

High-energy heavy-ion collision experiments worldwide are devoted to the
investigation of strongly interacting matter under extreme conditions. At the
Relativistic Heavy Ion Collider (RHIC) at BNL intriguing observations have
been made which support the picture that partonic degrees of freedom prevail
in the early phase of the �reball evolution. These studies will be continued
at even higher energies at the Large Hadron Collider (LHC) at CERN. The
goal of the experiments at RHIC and LHC is to investigate the properties
of decon�ned QCD matter at very high temperatures and almost zero net
baryon densities. This is a domain of the QCD phase diagram where modern
Lattice-QCD calculations anticipate a smooth crossover from hadronic to
partonic matter, leading to predictions for the critical temperature which
vary between 150 to 190 MeV.

The region of the QCD phase diagram with the highest net-baryon den-
sities can be reached in heavy-ion collisions at moderate collisions energies
which are and will be available at the Super-Proton-Synchrotron (SPS) at
CERN, and at the Facility for Antiproton and Ion Research (FAIR) in
Darmstadt. Structures observed in the excitation functions of strange-to-
nonstrange particles, and of the inverse slope parameters of strange particles
stimulated lively discussions on the possible onset of decon�nement at low
SPS energies. At the high net-baryon densities reached in this energy range,
the phase transition between hadronic and partonic matter is expected to
be �rst order, featuring a region of phase coexistence and a critical end-
point. The experimental discovery of these prominent landmarks of the QCD
phase diagram would be a major breakthrough in our understanding of the
properties of nuclear matter. Equally important is quantitative experimental
information on the properties of hadrons in dense matter which may shed
light on chiral symmetry restoration and the origin of hadron masses.
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According to an analysis of particle yields in heavy-ion collisions, the max-
imum net-baryon density at freeze-out is reached at low CERN-SPS or FAIR
energies [1]. This is illustrated in �gure 1.1 which depicts the chemical freeze-
out line as function of temperature and net-baryon density. The numbers
refer to either the total collision energy (from 2+2 to 100+100 AGeV)), or to
laboratory kinetic energies for �xed target experiments (from 5-40 AGeV).
The calculations indicate, that beam energies between 30 and 40 AGeV (on
�xed target), or total energies between

√
s=6 and 10 AGeV are best suited

to create the highest net-baryon densities in the laboratory.

Fig. 1.1 The hadronic freeze-out line in the plane temperature versus net-baryon density
as obtained in the statistical model with the values of µB and T that have been extracted
from the experimental data in Ref. [2]. The curve corresponds to Au+Au collisions. The
symbols represent beam energies (in AGeV) at either RHIC (total energy in each beam),
or FAIR (kinetic energy of the beam for a stationary target). The �gure is taken from [1].

In order to explore the QCD phase diagram at high net-baryon densities,
several experimental programs are planned all over the world. The STAR and
PHENIX collaborations at RHIC propose to scan the beam energies, and to
search for the QCD critical endpoint [3]. For the same reason, future mea-
surements are envisaged at CERN-SPS with the upgraded NA49 detector
(NA61-SHINE) using light and medium size beams [4]. At the Joint Institute
for Nuclear Research (JINR) in Dubna, a heavy-ion collider project (NICA) is
discussed with the goal to search for the coexistence phase of nuclear matter
[5]. Due to luminosity limitations these experiments are constrained to the
investigation of bulk observables which are - except for elliptic �ow - predom-
inantly sensitive to the late and dilute phase of the collision when most of



1.1 Exploring dense baryonic matter in the laboratory 867

the particles freeze out. In contrast, the research program of the Compressed
Baryonic Matter (CBM) experiment at FAIR is focused on the measurement
of diagnostic probes of the early and dense phase of the �reball evolution.
This approach o�ers the possibility to �nd signatures of partonic degrees-
of-freedom, and to discover the conjectured �rst order decon�nement phase
transition and its critical endpoint. Another important goal is the study of
in-medium modi�cations of hadron properties in order to shed light on the
phenomenon of chiral symmetry restoration in dense hadronic and partonic
matter.

Figure 1.2 depicts three snapshots of the evolution of a heavy-ion collision
at FAIR energies, and illustrates the time of emission of various particle
species. Particles containing charm quarks are expected to be created in the
very �rst stage of the reaction. Vector mesons like ω, ρ and φ mesons are
produced continuously via ππ annihilation during the course of the reaction,
and decay either again into mesons, or into a pair of leptons. The latter
decay channel is suppressed by about 4 orders of magnitude (corresponding
to the square of the electromagnetic coupling constant (1/137)2). However,
as leptons are not a�ected by �nal-state interactions, this decay o�ers the
possibility to look into the �reball. In particular the short-lived ρ meson
is a promising diagnostic probe of hot and dense nuclear matter. Due to
their small hadronic cross sections, also multi-strange hyperons and φ mesons
carry information on the dense phase of the collision, in particular via their
collective �ow. Finally, the bulk of the particles freezes out at densities below
saturation density. Up to date, essentially these freeze-out probes have been
measured in heavy-ion collisions at beam energies between 2 and 40 AGeV
(on stationary target). The CBM experiment is designed for the detection
of signals from the high-density phase. These signals, however, are produced
very rarely, either because of the low cross section (charm) or because of the
small branching ratios into lepton pairs (low-mass vector mesons). Therefore,
the CBM experimental program can only be realized with a combination of
fast detector systems and high beam luminosity as provided by the FAIR
accelerators [6].

The CBM research program comprises a comprehensive scan of observ-
ables, beam energies and collision systems. The observables include low mass
dilepton pairs, charmonia and open charm, but also collective �ow of rare
and bulk particles, correlations and �uctuations. The experimental goal is to
measure these rare probes with unprecedented precision in spite of the very
low multiplicities. Figure 1.3 quanti�es the notation "rare probes" in terms
of the product of particle multiplicity times branching ratio. The points are
calculated for central Au+Au collisions at 25 A GeV using either the HSD
transport code [7], or a thermal model assuming values for temperature and
baryon chemical potential corresponding to a beam energy of 25 A GeV [8].
Mesons containing charm quarks are suppressed by about 9 orders of magni-
tude with respect to the pions (the ψ′ meson is even more suppressed). The
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Fig. 1.2 Sketch of the expansion phase of a U+U collision at a laboratory beam energy
of 23 AGeV at di�erent time steps: initial stage where the two Lorentz-contracted nuclei
overlap (left), high density phase (middle), and �nal stage ("freeze-out") when all hadrons
have been formed (right). Di�erent particles are created in di�erent stages of the collisions
or escape from the interaction region at di�erent times (see text). Almost 1000 charged
particles are created in such a collision, most of them are pions.

yield of lepton pairs from vector meson decays is about 6 orders of magnitude
below the pion yield, similar to the yield of multi-strange hyperons.

Fig. 1.3 Particle multiplicities times branching ratio for central Au+Au collisions at 25
A GeV as calculated with the HSD transport code [7] and the statistical model [8]. For the
vector mesons (ρ, ω, φ, J/ψ, ψ′) the decay into lepton pairs was assumed, for D mesons
the hadronic decay into kaons and pions.
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In order to compensate for the low yields the measurements will be per-
formed at exceptionally high reaction rates (up to 10 MHz for certain observ-
ables). These conditions require the development of ultra fast and extreme
radiation hard detectors and electronics. A particular challenge for the detec-
tors, the front-end electronics and the data acquisition is the online selection
of displaced vertices with extraordinary high speed and precision which is
needed for open charm measurements.

The CBM detector is designed as a multi-purpose device which will be
able to measure hadrons, electrons and muons in heavy-ion collisions. The
optimization of the detector design is carried out through extensive feasibility
studies which are performed within a newly developed software framework.
The results of the simulations demonstrate that the anticipated observables
including the rare probes can be measured with the proposed setup. Hard-
ware development concentrates on highly granular, fast and radiation-hard
detectors, on data-driven and fast read-out electronics, and on a high-speed
data acquisition. In conclusion, the CBM experimental setup is optimized to
reinvestigate with new probes a very promising territory of the QCD phase
diagram, and thus has a unique discovery potential.

The experimental studies of dense baryonic matter at FAIR will be syn-
chronized with the availability of the accelerators. In the �rst stage of the
realization of FAIR the beams will be delivered by the SIS100 accelerator with
energies up to 11 AGeV for Au, 14 AGeV for Ca, and 29 GeV for protons.
In order to measure electron-positron pairs in heavy-ion collisions at energies
up to 8 AGeV the HADES detector will be installed. For the measurement
of multi-strange hyperons in heavy-ion collisions, and of charmed particles in
proton induced reactions at SIS100, a reduced version of the CBM detector
will be su�cient. Once the beams from SIS300 will be available (35 AGeV
for Au and 89 GeV for protons) the full CBM detector system will be ready.

1.2 The Facility of Antiproton and Ion Research

A sketch of FAIR together with the existing GSI facilities is presented in �g-
ure 1.4. FAIR comprises two synchrotrons with rigidities of 100 Tm and 300
Tm (SIS100/300), the Superconducting Fragment Separator (Super-FRS),
the storage ring for antiprotons (High-energy Storage Ring HESR), the Col-
lector Ring (CR), and the New Experimental Storage Ring (NESR). The
experimental facilities include the CBM experiment, the PANDA detector
for hadron physics experiments using cooled high-energy antiproton beams,
the NUSTAR detectors used for experiments on the structure of unstable nu-
clei and on nuclear astrophysics, and experimental setups for Plasma Physics
(PP) and Atomic Physics (AP). First beams delivered from SIS100 are sched-
uled for the years 2014/15, from SIS300 about 2 years later.



870 1 Introduction

Fig. 1.4 Layout of FAIR [6].

Beams to HADES and CBM will be delivered by the SIS100 and SIS300
synchrotrons. The available kinetic beam energy per nucleon depends essen-
tially on the bending power B · r provided by the dipole magnets:

E/A =
√

(0.3 ·B · r · Z/A)2 +m2 −m (1.1)

With Z and A being the charge and atomic number of the ion, and m the
mass of the nucleon. The beam energies obtained for the maximum beam
rigidity of SIS300 (B · r = 300 Tm) are listed in table 1 for di�erent ion
species. The minimal available ion beam energy is about 2 AGeV.
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beam Z A E/A GeV E/A GeV
SIS100 SIS300

p 1 1 29 89
d 1 2 14 44
Ca 20 40 14 44
Ni 28 58 13.6 42
In 49 115 11.9 37
Au 79 197 11 35
U 92 238 10.7 34

Table 1.1 Ion species and their kinetic energy per nucleon for a beam rigidity of 100 Tm
at the SIS100 and 300 Tm at the SIS300.

1.3 Nuclear matter research at FAIR

1.3.1 Experiments at SIS100

Heavy-ion beams in the energy range between 2 and about 14 AGeV are
ideally suited to explore the properties of dense baryonic matter. According
to transport calculations, energy densities up to 2.5 GeV fm−3 and baryon
densities of 2 - 7 times saturation density ρ0 are expected to be reached in
the center of the reaction zone. Such conditions prevail in core collapse super-
novae and in the core of neutron stars. Measurements at SIS100 energies will
focus on the investigation of the properties of resonance matter in the vicinity
of the phase boundary, and, therefore, will provide important information on
this transition region of the QCD phase diagram. The following fundamen-
tal questions can be addressed experimentally with heavy-ion collisions at
SIS100:

• What is the electromagnetic structure of dense baryonic matter?
• What are the properties of hadrons in dense baryonic matter?
• Is chiral symmetry restored at very high baryon densities?
• What is the equation-of-state of nuclear matter at neutron star core den-

sities?
• What are the relevant degrees-of-freedom in the vicinity of the decon�ne-

ment phase transition?
• Does strange matter exist in the form of heavy multi-strange objects?
• How is charm produced at threshold beam energies?
• How does charm propagate in nuclear matter?

The heavy-ion experiments at SIS100 will concentrate on the measurement
of the following observables:
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As discussed in Part IV the production of multi-strange hyperons at
threshold beam energies proceeds via strangeness exchange reactions in multi-
step processes. The "cooking" of Ξ and Ω hyperons is favored at high densi-
ties where the mean free path between consecutive collisions is short. There-
fore, the yield of multi-strange hyperons depends very much on the density,
and, hence, on the compressibility of baryonic matter at these particular den-
sities. In conclusion, a detailed measurement of the excitation function of the
multiplicities and the collective �ow of multi-strange hyperons in heavy-ion
collisions at beam energies between 2 and 11 AGeV will provide new in-
formation on the equation-of-state of nuclear matter at high densities. No
multi-strange particles have been measured in heavy-ion collisions up to 10
AGeV (except for a Ξ data point at 6 AGeV).

According to model calculations, the yield of meta-stable exotic multi-
hypernuclear clusters (consisting of nucleons and hyperons) increases with
increasing baryon density, and has a maximum in heavy-ion collisions at
FAIR energies (see part IV). Therefore, the search for composite objects
with multiple units of strangeness is very promising at SIS100. These objects
can be identi�ed via their weak decay into a pair of lambda hyperons, for
example.

The yields and momenta of hadrons will be analyzed event-wise in order
to search for nonstatistical �uctuations which are predicted to occur when
penetrating the coexistence phase of the anticipated �rst order decon�nement
phase transition. In order to subtract the (dominant) contributions from reso-
nance decays one has to measure the yields of the relevant short-lived particles
such as the φ and the K* mesons. Measurements of hadrons including multi-
strange hyperons will be performed with a start version of CBM comprising
the dipole magnet, the silicon tracking system, and a time-of-�ight wall.

Measurements of dilepton pairs permit to investigate the in-medium spec-
tral functions of low-mass vector mesons which are expected to be modi-
�ed due to e�ects of chiral symmetry restoration in dense matter. So far no
dilepton measurements have been performed in this energy range. Electron-
positron pairs will be measured with the HADES setup.

In addition to the experiments with heavy ion beams pioneering measure-
ments on charm production in nuclear collisions will become possible with
proton beams of energies up to 29 GeV. These experiments address impor-
tant questions such as the production mechanism of charm-anticharm pairs at
threshold energies, and the properties of charmed particles in nuclear matter
at saturation density. In addition, the propagation of charm in cold nuclear
matter can be investigated by varying the size of the target nucleus. These
measurements are complementary to the PANDA research program on charm
in nuclear matter. Moreover, the charm data obtained in proton induced re-
actions serve as a reference for nucleus-nucleus collisions. Up to date, no data
on charmonium production have been measured in nuclear collisions below
top SPS proton energies. Open charm has not been measured at all in heavy-
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ion collisions, except for an excess of high energy electrons observed at RHIC
which is attributed to the semi-leptonic decays of D mesons.

The identi�cation of particles with open charm requires the CBM start
version equipped with an additional small micro-vertex detector for recon-
struction of displaced vertices of D mesons. For the identi�cation of char-
monium in proton-nucleus collisions a reduced version of the planned CBM
muon detection system has to be installed.

1.3.1.1 HADES at SIS100

HADES will be placed in front of the CBM detector as sketched in �gure 1.5.
The beam enters from the lower left corner of the picture. The beam can be
focused either at the target position of HADES (left setup), or at the CBM
target (right setup). In order to study the physics performance of HADES for
SIS100 beam energies, simulations of dilepton and hadron production have
been performed for Au+Au collisions at 8 AGeV (for details see [9]). It turns
out that the phase space acceptance for hadrons and for dielectrons from ω
meson decays is shifted towards target rapidity but still covers midrapidity.
The overall acceptance for dielectron pairs at 8 AGeV beam energy is 21 %
compared to 33 % at 2 AGeV. In order to handle the high multiplicities
in Au+Au collisions HADES is being upgraded with a highly segmented
TOF detector based on Resistive Plate Chamber (RPC) technology. The data
acquisition has been already upgraded to a bandwidth of 20 kHz. Moreover,
the HADES Pre-Shower detector will be replaced by a lead-glass calorimeter
which also will enable the measurement of η-mesons via photon decays.

The performance of HADES for electron-positron measurements at SIS100
beams energies is illustrated in �g. 1.6 which depicts the di-electron invariant
mass spectrum for Au+Au collisions at 8 AGeV as simulated in a Monte-Carlo
study. For this simulation all meson sources were generated simultaneously
with proper weights using the PLUTO code (version 4.08) [10]. The multi-
plicities were taken from data (if available): π0 and η yields were calculated
according to the TAPS measurement for C+C and Ca+Ca collisions at 1-2
AGeV beam energy [11]. Probabilities for ω and φ production were obtained
from an mt-scaling ansatz. For a beam energy of 8 AGeV the production
probabilities of π0 per participant were derived from the experimental data
published in [12]. As experimental data for the other mesons are missing at
this energy, the ratios for η, ω and φ mesons were obtained from a thermal
model [13].
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Fig. 1.5 Sketch of the planned Compressed Baryonic Matter (CBM) experiment together
with the HADES detector.

Fig. 1.6 (Color online) Simulated invariant-mass distribution of dilepton pairs in the
HADES experiment per minimum bias Au+Au collision at 8 AGeV beam energy. The
simulated cocktail (black line) and combinatorial background (red line), as well as various
cocktail components are shown.
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The HADES geometry is included in these simulations by �ltering the
generated events with acceptance matrices that take into account the mo-
menta, azimuthal and polar angles of the leptons. Lepton momenta were
smeared in order to take into account the detector resolution. Close lepton
pairs are rejected by an opening angle cut of 9◦. No misidenti�ed particles or
reconstruction e�ciencies, nor electrons from γ conversion in the target are
taken into account. The spectrum represents 3.2 · 107 minimum bias Au+Au
collisions at 8 AGeV beam energy (b=0-8 fm, 228 participants on average).

1.3.1.2 CBM at SIS100

The yields, spectra and collective �ow of (multi-) strange hyperons are sen-
sitive diagnostic probes of the early and dense �reball, and, therefore, are
prime observables in heavy-ion collisions at SIS100. Λ, Ξ, and Ω hyperons
can be identi�ed via the topology of their weak decays (Λ → pπ, Ξ → Λπ,
Ω → ΛK) as illustrated in �gure 1.7. Such a measurement requires a tracking
detector inside a magnetic �eld.

 
 

 
Fig. 1.7 Decay topologies of hyperons. Detector planes are indicated as lines, the magnetic
�eld is perpendicular to the plane.

Figure 1.8 depicts the invariant mass spectra for Λ, Ξ, and Ω hyperons
simulated for central Au+Au collisions at 6 AGeV after applying cuts on
the decay topology without particle identi�cation. The simulation is based
on full track reconstruction of UrQMD events transported through the CBM
Silicon detector stations using the GEANT code. It is worthwhile to note that
no particle identi�cation has been performed. The combinatorial background
can be further reduced by identifying the decay protons by a time-of-�ight
measurement.
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Fig. 1.8 Reconstruction of Λ, Ξ, and Ω hyperons (from left to right) in central Au+Au
collisions at 6 AGeV after applying topological cuts only. Further background reduction
can be achieved by proton identi�cation with a time-of-�ight wall.

The total e�ciencies for multi-strange hyperons including geometrical ac-
ceptance, track reconstruction e�ciency, and after applying cuts for back-
ground reduction are ε(Λ) = 7.4% , ε(Ξ) = 2.6%, and ε(Ω) = 2.0% for
central Au+Au collisions at 6 AGeV. The proposed measurements require a
slowly extracted heavy-ion beam from SIS100 with an intensity of about 107

ions/s and a 1% interaction target, corresponding to a rate of 104/s for the
10% most central events. The resulting yields per week are listed in table 1.2
for central A+Au collisions at energies between 4 and 10 AGeV, taking into
account multiplicities as calculated with a statistical model, and using the
total detection e�ciencies mentioned above.

beam energy Ξ− Ω− anti-Λ Ξ+ Ω+

4.0 AGeV 1.7× 107 2.3× 105 9.8× 104 8.9× 104 1.2× 103

6.0 AGeV 4.3× 107 6.8× 105 2.5× 105 2.3× 105 3.6× 103

8.0 AGeV 6.9× 107 1.9× 106 3.6× 106 3.7× 106 8.0× 104

10.7 AGeV 9.2× 107 3.0× 106 6.8× 106 7.1× 106 1.6× 105

Table 1.2 Hyperon yields per week at a reaction rate of 104/s central Au+Au collisions.
The multiplicities per event have been calculated with a statistical model.

The identi�cation of D mesons produced in 30 GeV proton-carbon colli-
sions has been simulated for the CBM start version. In this case, the average
multiplicities are very low, about 2-3 tacks per event. The setup comprised 8
layers of silicon micro-strip detectors, and a micro-vertex detector consisting
of two layers of Monolithic Active Pixel Sensors (details see next chapter).
The background was generated by the UrQMD code, the D meson multi-
plicities were calculated with the HSD event generator, the particles were
transported through the detector system inside the magnetic dipole �eld us-
ing GEANT3, and the tracks were reconstructed with a Cellular Automaton
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algorithm and a Kalman �lter. D-mesons are identi�ed via their hadronic de-
cays into pions and kaons. In order to reduce the background of mesons which
are directly produced in the collision, promptly emitted particles have to be
suppressed. However, due to the low particle multiplicity, the primary vertex
cannot be determined with good precision. Therefore, only vertices are se-
lected which are located at a distance between 400 and 1000 µm downstream
of the center of the target which has a thickness of 400 µm. The resulting
invariant mass spectra of K−π+π+ and K+π−π− are shown in �gure 1.9. A
yield of 183 D+ mesons and 327 D− mesons can be obtained in 1012 collisions,
corresponding to a measuring time of about 2 days.
   
 
 
 
 

 

Fig. 1.9 Invariant mass spectrum of K−π+π+ and K+π−π− simulated for 30 GeV
p+C collisions. The spectrum can be obtained in a beam time of about 2 days.

1.3.2 Experiments at SIS300

The heavy-ion beams from SIS300 are required for the CBM core research
program which is the search for the most prominent landmarks of the QCD
phase diagram at high net baryon densities: the �rst order decon�nement
phase transition and the critical endpoint. Moreover, the research program
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at SIS300 includes the study of the equation-of-state of high-density baryonic
matter, and the search for modi�cations of hadronic properties in the dense
baryonic medium as signatures for chiral symmetry restoration.

As pointed out in the previous chapters, the most promising observables
from nucleus-nucleus collisions in the SIS300 energy range are:

• particles containing charm quarks (D-mesons and charmonium): heavy
quarks are created in the early phase of the collision and, hence, probe the
highly compressed baryonic matter.

• low-mass vector mesons decaying into dilepton pairs (ρ, ω and φ mesons):
electron and muon pairs are penetrating probes which carry undisturbed
information on hadron properties in the dense and hot �reball.

• the collective �ow of identi�ed hadrons: the �ow is driven by the pressure
created in the early phase of the collision and carries information on the
equation-of-state of dense matter.

• kaons, hyperons (Λ,Ξ,Ω and their antiparticles) and hadronic resonances
(as φ, K∗, Λ∗): the yield of particles carrying strange quarks is expected
to be sensitive to the �reball evolution.

• dynamical �uctuations of particle multiplicities and momenta: event-wise
�uctuations are expected to occur if the system passes a �rst order phase
transition or the critical endpoint.

• photons: as photons are penetrating probes and can provide information
on direct radiation from the early �reball

• two-particle correlations: two-particle correlations carry information on
the source size and time evolution of the �reball and particle production

Phase transitions occur above a critical energy density and can only be
observed if the matter extends over a certain volume. Therefore, a key fea-
ture of the CBM experimental program is a systematic and comprehensive
measurement of excitation functions and system size dependencies of all ob-
servables.

Particular emphasis will be put on rare diagnostic probes which are not
accessible by other experiments in this energy range. The identi�cation of
rare probes requires high beam intensities, a large duty cycle, excellent beam
quality, and running times of several months per year. Observables like event-
by-event �uctuations require full azimuthal coverage of the produced particles
in a wide acceptance of rapidity and transverse momentum and excellent
centrality determination.

In the following we review the CBM detector concept and the results of
the feasibility studies for the various observables.



Chapter 2

The CBM detector concept

The goal of the experiment is to measure multiplicities, phase-space distribu-
tions and �ow of protons, pions, kaons, hyperons, hadronic resonances, light
vector mesons, charmonium and open charm including their correlations and
event-by-event �uctuations in heavy-ion collisions. The technical challenge of
the CBM experiment is to identify both, hadrons and leptons, and to �lter
out rare probes at reaction rates of up to 10 MHz with charged particle multi-
plicities of up to 1000 per event. Measurements at these high rates cannot be
performed with slow detectors like Time-Projection Chambers (TPC), but
rather require extremely fast and radiation hard detector (and electronic)
components. Moreover, the experiment has to provide lepton identi�cation,
high-resolution secondary vertex determination and a high speed trigger and
data acquisition system. The CBM detector system will have the capability to
measure both electrons and muons. This approach combines the advantages
of both methods, and guarantees reliable results as in the end both data sets
should agree to each other in spite of the very di�erent background sources.
Details of the CBM research program and of the setup can be found in the
FAIR Baseline Technical Report [6]. The layout of the CBM experimental
setup is sketched in �gures 2.1 and 2.2.

The heart of the experiment will be a silicon tracking and vertex detection
system installed in a large acceptance dipole magnet. The Silicon Tracking
System (STS) consists of low-mass silicon micro-strip detectors possibly com-
plemented by one or two hybrid-pixel detector layers providing unambiguous
space point measurements. The STS allows for track reconstruction in a wide
momentum range from about 100 MeV up to more than 10 GeV with a mo-
mentum resolution of about 1 %.

The Micro-Vertex Detector MVD) is needed to determine secondary ver-
tices with high precision for D-meson identi�cation. The MVD consists of
two layers of ultra-thin and highly-granulated Monolithic Active silicon Pixel
Sensors (MAPS) which are located close to the target.

The measurement of electrons will be performed with a Ring Imaging
Cherenkov (RICH) detector (for momenta below 8-10 GeV/c) together with
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Transition Radiation Detectors (TRD) for electrons with momenta above 1.5
GeV/c.

Muons will be measured with an active hadron absorber system consisting
of iron layers and muon tracking chambers (MuCh). For muon measurements
the MuCh will be moved to the position of the RICH.

Charged hadron identi�cation will be performed by a time-of-�ight (TOF)
measurement with a wall of RPCs located at a distance of 10 m behind the
target.

The setup is complemented by an Electromagnetic Calorimeter (ECAL)
in selected regions of phase space providing information on photons and neu-
tral particles, and by a Projectile Spectator Detector (PSD) needed for the
determination of the collision centrality and the orientation of the reaction
plane.

A key feature of the CBM experiment is online event selection which re-
quires free streaming read-out electronics and fast algorithms running on
computer farms based on future many-core architectures.

The CBM detector components required for the measurement of the dif-
ferent observables are listed in table 2.1.

Fig. 2.1 (Color online) The Compressed Baryonic Matter (CBM) experiment. The CBM
setup consists of a large acceptance dipole magnet, radiation-hard Silicon pixel/strip detec-
tors for tracking and vertex determination (STS, MVD), a Ring Imaging Cherenkov detec-
tor (RICH) and Transition Radiation Detectors (TRD) for electron identi�cation, Resistive
Plate Chambers (RPC) for time of �ight measurement, an Electromagnetic Calorimeter
(ECAL) for photon identi�cation, and a Projectile Spectator Detector (PSD) for centrality
and reaction plane determination.



2 The CBM detector concept 881

Fig. 2.2 (Color online) The Compressed Baryonic Matter (CBM) experiment with a muon
detection system (MuCh) with alternating absorber and detector layers instead of the
RICH as shown in �gure 2.1.

Observables MVD STS RICH MuCh TRD RPC ECAL PSD
π, K, p x (x) (x) x x
Hyperons x (x) (x) x

Open charm x x (x) (x) (x) x
Electrons x x x x x x
Muons x x (x) x
Photons x x

Photons via e± conversion x x x x x x

Table 2.1 Observables and required detectors: Micro-Vertex Detector MVD, Silicon
Tracking Station STS, Ring Imaging Cherenkov detector RICH, Muon Chambers MUCH,
Transition Radiation Detector TRD, timing Resistive Plate Chambers RPC, Electromag-
netic Calorimeter ECAL, Projectile Spectator Detector (PSD). Detectors marked as (x)
can be used to suppress background.
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2.1 The Silicon Tracking System (STS)

The task of the STS is to provide track reconstruction and momentum de-
termination of charged particles. The multiplicity of charged particles is up
to 600 per event within the detector acceptance. In its currently studied ver-
sions the STS consists of up to 8 tracking layers of silicon detectors. They are
located downstream of the target at distances between 30 cm and 100 cm in
a magnetic dipole �eld of about 1 Tm bending power. The required momen-
tum resolution is of the order of ∆p/p = 1 %. This performance can only be
achieved with an ultra low material budget of the stations, imposing partic-
ular restrictions on the location of power-dissipating front-end electronics in
the �ducial volume. The concept of the STS tracking is based on silicon micro-
strip detectors on lightweight ladder-like mechanical supports. The sensors
will be read out through multi-line micro-cables with fast electronics at the
periphery of the stations where cooling lines and other infrastructure can be
placed. The development of the components of the tracking stations are sub-
ject to focussed R&D activities. The micro-strip sensors will be double-sided
with a stereo angle of 15 ◦, a strip pitch of 60 µm, strip lengths between 20
and 60 mm, and a thickness of 250-300 µm of silicon. The micro-cables will
be built from sandwiched polyimide-Aluminum layers of several 10 µm thick-
ness. The total material budget including support structures and cables may
amount to about 400-800 µm silicon equivalent, but is not homogeneous. The
typical hit resolution achieved will be of the order of 25 µm. As the projec-
tive geometry of the micro-strip detectors results in a combinatorial hit point
pattern, the �rst two stations might be built from LHC-type hybrid pixel de-
tectors, providing unambiguous hit points in pixels of 70 µm by 100 µm size
where the track densities are highest. The material of a pixel detector station,
including support structures, may be of about 800 µm silicon equivalent.

2.2 The Micro-Vertex Detector (MVD)

The identi�cation of D-mesons via their weak hadronic decay into pions and
kaons requires a dedicated Micro-Vertex Detector in addition to the STS.
The D-meson lifetimes are τ = 123µm/c for D0 and τ = 314µm/c for D±. In
order to suppress the background of promptly emitted pions and kaons one
has to determine the secondary decay vertices of D-mesons with extremely
high precision. This task requires detectors with excellent position resolution
and a very low material budget in order to reduce multiple scattering. These
requirements are met by Monolithic Active Pixel Sensors (MAPS). The pixel
size will be between 25x25 µm2 and 40x40 µm2. For the latter size a position
resolution of σ = 3µm can be achieved. The goal of the detector development
is to construct MAPS detector stations with a total thickness of about 200
µm silicon equivalent for sensors and support structures, however, 500 µm
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silicon equivalent might be more realistic in particular for the larger stations.
The MVD consists of 2 MAPS layers located 10 and 20 cm downstream
the target. A 3rd MAPS station might be located at only 5 cm behind the
target. Due to its smallness this station could be particularly thin, i.e. less
than 200 µm, because less material is required for cables and cooling. This
detector arrangement permits to determine the secondary decay vertex of a
D-meson with a resolution of about (50-100) µm along the beam axis, the
actual resolution depending on the thickness of the �rst MAPS station and
its distance to the target.

The MAPS detector R&D is focused on the improvement of radiation
tolerance and readout speed. The goal is to develop detectors which survive
a radiation dose of 1013 neq which corresponds to 1012 minimum bias Au+Au
collisions at 25 AGeV. The design value for the readout speed is 10 µs. As
the beam from SIS 300 will not come in bunches but continuously, we expect
few events piling up randomly in one readout frame of the MAPS detector
if running with 100 kHz interaction rate. Simulations demonstrate that a
pile-up of up to 10 events in the MAPS detectors can be tolerated without
deterioration of the performance. At this reaction rate the detector can run
about 4 months before the inner part of the �rst MAPS has to be replaced.

The MVD will be installed for dedicated measurements of open charm
where the secondary vertex has to be determined with high resolution, and
for electron measurements where close pairs have to be rejected in order to
reduce the combinatorial background (see section 3). The MVD information
improves hyperon identi�cation and the detector might be used also for this
purpose.

2.3 The Ring Imaging CHerenkov detector (RICH)

The RICH detector is designed to provide identi�cation of electrons and sup-
pression of pions in the momentum range below 10 GeV/c. The version of
the RICH detector used in the feasibility studies presented in this chapter
comprises the following components: a 2.9 m long gas vessel �lled with ni-
trogen as a radiator material (pion threshold for Cherenkov radiation is 5.6
GeV/c), a glass mirror (radius of curvature 4.5 m, thickness 3 mm), and two
photodetector planes (each (1.7 × 0.7)m2) consisting of Hamamatsu multi-
anode photo multipliers. In the simulations discussed below values for photon
absorption in the radiator gas, the re�ectivity of the mirror and the quan-
tum e�ciency of the photodetector have been taken from literature. Entrance
and exit windows of the gas vessel are taken into account. The number of
measured photons per ring is about 20. Due to pair conversion of gamma
rays in the material in front of the RICH about 100 rings are detected per
central Au+Au collision at 25 AGeV. With the current setup a pion suppres-
sion on the order of 500-1000 is achieved for p . 10 GeV/c. Including TRD
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and RPC information this factor can be increased considerably up to 104.
Further simulations are being performed to optimize the size and geometry
of the RICH with respect to performance and costs. The same performance
can e.g. be kept when reducing the overall size by a factor 2-3 by choosing
CO2 as radiator gas and a mirror of radius 3 m.

2.4 The Transition Radiation Detector (TRD)

Three Transition Radiation Detector stations each consisting of 3-4 detector
layers will serve for particle tracking and for the identi�cation of electrons
and positrons with p > 1.5 GeV/c (γ > 1000). The detector stations are lo-
cated at appr. 5 m, 7.2 m and 9.5 m downstream the target, the total active
detector area amounts to about 600 m2. The detector development concen-
trates on the improvement of the electron identi�cation performance, and on
the development of highly granular and fast gaseous detectors in particular
for the inner part of the detector planes covering forward emission angles. For
example, at small forward angles and at a distance of 5 m from the target,
we expect particle rates on the order of 100 kHz/cm2 for 10 MHz minimum
bias Au+Au collisions at 25 AGeV. In a central collision, particle densities
of about 0.05/cm2 are reached. In order to keep the occupancy below 5%
the minimum size of a single cell should be about 1 cm2. The TRD detector
readout will be realized in rectangular pads giving a resolution of 300-500
µm across and 3-30 mm along the pad. Every second TR layer is rotated by
90◦. Prototype gas detectors based on MWPC and GEM technology have
been built and tested with particle rates of up to 400 kHz/cm2 without de-
terioration of their performance. The pion suppression factor obtained with
12 TRD layers is estimated to be well above 100 at an electron e�ciency of
90%.

2.5 The Muon Chamber system (MuCh)

The experimental challenge for muon measurements in heavy-ion collisions at
FAIR energies is to identify low-momentum muons in an environment of high
particle densities. The CBM concept is to track the particles through a hadron
absorber system, and to perform a momentum-dependent muon identi�ca-
tion. This concept is realized by segmenting the hadron absorber in several
layers, and placing triplets of tracking detector planes in the gaps between
the absorber layers. The absorber/detector system is placed downstream of
the Silicon Tracking System (STS) which determines the particle momentum.
In order to reduce meson decays into muons the absorber/detector system
has to be as compact as possible.
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The actual design of the muon detector system consists of 6 hadron ab-
sorber layers (iron plates of thickness 20 cm, 20 cm, 20 cm, 30 cm, 35 cm,
100 cm) and 15-18 gaseous tracking chambers located in triplets behind each
iron slab. The de�nition of a muon depends on its momentum which varies
with the mass of the vector mesons and with beam energy. For example, for
beam energies above 15 AGeV muons from the decay of J/ψ mesons have to
pass all 6 absorber layers with a total iron thickness of 225 cm corresponding
to 13.4 interaction length λI . The muons from the decay of low-mass vector
mesons (ρ, ω, φ) only have to penetrate through 5 iron absorber layers with
a total thickness of 125 cm (corresponding to 7.5 λI).

The challenge for the muon chambers and for the track reconstruction
algorithms is the huge particle density of up to 1 hit/cm2 per event in the
�rst detector layers after 20 cm of iron. Therefore, the detector development
concentrates on the design of fast and highly granulated gaseous detectors
based on GEM technology. In total, the muon chambers cover an active area of
about 70 m2 subdivided into about half a million channels. Ongoing studies
concentrate on the optimization of the muon absorber system in terms of
absorber thicknesses, number of absorbers and tracking stations, and required
hit resolution, i.e. pad size of the detector.

The low particle multiplicities behind the muon absorber enables the im-
plementation of a trigger on muon pairs. The trigger concept is based on the
measurement of short track segments in the last tracking station triplet, and
extrapolation of these tracks to the target. After selection of tracks with good
vertices the event rate can be reduced already by a factor of about 600 for
J/ψ measurements in minimum bias u+Au collisions.

2.6 The timing Resistive Plate Chambers (RPC)

An array of Resistive Plate Chambers will be used for hadron identi�cation
via TOF measurements. The TOF wall is located 10 m downstream of the
target and covers an active area of about 120 m2. The required time resolution
is on the order of 80 ps. For 10 MHz minimum bias Au+Au collisions the in-
nermost part of the detector has to work at rates up to 20 kHz/cm2. At small
de�ection angles the pad size is about 5 cm2 corresponding to an occupancy
of below 5% for central Au+Au collisions at 25 AGeV. With the proposed
pad readout a position resolution of 0.6 cm across the pads is expected. Along
the pads the resolution depends on the padlength which increases from the
center to the outer regions of the TOF wall. The development of timing RPCs
is focused on high rate capability, low resistivity material, long term stability
and the realization of large arrays with overall excellent timing performance.
Prototype timing RPCs with ceramic electrodes have been built and tested.
A time resolution of better than 90 ps was obtained with rates up to 70
kHz/cm2.
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2.7 The Electromagnetic CALorimeter (ECAL)

A "shashlik" type calorimeter as installed in the HERA-B, PHENIX and
LHCb experiments will be used to measure direct photons and neutral mesons
(π0, η) decaying into photons. The ECAL will be composed of modules which
consist of 140 layers of 1mm lead and 1mm scintillator, with cell sizes of 3×3
cm2, 6 × 6 cm2, and 12 × 12 cm2. The shashlik modules can be arranged
either as a wall or in a tower geometry with variable distance from the target.
Ongoing studies concentrate on an optimization of the layout, in particular
in terms of required azimuthal coverage.

2.8 The Projectile Spectator Detector (PSD)

The PSD will be used to determine the collision centrality and the orienta-
tion of the reaction plane. A very precise characterization of the event class
is of crucial importance for the analysis of event-by-event observables. The
study of collective �ow requires a well de�ned reaction plane which has to be
determined by a method not involving particles participating in the collision.
The detector is designed to measure the number of non-interacting nucleons
from a projectile nucleus in nucleus-nucleus collisions. The PSD is a full com-
pensating modular lead-scintillator calorimeter which provides very good and
uniform energy resolution [14]. The calorimeter comprises 12 × 9 individual
modules, each consisting of 60 lead/scintillator layers with a surface of 10×10
cm2. The scintillation light is read out via wavelength shifting (WLS) �bers
by Multi-Avalanche Photo-Diodes (MAPD with an active area of 3× 3 mm2

and a pixel density of 104/mm2).

2.9 Online event selection and data acquisition

High statistics measurements of rare probes require high reaction rates. The
CBM detectors, the online event selection systems, and the data acquisition
will be designed for event rates of 10 MHz, corresponding to a beam intensity
of 109 ions/s and a 1% interaction target, for example. Assuming an archiving
rate of 1 GByte/s and an event volume of about 40 kByte for minimum bias
Au+Au collisions, an event rate of 25 kHz can be accepted by the data
acquisition. Therefore, measurements with event rates of 10 MHz require
online event selection algorithms (and hardware) which reject the background
events (which contain no signal) by a factor of 400 or more.

The event selection system will be based on a fast on-line event recon-
struction running on a PC farm equipped with many-core CPUs and graphics
cards. Di�erent many-core architectures developed by Intel, IBM, NVIDIA
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and AMD are under investigation. Track reconstruction, which is the most
time consuming combinatorial stage of the event reconstruction, will be based
on parallel track �nding and �tting algorithms, implementing the Cellular
Automaton and Kalman Filter methods. Novel languages, such as CUDA,
Ct and OpenCL, can be used for parallel programming on the heterogeneous
CPU/GPU on-line event selection system.

For open charm production the trigger will be based on an online search for
secondary vertices which requires high speed tracking and event reconstruc-
tion in the STS and MVD. The highest suppression factor has to be achieved
for J/ψ mesons where a high-energetic pair of electrons or muons is required
in the TRD or in the MuCh. For low-mass electron pairs no online selection
is possible due to the large number of rings/event in the RICH caused by
the material budget of the STS. In the case of low-mass muon pairs some
background rejection on the trigger level seems to be feasible.





Chapter 3

Feasibility studies

The CBMRoot simulation framework [15] has been developed for feasibility
studies and optimization of the detector layout. As event generator we use
the UrQMD (version 1.3) [16] code. This code does not include rare probes
as e.g. the vector mesons and charmed hadrons, therefore we implement their
multiplicities using the HSD [17] model. For feasibility studies the rare probes
are then added on top of the UrQMD events with kinematic distributions also
guided by HSD. Vector mesons decaying into dileptons are embedded using
the PLUTO generator [10] which in particular provides correct decay kine-
matics of the hadronic and electromagnetic decays. Particles are propagated
through a CBM detector model as has been introduced in the previous section
using the transport code GEANT 3 [18]. Simulated events are reconstructed
using di�erent track and ring reconstruction routines as well as secondary
vertex �nding algorithms. For particle identi�cation RICH, TRD and TOF
information is combined for the single tracks. Realistic detector response is
taken into account as far as possible. Detector resolution and granularity are
still implemented in a generic way not yet taking into account the detailed
structures and the supporting material.

3.1 Track and vertex reconstruction

Track reconstruction for high multiplicity events in a �xed target geometry
poses severe challenges to the tracking detectors and to the reconstruction
algorithms. The central tracking detector in the CBM experiment is the STS.
In order to optimize the STS layout we perform simulations of central Au+Au
collisions which produce the highest track densities envisaged for the experi-
ment. The events are generated with the UrQMD code, transported through
the STS with GEANT3. The simulated tracks of a central Au+Au collision
at 25 AGeV are shown in �gure 3.1.
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Fig. 3.1 Particle tracks in the STS simulated for a central Au+Au collision at a beam
energy of 25 AGeV. The particles are produced with the UrQMD event generator, and
transported through the STS with the GEANT3 code which calculated the hits in the
detector layers.

The simulated tracks are reconstructed with a Cellular Automaton al-
gorithm and a Kalman �lter. The resulting track reconstruction e�ciencies
and the momentum resolution are shown in �gure 3.2 (top row). In the next
step, STS tracks are extrapolated through the TRD stations and matched to
hits of the RPC-TOF detector. A global track reconstruction e�ciency for
charged particles of 86% is reached including matching to TOF hits (�gure
3.2, lower left plot). In case the STS is followed by the muon absorber system,
STS tracks are extrapolated through the iron absorbers with its intermedi-
ate tracking stations. The lower right �gure of 3.2 shows the global tracking
e�ciency for the reconstruction of muons embedded into UrQMD events for
a total absorber length of 1.25 m and 2.25 m.
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Fig. 3.2 Track reconstruction e�ciency for primary vertex tracks (more than 75% of max-
imum number of hits) in the Silicon Tracking System (STS) for di�erent STS con�gurations
(top left panel); momentum resolution in the STS (top right panel); global track recon-
struction e�ciency for the combined STS-TRD-TOF system (bottom left panel); global
track reconstruction e�ciency for muons embedded into UrQMD events for the combined
STS-MuCh system for 1.25 m (compact geometry) and 2.25 m (standard geometry) total
absorber length (bottom right panel).

The current concept of the Micro-Vertex detector (MVD) is based on
MAPS (CMOS) technology which limits the maximum interaction rates due
to constraints in readout speed and radiation hardness. The MVD is required
for high precision secondary vertex reconstruction in open charm measure-
ments, and for the rejection of close di-electron pairs from pion Dalitz decays.
The MVD hits are attached to the track after the STS track reconstruction
has been performed. The high position resolution of the detectors in combi-
nation with their location close to the target results in a vertex resolution of
better than 60 µm along the beam axis. The quality of vertex reconstruction
is robust against a limited event pile-up (<10 events)in the MVD which is
likely to happen at interaction rates of 100 kHz for the open charm measure-
ment.
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3.2 Hadron identi�cation

The identi�cation of pions, kaons and protons over a large phase space inter-
val is a prerequisite for a deeper understanding of the collision process. The
identi�cation of the bulk hadrons is also required for the reconstruction of
hadronic resonances such as theK∗(892), φ-mesons or even Λ(1520). Fluctua-
tion and correlation measurements without particle identi�cation are di�cult
to interpret. Hadron identi�cation will also improve background suppression
in D-meson or hyperon measurements.

Fig. 3.3 (Color online) Phase-space distributions of generated (top), geometrically ac-
cepted (middle), and identi�ed pions, kaons and protons (bottom) for Au+Au collisions at
25 AGeV. The reconstructed particles are identi�ed by time-of-�ight measured with the
RPC detector located 10 m downstream of the target. The time resolution is assumed to
be 80 ps. For kaons a purity of 90% de�ned by the mass resolutions is required leading to
the upper momentum cuto� close to 4.2 GeV/c. For pions and protons a momentum cuto�
of 10 GeV/c is used. Midrapidity for 25 AGeV beam energy lies at 2, for 15 and 35 AGeV
at 1.75 and 2.16, respectively.

The CBM detector accepts charged particles emitted at polar angles be-
tween 2.5 and 25 degrees in the laboratory. The resulting phase-space cover-
age for reconstructed pions, kaons and protons produced in Au+Au collisions
at 25 AGeV is illustrated in �gure 3.3 as function of transverse momentum
and rapidity. The CBM phase space coverage allows the extrapolation to 4π
with good precision for beam energies from 15 - 35 AGeV. For a beam energy
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Fig. 3.4 Mass2 versus momentum plot for reconstructed tracks assuming 80 ps time
resolution (200k events, central Au+Au collisions at 25 AGeV). In addition mass spectra
for momentum bins at p = 1, 3, and 5 GeV/c are shown. Tails are due to mismatches and
double hits in TOF.

of 25 AGeV, for example, 38 % of the generated kaons are geometrically ac-
cepted, and 18.4 % of the emitted kaons can be reconstructed and identi�ed
with a purity of 90 %.

Hadron identi�cation is performed in several steps. First, track reconstruc-
tion and momentum determination in the Silicon Tracking System is per-
formed (no MVD required). These tracks are extrapolated to the Transition
Radiation Detector (TRD) stations where the TRD hits are included in the
track reconstruction, and �nally these reconstructed tracks are matched to
the nearest hit in the RPC-TOF detector The track reconstruction e�ciencies
are shown in �g. 3.2. For mass determination a time-of-�ight resolution of
80 ps is assumed. The mass spectra for di�erent momentum bins are shown
in �gure 3.4. The tails in the mass distributions at low particle momenta
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are caused by the energy loss of the low-momentum tracks, ghost tracks,
mismatches of tracks and TOF-hits as well as double hits in TOF. For labo-
ratory momenta up to 3 GeV/c pions, kaons and protons are well separated,
for higher momenta the di�erent yields can still be extracted from a statisti-
cal unfolding of the spectra. This technique will allow the extraction of pt−y
spectra and a �ow measurement at midrapidity up to transverse momenta of
a few GeV/c. The number of generated, accepted, and identi�ed kaons (99
% purity) is shown as a function of transverse momentum at midrapidity in
�gure 3.5.

Fig. 3.5 (Color online) Distribution of
generated, accepted, and identi�ed kaons
(99% purity) as a function of transverse
momentum.

The measurement of event-by-event particle ratio �uctuations requires
kaon identi�cation with high purity. Figure 3.6 demonstrates that pions and
kaons are separated by 2σ of the mass resolution up to laboratory momenta
of 3.2 GeV/c (left panel). The requirement of a kaon purity of 99% restricts
the e�ciency to laboratory momenta below to about 3.5 GeV (see right panel
of �gure 3.6). Depending on the required purity for kaon identi�cation using
a ±2σm cut in each momentum bin, a momentum cuto� at appr. 5 GeV/c (50
% kaon purity), 4.2 GeV/c (90 %), 3.5 GeV/c (99 %) or even 2.2 GeV/c (100
%) is introduced to the selected kaon sample. As the event-by-event �uctu-
ations connected to the �rst order phase transition or to the critical point
are generally expected to occur predominantly at low particle momenta, this
range of purely identi�ed kaons is expected to be su�cient.
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Fig. 3.6 (Color online) Left: Mass resolution versus momentum (time resolution 80 ps)
for reconstructed tracks; dashed lines indicate the mass resolution for a 2σ separation be-
tween kaons and pions or protons and kaons, respectively. Right: Distribution of generated,
accepted, and identi�ed kaons (99% purity) as a function of laboratory momentum.

3.3 Hyperon reconstruction

The abundance and phase space distributions of strange particles, in particu-
lar of multi-strange hyperons, are expected to be sensitive to the evolution of
the �reball. The hyperons can be identi�ed via their charged particle decay
channels Λ → p + π−, Ξ− → Λ + π−, and Ω− → Λ + K− via their decay
topology using only STS information without requiring hadron identi�cation.

The simulation discussed in the following assume a STS layout consist-
ing of 2 hybrid pixel and 4 silicon strip detectors. The �rst detector is placed
30 cm downstream of the target. The silicon strip detectors were implemented
with a pitch of 50 µm and a stereo angle of only 5◦. No MVD was included
although it certainly would increase the resolution of track parameters and
secondary vertex reconstruction. The STS track �nder was speci�cally tuned
in order to provide a good e�ciency for tracks from secondary vertices. Typ-
ically, the resolution of the secondary vertices is of order 3-4 mm. The mo-
mentum averaged reconstruction e�ciencies for two di�erent beam energies
are given in table 3.1. The reconstruction e�ciency of 63% for Λ hyperons
at 25 AGeV beam energy, for example, results from a track �nding e�ciency
of 86% for the decay protons and 73% for the decay pions only slightly de-
pending on momentum. In addition to the secondary vertex �nding a set of
mostly topological cuts is applied in order to further reduce the background.
Their e�ect on the signal e�ciency is included in the table ("cut e�ciency").
Total e�ciencies are given as product of acceptance, reconstruction, and cut
e�ciency. For Λ baryons the resulting high total e�ciency of more than 10%
leads to the fact, that at 25 AGeV beam energy 3-4 Λs will be reconstructed
per event. It should be noted that the cuts used in this analysis are tuned to
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achieve a large signal/background ratio which results in a low reconstruction
e�ciency. In order to study, for example, Λ−Λ correlations one would relax
the cuts, and thus increase the e�ciency to 25 % corresponding to about 11
Λs reconstructed per event.

Fig. 3.7 (Color online) Left column: Invariant mass spectra of hyperons simulated for 105

(Λ and Ξ−) and 4.5 · 106 (Ω) central Au+Au collisions at 25 AGeV using the UrQMD
event generator. The identi�cation is based on track reconstruction only, no hadron identi-
�cation is applied. Right column: Geometrical acceptance of the STS detector in transverse
momentum versus rapidity for the corresponding hyperon.

Figure 3.7 (left column) illustrates the quality of hyperon reconstruction
using the STS only. The reconstructed invariant mass distributions simulated
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for central Au+Au collisions at 25 AGeV are almost free of background. The
STS detector acceptance is depicted in the right column of �gure 3.7.

Λ§ Ξ− Ω−

detected decay channel p+ π− Λ+ π− Λ+K−

branching ratio into detected channel 63.9% 99.9% ∗ 67.8% ∗

25 AGeV beam energy
multiplicity 36.6 0.983 0.022
geometrical acceptance 28.5% 16.3% 14.6%
reconstruction e�ciency 62.8% 40.6% 46.2%
cut e�ciency 59.4% 32.3% 15.4%
total e�ciency 10.6% 2.1% 1.0%
σm [MeV/c2] 1.34 1.87 2.04
S/B 30.2 12.8 2.5

6 AGeV beam energy
multiplicity 12.8 0.118 7.2 · 10−4

geometrical acceptance 25.1% 13.6% 13.9%
reconstruction e�ciency 73.4% 53.5% 64.9%
cut e�ciency 40.1% 35.1% 21.7%
total e�ciency 7.4% 2.6% 2.0%
σm [MeV/c2] 1.341 2.21 1.96
S/B 65 17.8 4.3

Table 3.1 Acceptance and e�ciencies, mass resolution, and signal-to-background
ratio (S/B) for hyperon reconstruction in central Au+Au collisions at 25 and 6
AGeV beam energy. No hadron identi�cation is used. The total e�ciency is cal-
culated from the product of geometrical acceptance, reconstruction and cut e�ciency.
§ includes Λs from the electromagnetic decay Σ0 → Λ+ γ (BR 100%);
∗ branching ratio of Λ→ p+ π− not included.

3.4 Event-by-event �uctuations

Event-by-event �uctuations of particle yields, ratios or kinematical proper-
ties are expected to occur in the vicinity of a critical point or a �rst order
phase transition as discussed in the �rst parts of this book. In order to per-
form a robust measurement of these �uctuations, a detector layout is needed
which covers uniformly the full phase space without introducing additional
�uctuations due to acceptance or identi�cation limitations. This requirement
is di�cult to ful�ll in a �xed target geometry. In order to ensure a nearly
full azimuthal coverage the width of the detectors are not kept at a �xed
angle but are enlarged in the bending plane of the magnet. As example for
feasibility studies on the CBM performance for �uctuations we will report
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here on investigations of particle ratio �uctuations, in particular concerning
the K/π ratio.

Detailed studies are performed in order to understand the bias introduced
by the CBM detector layout due to the �nite geometrical acceptance and
particle identi�cation capability. Hadron identi�cation is performed using
time-of-�ight information, see e.g. �gures 3.3 and 3.4. Hadrons are selected
by a momentum dependent mass cut of ±2σm for kaons and ±3σm for pions
and protons where σm is the mass resolution. A purity of identi�ed kaons of
99% is required in each momentum bin in addition thus restricting the kaon
identi�cation at higher momenta. For 99 % purity this momentum cuto�
poses an upper momentum cuto� for kaons close to 3.5 GeV/c (see �g. 3.6,
right panel). Fluctuations related to the critical point or a �rst order phase
transition are expected at low pt (pt . 0.5 GeV/c) where the CBM acceptance
is very good.

Fig. 3.8 Ratio of (K++K−)/(π+ +
π−) calculated event-by-event for cen-
tral Au+Au collisions from UrQMD at
25 AGeV requiring reconstruction, full
particle identi�cation and a kaon purity
of 99% in CBM.

Fig. 3.9 Sensitivity study on dynam-
ical �uctuations in the CBM detector:
Extracted �uctuations versus dynamical
�uctuations in 4 π added to input data.

Systematic errors due to the event characterization (for example centrality)
are reduced considerably when calculating ratios of particle yields event-by-
event. Then, the width of the distribution is mainly determined by statistical
�uctuations, detector resolution and particle identi�cation e�ects. Subtract-
ing these e�ects by event mixing methods, the remaining "dynamical" �uc-
tuations can be de�ned as

σdyn = sign(σ2
data − σ2

mixed)
√
|σ2

data − σ2
mixed| (3.1)

An example for an event-by-event K/π ratio from UrQMD and mixed events
is shown in �gure 3.8 for fully reconstructed and identi�ed particles in CBM in
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central Au+Au collisions at 25 AGeV beam energy requiring a kaon purity
of 99 %. The particle ratio �uctuations extracted from UrQMD are sum-
marized in table 3.2. The results show some dependence on the acceptance
restrictions due to particle identi�cation for kaons. The higher purity of kaons
is required, the lower is the momentum cuto� for their identi�cation and the
more �uctuations are added compared to the result in the full acceptance.
This observation is summarized in plot 3.10 showing that by phase space
restrictions additional �uctuations on the % level can easily be introduced.
Such a dependence is seen for all particle ratio �uctuation signals where kaons
are involved. Compared to this e�ect misidenti�cation of kaons seems to have
a lower impact.

Fig. 3.10 Dynamical K/π �uctuations
in central Au+Au collisions at 25 AGeV
beam energy from UrQMD for various
purity requirements for kaons. Simula-
tion data employing full event recon-
struction and particle identi�cation are
compared with the MC truth in the
CBM acceptance (band) and within the
CBM acceptance but employing the up-
per momentum cuto� due to the purity
restriction of kaons as well: 5 GeV/c for
50 % purity, 4.2 GeV/c (90%), 3.5 GeV/c
(99%), and 2.2 GeV/c (100%).

The negative signals in particular for (p+p)/(π+ + π−) �uctuations can
be explained by correlated particle production through baryonic resonance
decays present in data, e.g. N(1440),∆→ N+π, but not in the mixed events.
The correlated particle production suggested by the positive (K+)/(π+)
and (K+)/(π−) �uctuations is more subtle. For example the decay chan-
nels K∗ → Kπ or K1 → Kρ → Kππ and K1 → K∗π → Kππ feed these
ratios. In order to understand the relative importance of resonance feeddown
for the �uctuation signal, the relevant resonances have to be known in detail.
Indeed, investigations using simple model assumptions show that for the in-
terpretation of dynamical �uctuation signals a detailed understanding of the
relevant resonance abundances is needed [19].
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4π geom. acc. reco. and id.
particles (MC) particles in CBM

(K++K−)/(π+ + π−) (2.6± 0.2) % (2.3± 0.4) % (4.3± 0.6) %
(K+)/(π+) (−6.2± 0.1) % (−6.4± 0.2) % (−4.4± 0.8) %
(K−)/(π+) (−8.4± 0.2) % (−9.6± 0.4) % (−9.3± 1.1) %
(K+)/(π−) (−8.0± 0.1) % (−8.3± 0.2) % (−6.8± 0.5) %
(K−)/(π−) (−6.9± 0.3) % (−8.1± 0.5) % (−6.7± 1.6) %
(p+p)/(π+ + π−) (−5.53± 0.03) % (−6.03± 0.04) % (−5.33± 0.07) %
(K++K−)/(p+p) (−3.2± 0.2) % (−3.9± 0.3) % (0.8± 3.8) %
Table 3.2 Particle ratio �uctuations as de�ned in equation 3.1 for di�erent conditions in
25 AGeV in central Au+Au collisions from UrQMD. In the �rst 2 columns particles are
purely identi�ed from the MC simulation but the acceptance is restricted in the second
step. For reconstructed and identi�ed kaons requiring ≥ 99 % purity in each momentum
bin an upper momentum cuto� of 3.5 GeV/C is introduced. The e�ect of this is seen in
�g. 3.10. For this last column full reconstruction and particle identi�cation is used, i.e.
mismatches and misidenti�ed particles are included.

In order to study the sensitivity of the CBM detector on additional dy-
namical particle ratio �uctuations, simulations were performed in which single
particles were added or removed to a �xed K/π ratio in order to generate ad-
ditional �uctuations. Figure 3.9 shows the �uctuation signal extracted from
these data versus the input �uctuations. These studies show that CBM should
be sensitive on dynamical �uctuations on the % level.

3.5 Open charm

Fig. 3.11 (Color online) Distribu-
tion of single tracks and secondary
vertices along the beam line for
D+ → K−π+π+ reconstruction:
All primary tracks (black line) and
those selected by χ2 cuts as sin-
gle track candidates for D+ daugth-
ers (blue). 3-particle secondary ver-
tices after �rst geometrical cuts
(light green), and �nally selected
D+ candidates including more strin-
gent topological cuts (magenta).

Charm production and propagation is expected to be sensitive to the con-
ditions in the early stage of the collision. The experimental challenge is to
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identify the very rare D-mesons or even Λc-baryons via their hadronic de-
cay modes D0 → K−π+ and D0 → K−π+π+π−, D± → K∓π±π±, or
Λc → pK−π+, even D+

s → K+K−π+. The D0, the D±, the D+
s -mesons

and the Λc have lifetimes of 124.4 µm, 317 µm, 150 µm, and 61.8 µ, re-
spectively. In order to suppress the background of kaons and pions emitted
from the primary vertex a high resolution Micro-Vertex Detector (MVD) is
required to precisely determine the secondary decay vertex of particles with
open charm.

Fig. 3.12 Reconstructed charmed hadrons in 1012 central Au+Au collisions at 25 AGeV.
From upper left to lower left: D0+D0 → K∓π±,D0 → K−π+π+π−, D+ → K−π+π+,
D+
s → K+K−π+, and Λc → pK−π+.
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D0+D0 D0 D+ D+
s Λc

multiplicity (HSD) 1.5 · 10−4 4 · 10−5 4.2 · 10−5 5.4 · 10−6

multiplicity (SM) 8.4 · 10−5 1.4 · 10−4 4.9 · 10−4

(∆y = 1)
lifetime cτ 124 µm 124 µm 317 µm 150 µm 62 µm
decay channel K∓π± K−π+π+π− K−π+π+ K+K−π+ pK−π+

branching ratio 3.85% 7.5% 9.5 % 5.3% 5%
geom. acceptance 55.7% 19.3% 39.6% 29.6% 53%
reconstr. e�ciency 96% 97.7% 97.5% 97.5% 97.6%
z-resol. of decay vertex 53 µm 82 µm 60 µm 67 µm 70 µm
cut e�ciency 6.1% 2% 10.9% 3.5% 1%
(mainly topological cuts)
total e�ciency 3.25% 0.37% 4.2% 1% 0.5%
σm [MeV/c2] 11.0 12.0 11.0 12.0 12.0
S/B2σ (HSD) 4.4 7.1 9 0.3
S/B2σ (SM) 7.9 0.25

Table 3.3 Acceptance and e�ciencies, mass resolution, and signal-to-background ratio
(S/B) in a 2σm region around the peak for open charm reconstruction in central Au+Au
collisions at 25 AGeV beam energy for 2 MAPS stations with 150 µm Si equivalent at
10 and 20 cm behind the target. The total e�ciency is calculated from the product of
geometrical acceptance, reconstruction and cut e�ciencies. Multiplicities are taken from
the HSD model [17] or from the statistical model (SM) [20].

The feasibility studies presented in the following are based on a MVD
which consists of two MAPS stations located 10 cm and 20 cm downstream
of the target. The total material budget of one MAPS station is assumed to be
150 µm silicon equivalent. The STS comprises 6 stations of silicon micro-strip
detectors. With a single hit resolution in the MAPS detectors of 5 µm, the
primary vertex was reconstructed with a precision of 6 µm along the beam
axis and the D0-decay vertex (D0+D0 → K∓π±) with 53 µm. In addition
to the 2-particle decay channel of the D0 meson, a 4-particle decay channel
was investigated; D0 → K−π+π+π−. The 4-particle decay vertex can still
be reconstructed with a precision of 82 µm along the beam axis. The vertex
resolution for the 3-particle decay vertices of D+ and Λc hadrons is about 60
µm and 70 µm, respectively. The measurement of the di�erent D mesons and
of the Λc is necessary to determine the total charm production cross section.

In order to reconstruct the charmed hadrons with a good signal-to-
background ratio, a set of topological cuts is applied to single tracks as well as
to the reconstructed vertices. Single tracks are extrapolated to the target, and
are rejected if they point to the primary vertex. In contrast, the reconstructed
track of the D meson is required to originate from the primary vertex. As an
example, �gure 3.11 presents the resulting background suppression of such
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cuts for the 3-particle decay of the D+ meson. Although these cuts also reject
a large fraction of the charmed hadrons (see e�ciencies in table 3.3), they are
required to suppress the overwhelming background. Please note that no kaon
or pion identi�cation with TOF is applied, however, it is important to use the
time-of-�ight measurement in order to reject proton tracks from the sample.
The fully reconstructed invariant mass spectra of all investigated charmed
hadrons and decay channels are shown in �gure 3.12 for central Au+Au col-
lisions at 25 AGeV beam energy. Numbers for e�ciency and acceptance are
presented in table 3.3. The results for the D± meson are somewhat better
than for the D0 mesons, because the D± lifetime is longer by a factor 2.5,
and the combinatorial background is suppressed more e�ciently because the
secondary vertex is de�ned by 3 particles. The identi�cation of Λcs is par-
ticularly challenging due to its extremely short lifetime. This measurement
requires an exceptionally precise vertex determination. Figure 3.13 illustrates
the large phase space coverage for Λc-baryons in CBM.

Fig. 3.13 Phase space cov-
erage of reconstructed Λc-
baryons in transverse momen-
tum versus rapidity.

The identi�cation of particles carrying open charm requires an excellent
vertex resolution which in turn can only be achieved with detectors which
have an extremely low material budget (small multiple scattering), and which
are positioned close to the target (small extrapolation error). The systematic
simulations discussed above were performed with two MAPS detector sta-
tions with a material budget of 150 µm silicon equivalent, located at 10 cm
and 20 cm downstream of the target. In order to study the in�uence of the
material budget on the vertex resolution, we increased the material budget
of each MAPS station to 500 µm silicon. Due to the increased multiple scat-
tering the primary vertex resolution along the z-axis decreases to 10 µm.
Moreover, the secondary decay vertex resolution decreases considerably for
all investigated decays (about 110 µm for D0 and Λc, and about 170 µm for
D+ and D+

s ). It turns out that in particular the identi�cation of Λc requires
MAPS stations with a material budget below 200 µm silicon. On the other
hand, the material budget of the MAPS stations strongly depends on their
size, as it is dominated by read-out and cooling structures. Therefore, the
stations will become thinner the closer to the target they are. For example,
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if the �rst MAPS detector is positioned 5 cm downstream of the target, its
thickness reduces to 300 µm silicon. This scenario has been implemented in
simulations as well, and the resulting e�ciencies and signal-to-background
ratios are close to those with were obtained with the two 150 µm silicon-
equivalent MAPS layers at 10 cm and 20 cm distance from the target. The
results for the di�erent scenarios are summarized in table 3.4 for D0 and D+

mesons.

MAPS con�guration
position of 1st MAPS 10 cm 10 cm 5 cm
thickness of 1st MAPS 150 µm Si-equiv. 500 µm Si-equiv. 300 µm Si-equiv.
position of 2nd MAPS 20 cm 20 cm 10 cm
thickness of 2nd MAPS 150 µm Si-equiv. 500 µm Si-equiv. 500 µm Si-equiv.

D0+D0

z-resol. of decay vertex 53 µm 105 µm 47 µm
total e�ciency 3.25 % 3.05% 4.4 %
S/B2σ 4.4 0.25 5.4

D+

z-resol. of decay vertex 60 µm 165 µm 47 µm
total e�ciency 4.2 % 1.05% 2.6 %
S/B2σ 9 0.93 1.1

Table 3.4 Total e�ciency, secondary vertex resolution and signal-to-background ratio
(S/B) in a 2σm region around the peak for open charm reconstruction in central Au+Au
collisions at 25 AGeV beam energy di�erent MVD con�gurations. Multiplicities are taken
from the HSD model [17], see table 3.3.

As mentioned above the MAPS detectors are limited in readout time to
about 10 µs. Therefore, the pile-up of several events in the MAPS detectors is
very likely to occur at interaction rates of 100 kHz. This scenario was studied
by superimposing a certain number of minimum bias events on top of one
central Au+Au collision at 25 AGeV beam energy in the MAPS detectors (for
a material budget of 150 µm silicon equivalent). It was found that even when
piling up 10 minimum bias events the secondary vertex resolution degrades
only slightly by 7.5% to 57 µm, and the mass resolution increases by 12%
to 12.3 MeV/c2. Therefore, the precise measurement of the D0-meson is not
limited by a moderate event pile up.



3.6 Identi�cation of vector mesons via lepton pairs 905

3.6 Identi�cation of vector mesons via lepton pairs

The identi�cation of lepton pairs in heavy-ion collisions is notoriously di�-
cult because of their low multiplicity and the large background of charged
particles. In the case of electrons one has to deal with an overwhelming phys-
ical background of electron pairs from γ conversions in the target and from
π0 and η Dalitz decays. For example, the 365 π0 produced in central Au+Au
collisions at 25 AGeV beam energy (UrQMD) lead to about 7 e± pairs at
the target; 4 from π0 Dalitz decay, and 3 from γ conversion in the target (25
µm thick Au-foil, 0.1% interaction probability). The most important source
of combinatorial background are pions misidenti�ed as electrons because of
the limited e − π separation in the detector. The suppression of this back-
ground requires excellent electron identi�cation capabilities which cannot be
achieved with one electron detector only. Simulations show that with a pion
suppression factor on the order of 104 the remaining background is dominated
by physical sources of electron-positron pairs.

In the case of muon measurements the background from physical muon pair
sources is much less important than the combinatorial background caused by
weak meson decays and by misidenti�ed hadrons. Muons are usually identi-
�ed as charged particles measured behind thick layers of hadron absorbers.
However, this absorber technique works well only for high momentum muons.
At FAIR beam energies, however, the muon momenta are rather low, and the
soft muons are absorbed as well. The CBM muon detection concept is based
on an instrumented absorber which allows for a momentum-dependent muon
identi�cation. The particles are measured by tracking chambers located be-
tween the absorber layers, and the reconstructed tracks which pass a certain
amount of absorber material are counted as muons if hadrons with the given
momentum should have been absorbed. The experimental challenge is to re-
construct the tracks for high hit densities in the tracking chambers. The
resulting muon sample is mainly contaminated by charged particles punch-
ing through the absorber, and by muons from pion or kaon decays which are
matched to their mother track in the STS. A minor contribution to the com-
binatorial background are muons from weak decays happening in front of the
STS which cannot be distinguished from muons from vector meson decays.

In the following we present results of simulations which demonstrate that
for FAIR energies the performance of di-electron and di-muon measurements
is rather similar despite of the completely di�erent background conditions.
Electron measurements provide access to lowest invariant masses (i.e. below
the mass of a muon pair), whereas muon measurements allow to generate a
trigger which is required for the collection of data with high statistics. The
CBM strategy is to measure both electrons and muons in order to combine
the advantages of both probes, and to provide a comprehensive and consistent
set of data.
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3.6.1 Electron simulations

3.6.1.1 Electron identi�cation

In the CBM experiment the electrons and positrons are identi�ed via their
Cherenkov radiation measured with the RICH, and via their transition radi-
ation measured with the TRD. The Cherenkov ring positions and radii are
determined by dedicated ring recognition algorithms, and the ring centers
are attached to the reconstructed particle tracks. The ring radius resolution
is better than 3%. The radius of the reconstructed rings is shown in the left
panel of �gure 3.14 as a function of the particle momentum. Up to parti-
cle momenta of about 10 GeV/c the RICH detector provides a good pion
suppression. The main source of background in the electron sample at low-
momenta is a mismatch of soft pion tracks from the primary vertex, and rings
from secondary electrons. Most of the electron rings measured in the RICH
are not produced by electrons emitted from the primary vertex, but rather
stem from secondary electrons which are produced by gamma conversion in
the detector material or in the magnet yoke. As their tracks cannot be recon-
structed, there is a certain probability of matching these background electron
rings to pion, kaon or proton tracks from the primary vertex.

The contamination of the electron sample by misidenti�ed hadrons is
strongly reduced when the energy loss information from the TRD (�g. 3.15),
and the timing information from the TOF detector is included into the anal-
ysis. In the current simulation 12 TRD layers are implemented, and the
electron-to-pion separation is performed by a statistical analysis of the en-
ergy losses in each layer. The time-of-�ight condition suppresses pions with
momenta mainly below 1 GeV/c, and rejects the kaons and protons from
the electron sample. The total electron identi�cation e�ciency is 50% for

Fig. 3.14 (Color online) Electron identi�cation in the RICH detector for central Au+Au
collisions at 25 AGeV. Left panel: Reconstructed ring radius as function of momentum for
104 UrQMD events. The band indicates a ±3σ range around the mean radius of electrons.
Right panel: Pion suppression factor as function of momentum for RICH only, and for the
combination of RICH, TRD and TOF.
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Fig. 3.15 (Color online) Electron identi�cation by the TRD detector. Left panel: Energy
loss of pions and electrons of 1.5 GeV/c measured for a single TRD layer. Right panel:
simulated pion e�ciency for an electron e�ciency of 90% as function of the number of
TRD layers for 2 di�erent types of detector material composition.

p = 1 GeV/c , rising to about 80% for momenta between 3 and 8 GeV/c.
When combining the information from RICH, TRD, and TOF the hadron
yield is reduced by a factor of 10000. If the pions are suppressed by a fac-
tor of 5000-10000, the remaining background is dominated by electrons from
γ-conversion in the target and π0-Dalitz decays.

3.6.1.2 Invariant mass spectra and phase-space coverage

The invariant mass distributions of electron-positron pairs simulated for cen-
tral Au+Au collisions at 25 AGeV are shown in �gure 3.16. The background is
generated by UrQMD, the multiplicity of vector mesons is calculated with the
HSD code, and the phase space distributions of the vector mesons and their
decay into di-electrons is simulated with the PLUTO (thermal source) gener-
ator. The dominating electron background contribution is from γ-conversion
in the target. Thus, both for low-mass vector meson and for charmonium
simulations, an Au-target of 25 µm (0.1% interaction length) is used. When
implementing this thin target the remaining background is dominated by
electrons from π0-Dalitz decays. In order to enhance the statistics for J/ψ
mesons a segmented target will be used in the experiment. The phase-space
coverage of the CBM detector for the measurement of vector mesons decaying
into electron pairs is illustrated in �gure 3.17.
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Fig. 3.16 (Color online) Invariant mass spectra of electron-positron pairs simulated for
central Au+Au collisions at 25 AGeV. The target thickness is 25 µm. The analysis is based
on full track reconstruction (STS-TRD-TOF), and on electron identi�cation using infor-
mation from RICH (ring recognition and ring-track matching), using energy loss signals in
the TRD layers, and timing information from the RPC. Left panel: low mass di-electrons
simulated for 200k central collisions with a cut on pt > 0.2 GeV/c for single electrons.
Di�erent sources are shown with di�erent color; from left to right: π0-, η-, and ω-Dalitz
decays, ρ-, ω-, and φ-meson. Right panel: J/ψ and ψ' for 4 · 1010 central events, pt > 1.2
GeV/c for single electrons.
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Fig. 3.17 (Color online) Phase space distribution in transverse momentum versus rapidity
for reconstructed and identi�ed ρ-mesons (left) and J/ψ-mesons (right) in central Au+Au
collisions at 25 AGeV beam energy (midrapidity = 2).

Several modi�cations of the CBM detector setup have been studied in or-
der to reduce the combinatorial background of electron-positron pairs from
π0-Dalitz decays and γ-conversion. As already mentioned, the target thick-
ness was limited to 25 µm to suppress γ-conversion. The magnetic �eld was
reduced to 70% of its nominal value in order to increase the reconstruction
e�ciency of low-momentum tracks. For this �eld the momentum resolution is
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still well below 2%. In order to improve the rejection power of close di-electron
pairs the MVD detector is included in this setup. To further increase the re-
construction e�ciency of low-momentum tracks both MVD and the �rst 4 of
the 6 STS stations were enlarged by a factor 1.5 in the bending plane. In this
way the reconstruction e�ciency for tracks with a momenta of 150 MeV/c
and 200 MeV/c was increased to 15% and 45%, respectively.

The resulting di-electron invariant mass spectrum is shown in the left panel
of �gure 3.16, and the reconstruction e�ciencies of the vector mesons are
listed in table 3.5. For the analysis, single electrons with transverse momenta
below 0.2 GeV/c were rejected. This cut strongly reduces the background, but
also restricts the acceptance for low transverse momentum pairs at low invari-
ant masses. However, some theoretical models expect that very soft dilepton
pairs are particularly sensitive probes of the chiral and decon�nement phase
transition and the critical point. Figure 3.18 illustrates that the CBM accep-
tance indeed covers a wide range of di-electron transverse momenta for the
lowest invariant masses. The goal of future studies is to further reduce the
background in this region, and to improve the signal-to-background ratio.

Fig. 3.18 (Color online) Di-electron pair detection in CBM without pt-cut on single
electrons. Left: Transverse momentum of signal pairs versus their invariant mass. Right:
Pair detection probability versus invariant mass for di�erent pt ranges.



910 3 Feasibility studies

ρ ω φ J/ψ ψ'
branching ratio (e+e−) 4.5 · 10−5 7.1 · 10−5 3 · 10−4 6 % 0.88 %

15 AGeV beam energy
multiplicity 15 27 0.5 2.44 · 10−6

e�ciency (pt cut ∗) 4.7% 6.7% 9.4% 12%
S/B (pt cut ∗) 1/100 0.39 0.32 7

25 AGeV beam energy
multiplicity 23 38 1.28 1.92 · 10−5 2.56 · 10−7

σm [MeV/c2] - 14 16 27 29
e�ciency (no pt-cut) 5.4% 7.2% 9.6%
S/B (no pt-cut) 0.003 0.32 0.3
e�ciency (pt cut ∗) 4.6% 6.8% 9.8% 13% 14%
S/B (pt cut ∗) 1/130 0.48 0.32 12 0.4

35 AGeV beam energy
multiplicity 26 46 1.5 5.45 · 10−5 9.96 · 10−7

e�ciency (pt cut ∗)) 4.3% 6.7% 9.4% 10% 9%
S/B (pt cut ∗) 1/71 0.8 0.29 12 0.15

Table 3.5 E�ciencies and signal-to-background ratios for vector-mesons in the di-
electron decay channel for central Au+Au collisions at 15, 25, and 35 AGeV.
The presented e�ciencies include geometrical acceptance, reconstruction and parti-
cle identi�cation e�ciencies. The S/B ratio is determined in a 2σ region around
the peak, for the ρ a mass range of 0.2-0.9 GeV/c2 was chosen. The mass
resolution does not change with energy as the magnetic �eld is kept constant.
∗ low-mass vector mesons pt > 0.2 GeV/c, J/ψ and ψ′ pt > 1.2 GeV/c.

The J/ψ simulations are performed with 8 silicon micro-strip detectors
only, no MVD was implemented. In order to reduce the contribution of elec-
trons from γ-conversion in the target (which is the dominant background
source for a 1% interaction target) the thickness of the gold target was cho-
sen to 25 µm corresponding to an interaction probability of 0.1%. The combi-
natorial background is drastically reduced by rejecting single electrons with
transverse momentum below 1.2 GeV/c. The remaining background is due to
electrons from π0-Dalitz decays. The results of the simulations are presented
in �gure 3.16 and in table 3.5 for di�erent beam energies. In order to per-
form high statistics measurements for charmonium a segmented target will
be used, and a trigger concept has to be developed.

3.6.2 Muon simulations

The CBM muon detection system is designed to measure muon pairs from
the decay of vector mesons (ρ, ω, φ, J/ψ) produced in heavy-ion collisions.
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At FAIR energies the muon momenta can be rather low, and, therefore, we
develop a muon detection concept with a dynamical de�nition of absorber
thickness according to the muon momentum. The actual design of the muon
detector system consists of 6 hadron absorber layers (iron plates of thick-
ness 20, 20, 20, 30, 35, 100 cm) and 18 gaseous tracking chambers located
in triplets behind each iron slab. The absorber/detector system is placed
downstream of the Silicon Tracking System (STS) which determines the par-
ticle momentum. The de�nition of a muon depends on its momentum which
varies with the mass of the vector mesons and with beam energy. For exam-
ple, muons from the decay of J/ψ mesons have to pass all 6 absorber layers
with a total iron thickness of 225 cm corresponding to 13.4 interaction length
λI . The muons from the decay of low-mass vector mesons (ρ, ω, φ) only have
to penetrate through 5 iron absorber layers with a total thickness of 125 cm
(corresponding to 7.5 λI).

3.6.2.1 Absorber optimization and background studies

In a �rst step we studied the survival probability of muons from vector me-
son decays in comparison to hadrons as function of the thickness of an iron
absorber. The result is presented in the left panel of �gure 3.19 for central
Au+Au collisions at an energy of 25 AGeV. The particle yields are normalized
to the respective yields in front of the absorber. The high energetic muons
from decay of J/ψ mesons penetrate the absorber almost without any losses.
The muons from ω meson decays are absorbed stronger, but still not as much
as the hadrons. The simulations demonstrate that for absorber layers thicker
than 1 m the remaining background is completely dominated by muons from
weak meson decays. In order to suppress this contribution, the muon detec-
tion system should be as close to the target and as compact as possible.

The experimental challenge is to reconstruct the tracks of charged particles
which penetrate the segmented hadron absorber. In this respect, the thickness
of the �rst absorber layer plays a particular role. With increasing absorber
thickness the particle multiplicity decreases, but the multiple scattering in-
creases. The total particle multiplicities per event (including secondaries)
after the �rst absorber layer is shown in the right panel of �gure 3.19. The
multiplicity at thickness zero corresponds to the number of particles in front
of the absorber. The yield behind the absorber is dominated by secondary
electrons. In order to reduce the hit density in the �rst muon tracking de-
tector to a tolerable level the absorber should have thickness of at least 20
cm.

The feasibility studies discussed below are performed for central Au+Au
collisions. The background is generated using UrQMD events. The multiplic-
ities of vector mesons are taken from the HSD code. The momentum distri-
butions of the vector mesons and of their decay products are calculated using
the thermal source generator PLUTO. Finally the muon pairs are embedded
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Fig. 3.19 Particle multiplicity behind an iron absorber as function of absorber thickness
simulated for central Au+Au collisions at 25 AGeV. The muons from weak decays are
labelled as µ. Left: Number of particles normalized to their respective yield in front of the
absorber. Right: particle multiplicity per event.

into UrQMD events and are transported through the detector setup using
the GEANT3 transport code. The analysis of the simulated data is based
on full track reconstruction in the Silicon Tracking System (STS) and in the
muon chambers. The events are reconstructed using a Cellular Automaton
algorithm for track �nding, and a Kalman �lter for track �tting. The STS
consists of 8 stations of micro-strip detectors. The muon detectors are sub-
divided into pads which grow in size both with increasing polar angle and
detector distance from the target in order to keep the occupancy for central
Au+Au collisions below 5%. The pad size varies between 0.14×0.28 cm2 and
2.22× 4.44 cm2.

In order to study the performance of the CBM muon detection system
we have analyzed the reconstructed particle tracks which pass the absorbers.
The simulations were performed for a total iron absorber thickness of 1.25 m
of iron which is used for the measurement of muons from low-mass vector
mesons, and for a thickness of 2.25 m of iron used for charmonium measure-
ments. The results are presented in �gure 3.20 which depicts the composition
of reconstructed particles per central Au+Au collision. For the thin absorber
in total about 0.2 tracks are reconstructed per event, the dominating contri-
bution (about 50%) are muons from weak decays which are wrongly matched
to the tracks of their mother particles. For an absorber thickness of 2.25 m
only 0.02 tracks are reconstructed per event, 90% of them being muons.

The background contribution from muons from weak decay is surprisingly
small as compared to the 800 charged pions produced in the collision. The
reason is that most of the weak pion and kaon decays are recognized (and
rejected) by the track reconstruction routines of the STS. This is illustrated
in �gure 3.21 where the number of muons from weak decays is shown as
function of the z-position of the decay vertex. It turns out that in average 2.4
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muons from weak decays are reconstructed per event in the STS, and only 0.4
muons survive the cut on the primary vertex. These muons stem from decays
which happen shortly downstream of the target, and, hence, their tracks are
perfectly reconstructible in the STS. The �rst STS station is located 30 cm
downstream of the target.

Fig. 3.20 (Color online) Reconstructed background tracks per event simulated for central
Au+Au collision at a beam energy of 25 AGeV. The integrated yields of the di�erent
background contributions are given in the insert. The calculations are performed for a
total iron absorber thickness of 1.25 m (left panel) and for a thickness of 2.25 m (right
panel).

Fig. 3.21 (Color online) Produc-
tion vertex in z-direction of sec-
ondary muons reconstructed in the
STS (central Au+Au collision, 25
AGeV); from top to bottom: all
(black), muons surviving the χ2 cut
for selecting those from the target
(red), muons reconstructed in the
muon detector (green) and surviv-
ing a χ2 cut on the track quality in
the MuCh detector (blue).

The kaons and protons with punch through the absorber can by further
rejected by a condition on their time of �ight. This information can be ob-
tained from the TOF wall for the J/ψ analysis where the full absorber (2.25
m iron) is required. For the detection of muons from low-mass vector mesons
an additional RPC-TOF detector can be installed in front of the last iron
block of 1 m thickness. The additional condition on time-of-�ight reduces
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the e�ciency for the signal, but increases the signal-to-background ratio (see
table 3.6).

3.6.2.2 Invariant mass spectra and phase-space coverage

The combined performance of the STS and the muon detection system as
described above is illustrated in �gure 3.22 which displays the invariant mass
spectra of muon pairs in the region of low-mass vector mesons (left panel)
and for charmonium (right panel) simulated for central Au+Au collisions at a
beam energy of 25 AGeV. In the analysis of low-mass vector mesons not only
pairs of "hard" muons are included, i.e. muons which pass 1.25 m of iron,
but also pairs of "hard" and "soft" muons where the latter only passes 0.9 m
of iron. In this way the reconstruction e�ciency for low-mass vector mesons
is increased, with only little e�ect on the signal-to-background ratio. For the
analysis of charmonium only pairs of "hard" muons (penetrating 2.25 m of
iron) are considered, no cut on transverse momentum is applied. The signal-
to-background ratio is on the order of 10 for J/ψ mesons, and about 0.1 for
ψ' mesons. The latter value is based on a background extrapolation using a
Gaussian distribution �tted to the spectrum. The values for e�ciencies and
signal-to-background ratios are listed in table 3.6 for di�erent vector mesons
and beam energies.

Fig. 3.22 (Color online) Invariant dimuon mass spectra calculated for 4 · 108 (left) and
3.8 · 1010 (right) central Au+Au collisions at 25 AGeV beam energy. Left panel: low-
mass range including as dimuon signals η-Dalitz decays, ρ-, η-, ω-, and φ-meson (from left
to right). the data include "hard-hard" as well as "hard-soft" pairs without any cuts on
momentum. "Hard" muons traverse 1.25 m of iron, "soft" muons pass only 0.9 m of iron.
Right panel: charmonium mass range. A minimal transverse momentum of pt > 1 GeV/c
is required for single muons. No time-of-�ight information is used for these spectra.

The phase-space coverage of the CBM muon detection system is shown in
�gure 3.23 for ρ-mesons (left panel) and for J/ψ mesons (right panel) in the
plane transverse momentum versus rapidity. In the case of the ρ-mesons both
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ρ ω φ J/ψ ψ'
branching ratio 4.5 · 10−5 7.1 · 10−5 3 · 10−4 5.9 % 0.73%
(µ+µ−)

15 AGeV beam energy

multiplicity 15 27 0.5 2.44 · 10−6

e�ciency (hh) 1.4 % 1.3 % 2.2 % 11.8 %
S/B (hh) 0.002 0.08 0.01 3

25 AGeV beam energy

multiplicity 23 38 1.28 1.92 · 10−5 2.56 · 10−7

geometrical acceptance 9% 12% 19% 36% 41%
σm [MeV/c2] - 10 12 24 28
e�ciency (hh) 1.9 % 1.9% 4.3% 16% 19%
S/B (hh) 0.002 0.1 0.03 7 0.09
e�ciency (hh+hs) 2.7 % 3.7% 6%
S/B (hh+hs) 0.001 0.08 0.03
e�ciency (hh+hs+TOF) 1.6 % 2.3% 3.9%
S/B (hh+hs+TOF) 0.002 0.16 0.08

35 AGeV beam energy

multiplicity 26 46 1.5 5.49 · 10−5 9.96 · 10−7

e�ciency (hh) 1.8 % 3.3 % 5.4 % 16% 19%
S/B (hh) 0.001 0.09 0.03 11 0.2

Table 3.6 E�ciencies and signal-to-background ratios for vector-mesons in the di-muon
decay channel for central Au+Au collisions at 15, 25, and 35 AGeV. The e�ciencies contain
geometrical acceptance, reconstruction and particle identi�cation. The analysis was made
for pairs of "hard" muons (hh) which are required to pass 1.25 m Fe for low-mass vector
mesons, or 2.25 m of iron in case of charmonia. For the beam energy of 25 AGeV also pairs
of a "hard" and a "soft" muon (hs) for low-mass vector mesons are analyzed, with the soft
muons muons passing only 0.9 m of iron. Moreover, the results including TOF information
(hh+hs+TOF) are shown. The S/B ratio is extracted in a 2σ region around the peak, for
the ρ a mass range of 0.2-0.9 GeV/c2 was chosen. The mass resolution does not change
with energy as the magnetic �eld is kept constant.

"hard + hard" and "soft + hard" muon pairs are taken into account. Note,
that "hard" muons which traverse 1.25 m of iron have laboratory momenta
of more than plab = 1.5 GeV/c. This intrinsic momentum cuto� is reduced to
plab = 1.2 GeV/c for "soft" muons which have to pass only 0.9 m of iron. Due
to the absorption of muons with laboratory momenta below 1.2 GeV/c the
acceptance for ρ-mesons is slightly shifted to forward rapidities (midrapidity
is at y=2 for 25 AGeV). In contrast, the acceptance for charmonium does not
su�er from the momentum cuto� which is at plab = 2.8 GeV/c for an iron
absorber of 2.25 m thickness.

The acceptance for low-mass vector mesons as a function of their transverse
momentum and the invariant mass of the muon pairs is shown in the left panel
of �gure 3.24. The analysis includes "hard + hard" as well as "hard + soft"
muon pairs. The right panel of �gure 3.24 depicts the e�ciency for muon pairs
from ρ-meson decays as a function of invariant mass for di�erent thresholds
in transverse momentum.
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Fig. 3.23 (Color online) Phase space coverage for di-muon pairs as a function of transverse
momentum and rapidity calculated for central Au+Au collisions at 25 AGeV beam energy
(midrapidity is at y = 2). Left panel: ρ-mesons, both "hard-hard" and "hard-soft" muon
pairs were are included in the analysis . Right panel: J/ψ-mesons.

Fig. 3.24 (Color online) Left panel: Transverse momentum of muon pairs versus their
invariant mass. Right panel: E�ciency for muon-pairs from the ρ-meson as a function of
invariant mass for cuto�s in transverse momentum pt. In both cases the analysis includes
"hard+hard" as well as "hard+soft" muon pairs without momentum cuts. No time-of-�ight
information is used.

The performance of the CBM muon detection system for low-mass vector
mesons can be considerably improved when installing a time-of-�ight detec-
tor between the second last and the last absorber of 1 m thickness. Figure
3.25 presents the invariant mass spectra of muon pairs calculated for cen-
tral Au+Au collisions at 25 AGeV. In the analysis only "hard+hard" muon
pairs are taken into account. Figure 3.25 presents results obtained without
(left panel) and with an additional condition on the time-of-�ight informa-
tion (right panel) assuming a time resolution of 80 ps. In the latter case the
reconstruction e�ciencies are 1% for ρ and ω-mesons, and 2.8 % for φ-mesons.
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Fig. 3.25 (Color online) Invariant dimuon mass spectra calculated for central Au+Au
collisions at 25 AGeV beam energy. The analysis includes pairs of "hard" muons only. Left
panel: no time-of-�ight information used. Right panel: with a condition on time-of-�ight
given by a TOF wall installed in front of the last iron absorber of 1 m thickness. The time
resolution was assumed to be 80 ps.

3.6.2.3 Dimuon Trigger studies

High statistics measurements of lepton pairs from the decay of vector mesons
(ρ, ω, φ, J/ψ) produced in heavy-ion collisions require high reaction rates,
and, hence, a selective trigger. The low particle multiplicities behind the
hadron absorber of the CBM muon detection system enable the implemen-
tation of a fast trigger on muon pairs. The CBM trigger concept is �exible
with respect to the muon momentum which depends on the mass of the vec-
tor meson and on the beam energy. Only the last 3 muon chambers located
behind the full absorber of 225 cm iron will be used for the generation of a
charmonium trigger. The trigger on low-mass vector mesons will be derived
from hits in the 3 muon tracking chambers in front of the last absorber (after
125 cm of iron). In this case, the tracks stop in the last absorber, and no
hits are measured behind. The trigger generation proceeds via the following
steps: (i) selection of events with at least 6 hits in the last (or second last)
detector triplet, (ii) calculation of a track segment by a linear �t of the hit
positions, (iii) extrapolation of the track segment to the vertex, and selec-
tion of tracks according to the �t parameters (χ2 and vertex). Optionally,
the time-of-�ight information is included in the trigger on charmonia. The
event selection will be performed online by the CBM computer farm based
on many-core processors.

The quality of the track extrapolation depends on the position resolution
of the muon trigger chambers. Therefore, the trigger performance has been
investigated for di�erent granularities of the muon chambers. The results
shown below were obtained with a pad size of 2.23×4.48 cm2. The track se-
lection criteria are the χ2 of the �t, the X- and Y -distributions at Z = 0.
The trigger performance is quanti�ed by the background suppression factor
(which is the fraction of minimum bias events which survive the trigger cuts)
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and by the e�ciency for J/ψ mesons which pass the trigger conditions. The
background suppression factor and the J/ψ trigger e�ciency for minimum
bias Au+Au collisions at 25 AGeV are listed table 3.7. The background sup-
pression factor decreases by about a factor of 2 if the pad size of the muon
detectors is increased by a factor of 2. The trigger performance is increased
by more than a factor of three if the ToF information is included (see last
column of table 3.7).

trigger cuts no cuts MuCh MuCh+ToF

background
suppression 1 606 2222

factor

J/ψ e�ciency (%) 20.3 15.2 13.7

Table 3.7 Background suppression factor for minimum bias Au+Au collisions at 25 AGeV
and detection e�ciency for J/ψ mesons after di�erent trigger (see text).

The CBM data acquisition system is able to process minimum bias Au+Au
collisions up to a reaction rate of 25 kHz without trigger reduction. Hence,
the CBM experiment can be operated at the full design luminosity of 10 MHz
if the event rate is reduced by a factor of 400. This factor is easily achieved by
the dimuon trigger even without time-of-�ight selection (see 3.7). In order to
test the robustness of the trigger concept with respect to additional detector
noise we added 10 hits in each muon chamber of the trigger triplet. It turns
out that the background reduction factor is reduced by about 15% only.

For low-mass vector mesons only the selection criteria based on the track
quality is applied. Due to the high hit density in detector triplet in front
of the last absorber layer a background suppression factor of about 20 can
be achieved without appreciable loss of signals. This factor would permit
to run the CBM experiment with about 0.5 MHz. Studies are in progress
to improve the trigger concept for low-mass vector-mesons by taking into
account the track and momentum information from the STS.

3.7 Direct photons

The measurement of photon production from the �reball, the so-called direct
photons, is together with the di-leptons another penetrating probe giving ac-
cess to direct radiation from the early created, dense medium. In particular
the transverse momentum spectra of single photons are suggested to provide
information on the (highest) temperature of the system. In CBM, so far two
ways of direct photon measurements have been investigated in simulations:
the classical method using the electromagnetic calorimeter, and the possibil-
ity to reconstruct in particular the low momentum photons by γ-conversion
in the target and measurement of the resulting electrons.
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The ECAL provides photon identi�cation via an energy loss measurement
from electron-photon showers in the sampling scintillator-lead structures of
the ECAL moduls. In simulations, selected isolated clusters of calorimeter
cells not matching with any reconstructed (charged) track are �tted in order
to extract the energy of the photon. An energy resolution of approximately
7.5 % is reached integrating over all momenta. The average photon recon-
struction e�ciency for energies E > 0.5 GeV is (35-40) % depending on the
photon production angle. Currently a setup with two arms covering ±45◦ on
both sides for 9◦ < θlab < 20◦ < at a distance of 12 m from the target is
investigated. With such a setup approximately 80 photons are detected per
central Au+Au collision at 25 AGeV beam energy out of which 90% are from
π0 decays but also 3% from η-decay. Invariant mass spectra for the extraction
of π0 mesons from the combination of two photons are shown in �g. 3.26. The
huge combinatorial background is still a lower estimate as not all background
sources are included yet. With a signal-to-background ratio on the order of
0.01 the background can be well estimated by even-mixing methods and sub-
tracted. The reconstruction probabilities depending on energy cuto�s are on
the order of (1-2)%. Similar conditions concerning signal-to-background ra-
tios and e�ciencies are expected for the reconstruction of the η-meson.

Fig. 3.26 (Color online) Invariant mass spectra for momentum integrated π0 mesons
for 5000 central Au+Au collisions at 25 AGeV beam energy. Left: Full spectrum with
combinatorial background. Right: Background subtracted spectrum.

As the energy resolution of the ECAL increases below energies of 5 GeV,
a detection of low momentum photons by the conversion into an e± pair
might be favorable as the momentum resolution from tracking is at a 1%
level down to momenta of 0.5 GeV/c. Electrons are identi�ed as described
above for the di-electron measurements, only pairs from conversion in the
target are selected for this analysis. For the combined pairs the momentum
resolution is about 2 %. A cut on the opening angle of the di-lepton pair
is done (θ < 1◦) in order to enhance di-electrons from γ conversion above
those from π0-Dalitz decay. The resulting transverse momentum spectrum
of the photons is shown in �g. 3.27. Dominant contributions clearly come
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from photons and π0 decays, misidenti�cations play a minor role. The overall
identi�cation probability of photons via conversion in the target is on the
order of 0.5 % (�g. 3.27). By combining two reconstructed photons π0-mesons
can be identi�ed in the invariant mass spectrum, however their identi�cation
probability goes quadratically with the single-photon e�ciency. Measuring
photons from π0-decay in addition to the inclusive ones is an important tool
to extract direct photons as this allows the construction of double ratios as
(γincl/γdecay)meas./(γincl/γdecay)sim. in data analysis.

With the same experimental setup as used for the measurement of hadron
and strange hyperon production, both photon and π0 measurements can be
done in parallel with su�cient statistics. The presented spectrum for the
ECAL is for 5000 central Au+Au collisions only corresponding to less than
1 s beamtime of CBM. One day of data taking will e.g. provide on the order of
1500 well measured π0 at 2 GeV/c (S/B ∼ 0.6) in central Au+Au collisions
with the conversion method. With separate conversion runs using a thick
target statistics can of course be enhanced.

3.8 Expected particle yields

In the following we estimate rates and yields of various particles to be mea-
sured with CBM under typical running conditions. The estimates are based
on particle multiplicities predicted by the Hadron-String-Dynamics (HSD)
transport code version V2.4 for Au+Au collisions at di�erent beam energies.

Fig. 3.27 (Color online) Left: Transverse momentum spectrum of reconstructed photons
from the target identi�ed by their conversion into di-electrons (central Au+Au collisions
at 25 AGeV, 20000 events). An opening angle cut of θ < 1◦ is applied. The contributions
of the two main sources (γ conversion (red), π0-Dalitz decay (blue)) are shown separately
(top to bottom). Right: Combined reconstruction and identi�cation e�ciency of photons
in the acceptance window of CBM (2.5◦ < θ25◦ for embedded π0).
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The multiplicities were calculated for central collisions (b = 0 fm) and scaled
down by a factor of 5 corresponding to minimum bias collisions. This fac-
tor was derived from the pion multiplicities which were calculated for both
central and minimum bias collisions. Acceptances and e�ciencies were deter-
mined by full detector simulations including event reconstruction and particle
identi�cation as explained in the previous paragraphs.

The yields are based on a data archiving rate of 1 Gbyte/s. If no on-
line event selection can be performed, this rate corresponds to about 25 kHz
minimum bias Au+Au collisions at FAIR energies. This is the case for the
measurement of hadrons (including multi-strange hyperons) and of low-mass
di-electrons. Online event selection is possible for the measurement of low-
mass dimuons, D mesons, and of charmonia (both in the electron and muon
channel). For low-mass dimuons an event-suppression factor of 20 can be
achieved for min. bias collisions allowing for a primary reaction rate of 500
kHz. For open charm, the online track reconstruction algorithms select events
with displaced vertices, and are able to reject about 99 % of the reactions.
This would allow to run with a primary reaction rate of about 2.5 MHz.
However, the read-out speed of the CMOS sensors in the Micro-Vertex De-
tector limits the reaction rate to 100 kHz. In this case the event-pile up in
the MAPS detectors is well below 10, a number which can be handled by the
track reconstruction algorithms. Once faster and radiation harder ultra-thin
pixel detectors are available, the performance of the online trigger system
will be fully exploited. For the measurement of charmonia via the dimuon
decay the online event selection is based only on the information provided
by the last muon chamber triplet where the hit rate is very low. In case of
charmonium measurements via the di-electron channel the generation of a
trigger signal requires information from the TRD and the STS. Both for the
electron and muon channel an online event suppression factor of 400 - 1000
is achievable, thus permitting to increase the primary reaction rate up to 10
MHz.
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particle N decay BR R/s T ε Y/s Y/10 w
mode (MHz) (%)

η 6.6 µ+µ− 5.8 · 10−6 0.5 y 3 0.56 3.4 · 106

K+ 8 - - 0.025 n 18.4 3.7 · 104 2.2 · 1011

K− 2.6 - - 0.025 n 18.4 1.2 · 104 7.2 · 1010

K0
s 5.4 π+π− 0.69 0.025 n 10 9.3 · 103 5.6 · 1010

ρ 4.6 e+e− 4.7 · 10−5 0.025 n 4.6 0.25 1.5 · 106

ρ 4.6 µ+µ− 4.6 · 10−5 0.5 y 2.7 2.8 1.7 · 107

ω 7.6 e+e− 7.1 · 10−5 0.025 n 6.8 1 5.5 · 106

ω 7.6 µ+µ− 9 · 10−5 0.5 y 3.7 12.6 7.6 · 107

φ 0.256 e+e− 3 · 10−4 0.025 n 9.8 0.19 1 · 106

φ 0.256 µ+µ− 2.9 · 10−4 0.5 y 6 2. 1.3 · 107

Λ 6.4 p π− 0.64 0.025 n 10.6 1.1 · 104 6.5 · 1010

Ξ− 0.096 Λ π− 0.999 0.025 n 2.1 50.4 3 · 108

Ω− 0.0044 Λ K− 0.68 0.025 n 1 0.75 4.5 · 106

D0 7.5 · 10−6 K−π+ 0.038 0.1 y 3.25 8.5 · 10−4 5.1 · 103

D0 7.5 · 10−6 K−π+π+π− 0.075 0.1 y 0.37 2.1 · 10−4 1.3 · 103

D̄0 2.3 · 10−5 K+π− 0.038 0.1 y 3.25 2.6 · 10−3 1.6 · 104

D+ 8 · 10−6 K−π+π+ 0.092 0.1 y 4.2 3.1 · 10−3 1.9 · 104

D− 1.8 · 10−5 K+π−π− 0.092 0.1 y 4.2 7 · 10−3 4.2 · 104

D+
s 1.08 · 10−6 K+K−π+ 0.053 0.1 y 1 5.7 · 10−5 3.5 · 102

Λc 4.9 · 10−4 pK−π+ 0.05 0.1 y 0.5 1.2 · 10−2 7.4 · 104

J/ψ 3.8 · 10−6 e+e− 0.06 10 y 13 0.32 1.9 · 106

ψ′ 5.1 · 10−8 e+e− 7.3 · 10−3 10 y 14 5.2 · 10−4 3.2 · 103

J/ψ 3.8 · 10−6 µ+µ− 0.06 10 y 16 0.36 2.2 · 106

ψ′ 5.1 · 10−8 µ+µ− 7.3 · 10−3 10 y 19 7.1 · 10−4 4.3 · 103

Table 3.8 Estimated particle yields for minimum bias Au+Au collisions at 25 AGeV
based on HSD calculations. For all measurements except for low-mass vector mesons in
the di-electron channel a 1% interaction target is assumed: N = multiplicity in minimum
bias collisions (= 1/5 of central collisions), BR = branching ratio, R/s = reaction rate, T
= trigger needed (y/n), ε = acceptance and e�ciency for central collisions, Y/s = particle
yield per second, and Y/10 w = particle yield per 10 weeks. The masses of the listed
particles are as follows: η(547), K±(494), K0

s (497), ρ(770), ω(782), φ(1020), Λ(1115),
Ξ−(1321), Ω−(1672), d0(1864), D±(1869), Λc(2285), J/ψ(3097), ψ′(3686).



Chapter 4

Experiments complementary to CBM

4.1 The NICA/MPD project at JINR

At JINR (Dubna) a new Nuclotron based Ion Collider fAcility (NICA) in-
cluding a Multi-Purpose Detector (MPD) is proposed in order to investigate
heavy-ion collisions at

√
sNN = 3-9 GeV [5]. NICA will consist of several

accelerators stages: Multi-charged ions will be generated in the KRION ion
source, and then accelerated in a RFQ injector up to energies of 6 AMeV.
Then, the ions are injected into a new Booster-Synchrotron, accelerated, ex-
tracted and stripped. Then, the beam is transferred to the existing Nuclotron,
and accelerated up the energy required by the experiment. Finally, the beam
is injected into the collider rings. The beams will be cooled in order to reach
the average design luminosity of 1027 cm−2s−1 which corresponds to an in-
teraction rate of 10 kHz for U+U collisions.

The scienti�c goal of the NICA/MPD project is to search for phase transi-
tions, the coexistence phase, and critical phenomena in nuclear matter. The
experimental approach is to measure the multiplicity and the phase-space
distributions of identi�ed hadrons including multi-strange hyperons. This
program includes the measurement of event-by-event �uctuations of mul-
tiplicities and transverse momenta, of directed and elliptic �ow, HBT and
and particle correlations.

According to the conceptional design the MPD consists of an inner tracker
based on silicon micro-strip detectors and a time-projection chamber, and of
an outer tracker based on straw-tube technology. The detectors are arranged
in barrels to fully cover azimuthal angles, complemented by end-cap trackers
(straw tube wheels). The detector system is located inside a solenoidal mag-
netic �eld with a �eld strength of 0.5 T. Possible detector upgrades include
a time-of-�ight barrel based on RPC technology to improve the capability of
particle identi�cation, and an electromagnetic calorimeter for electron and
gamma measurements. Beam counters will provide a trigger and information
on the interaction point. Zero-degree calorimeters will measure the energy of
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the spectator nucleons in order to obtain information on the collision cen-
trality.

The commissioning of the accelerator complex and of the detector system
is scheduled for 2014

4.2 The NA61 experiment at the CERN-SPS

As discussed in Part IV the NA49 collaboration found distinct structures
in the excitation functions of the K+/π+ ratio and in the mean transverse
particle momenta around a beam energy of 30 AGeV. In order to provide
a complete data set it has been proposed to extend these measurements
to smaller collision systems, and to measure inclusive spectra of identi�ed
hadrons in C+C, Si+Si and In+In collisions at beam energies from 10 AGeV
- 158 AGeV with an upgraded NA49 apparatus [21]. The proposal includes
the measurement particle production cross sections in p+ p, p+A and π+A
interactions needed for the interpretation of neutrino experiments and cosmic
shower data.

The proposed heavy-ion program includes the measurement of particle
yields, transverse momenta, �uctuations and collective �ow in collision sys-
tems smaller than Pb+Pb with good statistics, in particular for beam energies
below 40 AGeV. Typical systematic errors of 5-10 % on particle yields and of
10 MeV for T and 〈mt〉 are expected. The excitation function of anisotropic
�ow will be measured for charged pions, protons, K0

S mesons and Λ baryons.
In order to reduce the statistical errors, to increase the detector acceptance,

and to improve the centrality and event-plane determination the following
detector upgrades have been or will be implemented:

• The TPC readout has been replaced by an ALICE-like system providing
an increased event rate by a factor of about 20.

• A new projectile spectator detector (PSD) is being built in order to im-
prove the selection of the event centrality and the determination of the
reaction plane for high precision measurements of �ow and event-by-event
�uctuations. This development is done in collaboration with CBM.

• the NA49 acceptance can be enlarged for NA61 by redesigning the �eld
cages of the vertex TPCs.

Since 2006 the measurements of p+p and p+A collisions at energies from
10 to 158 GeV beam energy related to the neutrino and cosmic ray physics
program have been started. Once heavy-ion beams will become available at
CERN-SPS it is proposed to run for about 30 days per year at energies
between 10 and 158 A GeV for 3 years in order to collect 2 · 106 events
at each energy. NA61 will use the Pb-beam provided by the SPS in order
to produce a fragmentation beam of C-, Si-, and In- projectiles needed for
the planned system-size study. The e�cient use of the fragmentation beam
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has still to be proven in order to get full recommendation for this research
program from CERN. In addition, 4 weeks of proton beam are required per
year.

4.3 The RHIC energy scan program

As discussed in part IV the experiments at RHIC found evidence for partonic
degrees-of-freedom in the early �reball of a heavy-ion collision: the large az-
imuthal anisotropy of particle emission in non-central collisions (elliptic �ow),
the scaling of the strength of the elliptic �ow with the constituent quark
content of the measured hadrons (quark number scaling), and the strong
suppression of high momentum particles traversing the medium (jet quench-
ing). No signature of a chiral phase transition has been found. In order to
search for indications of phase transitions and for the QCD critical endpoint,
the RHIC community has started to prepare an energy scan, as these fea-
tures of the QCD phase diagram are predicted to be located in the region
of large baryon-chemical potentials. The experimental approach at RHIC is
to reduce stepwise the collision energy, and to look for the disappearance
of the phenomena related to the early partonic phase. In the vicinity of the
QCD critical endpoint critical phenomena are expected to appear, such as
dynamical event-by-event �uctuations.

The PHENIX and STAR detectors are ideally suited for an energy scan
program as their acceptance does not vary with the collision energy. In ad-
dition, the experiments are preparing detector upgrades to improve their
particle identi�cation capabilities. The most important upgrade of the STAR
detector is the installation of the full TOF barrel providing clean K/π separa-
tion up to 1.6 GeV/c. This improvement will be essential for the measurement
of event-by-event �uctuations of particle ratios. The upgrade of the PHENIX
detector includes the Hadron-Blind Detector (HBD) which will improve the
electron identi�cation considerably, and the barrel silicon vertex tracker for
direct charm and bottom measurements. This detector could perform trig-
gering, centrality determination and reaction plane determination for the low
energy runs.

On the other hand, the measurements will su�er from the limited lumi-
nosity of the colliding beams which drops dramatically with decreasing beam
energy, in particular below injection energy. Therefore, major e�orts of the
RHIC accelerator experts are devoted to the improvement of the quality of
the low energy beams. In 2007 a test run at

√
sNN = 9.3 GeV (Au-beam)

was performed in order to get �rst experience with technical challenges as
magnetic �eld quality at low currents, RHIC harmonic number changes, inef-
�ciencies due to RF acceptances, and intra-beam scattering. In a further test
beam in 2008 �rst data at

√
sNN = 9.2 GeV has been taken by the STAR
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experiment with an event rate of 0.7 Hz. Without further upgrades, a �rst
energy scan is feasible.

For energies above injection energy (
√
sNN = 19.6 GeV/c) interaction

rates will be su�ciently high for the measurement of rare probes such as
dileptons and charm by PHENIX and STAR. At lower collision energies,
however, the measurements most probably will be limited to bulk observables
like hadron yields, elliptic �ow of abundant particles, and event-by-event
�uctuations. Here, the goal is to reduce the statistical error of the particle
yields with respect to the existing data taken at low SPS beam energies.
Major improvements are expected for data on elliptic �ow and �uctuations,
in particular by the STAR experiment which has a large, uniform acceptance
and excellent particle identi�cation capability. Therefore, the data will be
much less a�ected by systematic uncertainties due to beam energy variations
as compared to data measured with a stationary target.

The STAR collaboration estimates that 5 · 106 events are needed per col-
lision energy for the measurement of pions, kaons, and protons including
spectra, yields, pt-dependent elliptic �ow, and �uctuations in order to reduce
the statistical errors signi�cantly below those from NA49. Such a number
of events would even allow for averaged elliptic �ow measurements of Ω-
baryons and φ-mesons with an error of 1% only. Due to the excellent event
plane resolution of STAR, the systematic error on �ow measurements will be
signi�cantly smaller than the one of the NA49 data. The preliminary plan-
ning of the STAR collaboration foresees an energy scan in 8 steps from

√
sNN

= 5 GeV to 39 GeV. The reaction rates are expected to increase with energy
from 0.5 Hz to 50 Hz, and the number of collected events per energy step
will increase from 1 · 106 to 1 · 107. The beam time request for the full en-
ergy scan with the STAR detector is expected to be about 100 days. The
PHENIX experiment will also measure global observables with high reaction
plane resolution. Su�cient statistics for a low-mass dielectron spectrum at√
sNN = 17.2 GeV would require about 50 · 106 events which could be taken

within 2 weeks of running. The start of the energy scan program is planned
for 2010.
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Appendix A

Overview on heavy ion experiments

A.1 Introduction

Results from various heavy-ion experiments at SIS (GSI), AGS (BNL), SPS
(CERN), and RHIC (BNL) have been discussed and reviewed in part IV of
this book. Several heavy-ion experiments were built at the mentioned accel-
erators and each of the experiments had a special focus which determined
the layout. With the new accelerators becoming available, LHC and FAIR,
this strategy has had to change: Only one dedicated heavy-ion experiment
has to cover all observables. It thus is a useful exercise to review previous
experiments, in particular their advantages and de�ciencies. Besides, some
knowledge on the experimental setup helps to understand and acknowledge
the results.
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A.2 FOPI - A 4π detector for Heavy Ion Collisions at
SIS

Introduction

The beam energies of the Heavy Ion Synchrotron SIS (0.1-2A GeV) at GSI
span the range from where nuclear mean-�eld e�ects dominate up to the
excitation of internal nucleonic degrees of freedom for a sizeable fraction of
the collisional system. Over this energy regime, the measurable signals from
heavy ion collisions include heavy nuclear fragments (up to Z≈20), individual
nucleons, mesons and hadronic resonances probing di�erent stages of the
reaction. Measuring these various particle types requires a large dynamic
range and the combination of various particle identi�cation concepts. The
FOPI system has been built with a modular design where each component
has been optimized for the detection of a particular type of particle.

The detector

The full FOPI detector∗, shown in �gure A.1, has been constructed and
operated in three stages:

The main detector system in the �rst phase of FOPI is the Forward Plas-
tic Wall (764 scintillators). The Forward Wall [1] measures the energy loss
(∆E) and velocity of all charged particles emitted from the reaction zone with
laboratory polar angles between 1◦ < ΘLab < 30◦. Time of �ight resolution
is around 220-250 ps for the inner Wall (< 7◦) and 80-150 ps for the outer
Wall. Since the scintillators are thick enough to stop slower and/or heav-
ier fragments an additional thinner shell of energy loss detectors (ionization
chambers beyond 7◦, scintillators below) were placed in front of the Forward
Wall to reduce the particle identi�cation thresholds. Using this arrangement
it is possible to measure fragments up to charge ≈ 20 and down to beam
energies of 90 MeV.

The installation of the Superconducting Solenoid marks the beginning of
the second phase [2]. The magnet has a diameter of 2.4 m and a length of
3.3 m. In the central volume a �eld of 0.6 T is produced with a homogeneity
of 1.5%. A drift chamber of jet type (CDC) is covering the polar angle range
30◦ < ΘLab < 150◦. The resolutions in determining the laboratory angles Φ
and Θ are σPhi ≈ 0.6◦ and σTheta ≈ 6◦. The relative momentum resolution
σpt/pt ranges between 4 and 12% rising with momentum. Particle identi�ca-
tion is achieved by combining speci�c energy loss with the momentum. The
low transverse momentum acceptance of the CDC is 70 MeV/c for pions and

∗ http://www-fopi.gsi.de
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Fig. A.1 FOPI detector
set-up phase 2. The beam
is entering from the left
into the set-up.

120 MeV/c for protons. To improve the particle identi�cation properties the
CDC is surrounded by a scintillator barrel. In phase 2 the Barrel consists of
180 individual plastic scintillators (240 x 4 x 3 cm3) arranged in a cylindri-
cal pattern with each aligned parallel to the beam axis. The plastic strips
cover the laboratory angular range 40◦ < ΘLab <140◦ and almost the full
azimuth. Charged kaon identi�cation became possible for momenta from 0.1
to 0.6 GeV/c. The forward drift chamber HELITRON adds isotope separa-
tion to the particles identi�ed by the Forward Wall within the angular range
7◦ < ΘLab <30◦ allowing for identi�cation of isotopes up to Z=4.

In phase 3 of FOPI the scintillator barrel surrounding the CDC was short-
ened and the region from 37◦ < ΘLab <70◦ was equipped with Multi-strip
Multi-gap Resistive Plate Chambers (MMRPCs). The MMRPC-ToF-barrel
has an active area of 5m2 and 2400 individual strips (900x1.6 mm2) [3] which
are readout on both sides by custom designed electronics. The e�ciency of
the MMRPCs is above 95 %. The installation of the MMRPC was completed
in 2007 and in a �rst experiment a system time resolution of the complete
MMRPC barrel of <100 ps was demonstrated. Identi�cation of charged kaons
is now possible up to p = 1 GeV/c.

Experimental program and results

Aiming at the experimental determination of fundamental properties of
hadronic systems at �nite temperatures and densities like the equation of
state (EOS), the in-medium cross sections and the e�ective masses of the
constituents systematic measurements are necessary.
Table A.1 lists the systems which have been or will be investigated by FOPI.
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Year Phase Exp System Energy Comment
1991 1 S018 Au+Au 90-800 AMeV Fragment production,

�ow, neutron meas.
with LAND

1992 2 S109 Au+Au 1 AGeV Pion production
wo Helitron

1993/94 2 S119 Ni+Ni 90-400 AMeV Cluster production
wo Helitron Xe+Sn

Au+Au
1994 2 S119 Ni+Ni 1-1.9 AGeV Pion,

K+ production
1996 2 S183 Ru/Zr 0.4 AGeV Isotopic ratios,

1.5 AGeV mixing and stopping,
1.6 AGeV K+ production

1997 2 S183 Ca+Ca 0.4-2.0 AGeV Flow systematics,
Au+Au 0.4-1.5 AGeV meson production

2003 3 wo RPC S261 Ni+Ni 1.9 AGeV Ξ− production
2003 3 wo RPC S263 Ni/Pb 0.4 AGeV Stopping

0.8 AGeV
1.16 AGeV

2004 3 wo RPC S273 π+A 1.15 GeV/c Medium mod. at ρ = ρ0

2005 3 wo RPC S279 Al+Al 1.91 AGeV Exotic resonances
2005 3 wo RPC S297 p+d/p+C 3.5 GeV ppnK− bound state
2007/08 3 S325 Ni+Ni 1.91 AGeV K− �ow
2009 3 S341 Ni+Pb 1.9 AGeV K− �ow, prod. of

strange resonances
2009 3 S349 p+p 3.2 GeV ppK− bound state
2010 3 S341 Ru+Ru 1.6 AGeV K− �ow, prod of

strange resonances
2010 3 S344 π+p,A 1.7 GeV/c K+/K− production

Table A.1 Summary of FOPI production beam times

The experimental program of FOPI concentrates on the measurement of
complete phase space distributions of nucleons and heavy fragments in central
and mid-central heavy ion collisions, their radial and directed �ow, the in-
vestigation of produced particles like pions, kaons and short lived resonances
that are reconstructed by their decay into charged particles, e.g. strange res-
onances (like Ξ−) or more exotic states like strange clusters (predicted by
[4]).

The main results published by the FOPI collaboration comprise:

• The identi�cation of a mid-rapidity source for intermediate mass fragments
in highly central Au-Au collisions [5].

• The �rst measurement of neutron squeeze-out in heavy ion collisions show-
ing that neutrons and protons show a similar �ow pattern [6].
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• First determination of collective radial �ow in heavy collision from the
kinetic energy distributions of intermediate mass fragments in Au+Au
collisions [7].

• Extensive studies on the correlations of protons and intermediate mass
fragments and their interplay with collective �ow phenomena [8], determi-
nation of the emission order of p, d, t, 3He and α particles [9].

• Reconstruction of ∆(1232) resonances in heavy ion reactions, determina-
tion of the resonance shape and the mean transverse energy of their phase
space distribution during freeze out [10].

• Extensive data on directed and elliptic �ow phenomena in mid central
collisions [11] as a function of particle species, system size and impact pa-
rameter are confronted with transport model predictions. FOPI presented
the �rst analysis of �ow with Lee-Yang Zeros [12]

• The in-plane to out-of plane enhancement has been studied and the tran-
sition energy was determined for Au+Au collisions as a function of impact
parameter and particle species [11]. The azimuthal distribution of the col-
lective expansion is sensitive to the equation of state [13].

• First investigation of nuclear stopping using the isospin tracing method
[14] proving that even in the most central collisions the colliding partners
are not stopped.

• Nuclear stopping investigations [15]: The degree of stopping shows a max-
imum with a plateau at around Ebeam=500 AMeV with a sharp drop on
both sides and is never reaching the hydrodynamical limit even for the
heaviest systems [16] and nuclear stopping in central collisions is highly
correlated with side �ow [16].

• Comprehensive summary on the pion production in heavy ion collisions
between 0.4 and 2.0 AGeV [17].

• Direct comparison of K+ and K− phase space distributions are sensitive
to in-medium modi�cations of kaons [18].

• Measurements of directed Flow of kaons and Λs in Ni+Ni collisions [19] and
it was shown that the transverse momentum dependence of v1 of Kaons is
sensitive to the in-medium e�ects [19].

• Phase space distributions of K0 and Λ in Ni+Ni collisions at 1.93 AGeV
[20] and the �rst measurement of the K0/K+ yield ratio to determine the
symmetry term of the nuclear EOS [21].

• First measurements of Φ mesons in HI - collisions close to threshold [22]
and Σ(1385) resonances [23].

A �nal unambiguous conclusion about the sti�ness of the EOS and on the
existence of in-medium e�ects and their connection to the partial restoration
of chiral symmetry has not been achieved yet. It seems, however, possible to
further discriminate the theoretical models especially for the latter point by
enhancing the rate capability of future experiments by a factor of 100. With
the closure of the FOPI facility in 2010 this task will have to be covered by
CBM experiments at SIS100.
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A.3 The HADES detector at SIS/GSI

The High Acceptance Dielectron Spectrometer HADES† was designed to mea-
sure electromagnetic radiation emitted out of moderately hot and dense nu-
clear matter as it is formed in reactions of heavy ions in the few-GeV bom-
barding energy regime. Important design criteria were (1) a large and uni-
form acceptance, (2) the use of low mass tracking chambers combined with a
toroidal �eld generated by six superconducting coils and (3) the capability for
real-time electron recognition using a hadron-blind RICH detector and a ded-
icated two-level trigger system [1]. Beside its main purpose to study dielectron
emission, HADES is also very well suited for investigating purely hadronic
probes and in particular the production of open and hidden strangeness.

beam
RICH

MDC I/II

MDC III/IV
TOF

RPC

Pre-Shower

target

START

Mag
ne

t

Fig. A.2 Schematic layout of the HADES detector with its six-sector toroidal geometry.
For the sake of clarity, only tracks from a low-multiplicity C+C event are shown overlaid.

HADES is a rotationally symmetric large acceptance toroidal spectrome-
ter with almost complete azimuthal coverage. The spectrometer acceptance

† Home: http://www-hades.gsi.de/
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covers polar angles between θ = 18◦ and θ = 85◦ with respect to the target
placed inside a RICH detector. HADES features six identical sectors framed
by the six coils of the super-conducting magnet. Figure A.2 shows the cross
section of the device in the vertical plane containing the beam axis, together
with the simulation of a low-multiplicity C+C event. The angular and mo-
mentum acceptance of HADES has been optimized for the detection of di-
electron decays of hadrons produced at SIS18 energies, and in particular the
vector-meson decays ρ, ω, and φ→ e+e− [2].

Momentum reconstruction is carried out by measuring the de�ection angle
of particle trajectories derived from the hit positions in two sets of Mini
Drift Chambers (MDC) placed before and behind the magnetic �eld region,
totalling four chambers per sector.

Electron identi�cation is performed with a hadron-blind Ring Imaging
Cherenkov detector (RICH), operating in the �eld-free region, as well as a
Multiplicity and Trigger Array (META) providing time-of-�ight (TOF scintil-
lators + RPC, the latter to be installed in 2009) and electromagnetic shower
detection (Pre-Shower).

For precise reaction-time measurements, a radiation-hard diamond start
detector system is located in the beam line.

A powerful multi-level trigger system is able to select events within a pre-
de�ned charged-particle multiplicity interval (LVL1 trigger), as well as single-
lepton candidates or lepton pairs within a selectable invariant-mass window
(LVL2 trigger). After the upgrade of the readout and trigger electronics (to
be completed in 2009) the system will permit data-taking rates of 20 kHz up
to the largest event sizes (e.g. in Au+Au collisions). This corresponds to a
maximum beam intensity of 107/s on a 2% interaction target at 10% LVL1
selectivity.

HADES exploits ion-, proton- and pion-beam induced reactions on nuclear
and hydrogen targets and covers both, hadron physics and nuclear matter
physics aspects. The spectrometer became operational in 2002 and is run by
an international collaboration comprising in 2008 more than 100 scientists
from 14 European countries.

The following reactions have been investigated since startup in 2002:

• 1 and 2 GeV/u C+C
• 1.75 GeV/u Ar+KCl
• 1.25, 2.2, and 3.5 GeV p+p
• 1.25 GeV/u d+p
• 3.5 GeV p+Nb

The results of the C+C run at 2 GeV/u provide evidence for a substantial
contribution to the pair yield in the mass range between 0.15 and 0.5 GeV/c2

from the early phase of the collision. Electron pairs from this phase are as
abundant as pairs from the Dalitz decay of η mesons [3]. The data from the
1 GeV/u carbon run reveal an excess yield even six times higher than the
contribution from η mesons, corroborating earlier �ndings of the former DLS
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collaboration [4]. Comparing the two measurements at 1 and 2 GeV/u, one
can conclude that the medium contribution grows with beam energy like pion
production. This �nding supports the conjecture that the excess radiation
stems predominantly from decays of baryonic resonances. The comparison of
the 1.25 GeV/u p+p and d+p results suggests that pn bremsstrahlung plays
a much more important role than hitherto suspected [5]. The 2.2 and 3.5 GeV
p+p runs provided a wealth of information on various inclusive and exclusive
meson production channels, also of prime importance to improve the various
transport codes involved in the interpretation of the heavy-ion data gained at
comparable bombarding energies. The most recent p+Nb run was dedicated
to the investigation of omega production in cold nuclear matter, the former
3.5 GeV p+p data serving thereby as a baseline.

These investigations will be continued over the next years with more data-
taking periods using, on the one hand, truly heavy ion beams (e.g. Ni and Au)
and, on the other hand, pion-induced reactions to further the understanding
of the underlying elementary processes.

The main reason hampering presently the systematic investigation of in-
medium production and propagation of the light vector mesons is, however,
the limited bombarding energy available from SIS18, allowing heavy-ion reac-
tions only at or even below production threshold. Here the move of HADES
to SIS100 will open de�nitely a more e�cient approach to the study of in-
medium e�ects. It is hence evident that in the energy range of 2-10 GeV/u
the HADES detector will remain for a foreseeable future the state-of-the-art
device able to address and answer the relevant physics questions. Beyond
10 GeV/u, in order to make connection with the data from the former SPS
experiments, a measurement around 25 GeV/u will, however, remain desir-
able. This would then be the realm of the planned CBM experiment.
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A.4 The KaoS experiment at SIS/GSI

The mission of the Kaon Spectometer (KaoS) experiment at GSI/SIS18 was
to explore the properties of dense nuclear matter, and to study the in-medium
properties of strange particles [1]. The experimental approach was to pro-
duce dense �reballs in heavy-ion collisions, and to measure the production
and propagation of K+ and K− mesons which serve as diagnostic probes.
The experimental challenge was to identify the strange particles in heavy-
ion collisions at SIS18 energies. This is because the strangeness production
cross section is very small at beam energies below or close to the strangeness
production threshold, and the background of charged particles like pions and
protons is very high. The experimental task was to identify the particles, to
measure their momentum, and to generate a trigger on charged kaons. This
task could be ful�lled with a magnetic spectrometer which could be moved
to di�erent polar angles to scan a large range of rapidity. The spectrome-
ter was equipped with detectors for event characterization to determine the
centrality and the orientation of the reaction plane for �ow measurements.

Fig. A.3 Top view of the Kaon Spectrometer KaoS with its various detector components.

The experimental setup is shown in Fig. A.3. The spectrometer consists of
a quadrupole and a dipole magnet providing a large acceptance in solid angle
and in momentum (Ω ≈ 30 msr, pmax/pmin ≈ 2). The short distance of 5 -
6.5 m from the target to the focal plane minimizes the number of kaon decays
in �ight. The acceptance of the magnets and the detectors for charged parti-
cles has been determined by Monte Carlo simulations using the GEANT code.
The particle identi�cation is based on separate measurements of the momen-
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tum and of the time-of-�ight (TOF). The trigger signal is generated from
the time-of-�ight measurement in conjunction with a threshold Cherenkov
detector which rejected high momentum pions. The trigger rejection factor
was about 102 for pions and about 103 for protons.

The time is measured three times with segmented plastic scintillator ar-
rays: The TOF Start wall between the quadrupole and the dipole (16 mod-
ules), the TOF Stop wall in the focal plane of the spectrometer (30 modules),
and the Large-Angle Hodoscope (LAH) around the target point covering po-
lar laboratory angles of 12◦ ≤ θlab ≤ 48◦ (84 modules). The information
from the LAH is used to determine the collision centrality. Moreover, the
LAH provides a "time zero" measurement for background rejection.

The background due to spurious tracks and pile-up is removed by a trajec-
tory reconstruction based on three large-area multi-wire proportional coun-
ters (MWPC 1 - 3), one of them located between the quadrupole and the
dipole, and two chambers behind the dipole magnet. The beam intensity was
monitored using two telescopes at θlab = ±110◦. Each of these telescopes
consists of 3 plastic scintillators which were read out in coincidence. The
�ux of charged particles measured by these detectors is proportional to the
beam intensity. The absolute normalization was obtained in measurements
with low beam intensities using a plastic scintillation detector directly in the
beam line.

The spectrometer can be pivoted around the target point on air cushions.
The setup was equipped with a forward hodoscope 7 m downstream of the
target to measure the orientation of the reaction plane. This detector consists
of 380 plastic scintillator modules covering polar emission angles from 0.5 to
11 degrees.

The highlights of the scienti�c results obtained with the KaoS experiment
have been published in the following papers:

• First measurement of the elliptic �ow of pions in symmetric heavy-ion
collisions for several beam energies [2]

• First observation of enhanced K+ production in central collisions between
heavy nuclei [3]

• Evidence for di�erent freeze-out radii of high- and low-energy pions emit-
ted in Au+Au collisions at 1 AGeV [4]

• Observation of enhanced out-of-plane emission of K+ mesons in Au+Au
collisions at 1 AGeV [5]

• Observation of medium e�ects in kaon and antikaon production in nuclear
collisions at subthreshold beam energies [6]

• Measurement of the emission pattern of high-energy pions as a new probe
for the early phase of heavy ion collisions [7]

• First measurement of antikaon phase-space distributions in nucleus-nucleus
collisions at subthreshold beam energies [8]

• Evidence for a soft nuclear equation-of-state from kaon production in heavy
ion collisions [9]
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• First evidence for di�erent freeze-out conditions for kaons and antikaons
observed in heavy-ion collisions [10]

• Observation of di�erent azimuthal emission patterns for K+ and of K−

mesons in heavy-ion collisions at 1-2 AGeV [11]

In 1998 the American Physical Society has cited the KaoS results to be
among the ten "top physics stories" in particle, nuclear and plasma physics.

The KaoS experiment started to operate in 1990 and �nished data tak-
ing in 2001. In 2003 the spectrometer was moved to the electron accelerator
MAMI at Mainz University to serve as a kaon trigger for the study of hyper-
nuclei.
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A.5 Summary of AGS experiments

At the AGS at BNL a variety of �xed target heavy-ion collision experiments
were performed from end of the 1980s until RHIC became available in 1999.
O, Si and Au beams at energies from 2 AGeV to 14.5 AGeV were used with
a variety of di�erent targets. As experiments had to re-apply for beamtime
when an approved program was accomplished, certain long standing collab-
orations were renumbered several times. Very often, with renumbering also
detector upgrades went along in particular when Au beams became available
at AGS in 1992. A brief overview of the main experiments data of which were
discussed in part IV is given here (valuable information taken from [1]), for
physics results an extended review is given in part IV.

E802 - E859 - E866 - E917

The experiment E802 was a single arm magnetic spectrometer [E802], see
�g. A.4. The spectrometer consisted of a dipole magnet and a set of tracking
(drift) chambers before and behind the magnet of 1.5 Tm bending power. A
set of Cherenkov and time-of-�ight counters allowed for a clean π − K − p
separation up to momenta of 4.7 GeV/c. The spectrometer had a geomet-
ric solid angle of 25 msr. An additional small solid angle (1 msr) arm, the
Cherenkov Complex (CC), extended the π−K−p separation up to 15 GeV/c.
The spectrometer could be rotated to cover reaction angles from 5◦ to 58◦,
and the CC could rotate independently of the spectrometer from 5◦ to 35◦.
E802 employed event characterization detectors: a charged-particle multiplic-
ity array close to the target, a highly segmented lead-glass detector, and a
zero degree calorimeter.

Particle momentum spectra were measured for π±,K±, p, p as function of
collision centrality in the approximate rapidity interval 0.5 ≤ y ≤ 2.1. Data
on Bose-Einstein correlations of pions and kaons were also measured. Beams
of p, O and Si were used with a variety of targets.

E859 carried on with these experiments adding a Phoswich Detector at
the target for the measurement of Z = 1 fragments for 50◦ < θ < 150◦. E866
was then an extension for use with Au beams (�g. A.5): The old E802/E859
spectrometer was used for 20◦ < θ < 60◦ where multiplicities with Au beams
were similar to the previous for Si beams. In the forward direction a new
small spectrometer had been built covering the high multiplicity region 6◦ <
θ < 20◦. The E917 experiment was the last in this series and continued the
physics program of E866.

E866/E917 did systematic measurements of baryon stopping and strange
particle production for a variety of beam energies and collision centralities
including Λ, Λ and φ production.
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Fig. A.4 Sketch of E802. Picture taken from [1].

Fig. A.5 Sketch of E866. Picture taken from [1].

E814 - E877

Experiments E814 [E814] and E877 which was the upgrade of E814 for the
usage of Au beams had a large target calorimeter with azimuthal coverage
and pseudorapidity range −0.5 < η < 0.8 for the measurement of trans-
verse energy including �ow. It was complemented by a participant calorime-
ter with a coverage of 0.9 < η < 3.9. A further forward calorimeter was used
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for the measurement of zero degree energy and neutrons. Si-Pad detectors
could measure charged particle multiplicity for 0.86 < η < 3.86. A forward
spectrometer with tracking (drift) chambers, a dipole magnet and two time-
of-�ight walls provided momentum determination and particle identi�cation
for −115 < θx < 14 mr and −21 < θy < 21 mr. Pions and kaons could be
separated up to 5 GeV/c, kaons and protons up to 7 GeV/c. For E877 more
tracking chambers were added in order to cope with the higher multiplicities
becoming available with the usage of Au beams.

E814/E877 did systematic studies of transverse energy distributions and
particle production including two-particle correlations and �ow.

Fig. A.6 Sketch of E814. Picture taken from [1].

E810 - E891

The experiment E810 was the �rst experiment using a TPC in heavy-ion
collisions [E810], see �g. A.7. Three TPC modules were placed in the MPS
magnetic �eld providing a uniform 0.5 T �eld in the TPC volumes. An-
gles and momenta of charged particles emitted in the forward hemisphere
of heavy-ion collisions were measured with the TPCs. Each module of the
TPC contained twelve rows of short anode wires which gave 3-D space points
on each track, but no dE/dx information useable for particle identi�cation.
Charged particle tracks had been measured in the TPCs including the re-
construction of secondary vertices from Λ and K0

S . Particle identi�cation was
approximately accomplished by assuming that all negative particles are "pi-
ons" and positive-negatives are ≈ "protons". Antiprotons could be identi�ed
by a time-of-�ight wall. More central collisions were selected by choosing
event samples with higher charged particle multiplicity as measured in the
TPCs.
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E810 measured rapidity spectra and transverse momentum distributions
for π−, Λ and K0

S with Si beams on a variety of targets. E810 also searched
for strangelet candidates.

E891 went on to Au beams and used a geometric rearrangement of the
TPCs to better adopt to the higher track multiplicities.

Fig. A.7 Sketch of E810 with the three TPC modules in the magnetic �eld. In addition
a time-of-�ight wall (not shown) identi�ed antiprotons. Picture taken from [1].

E895

E859 fully explored particle identi�cation capabilities using the large EOS
TPC from Bevalac which was placed in the MPS magnet (see E810) [E895].
The active drift volume was 150 cm long, 96 cm wide and 75 cm high. Most
produced particles and nuclear fragment species could be measured and iden-
ti�ed over a substantial fraction of 4π solid angle. Due to the good tracking
capabilities secondary vertices from the decay ofK0

S , Λ, Λ, and even Ξ
− could

be identi�ed. Using the measured dE/dx, charged pions, kaons and protons
could be identi�ed in the 1/β2 region. Nuclear fragments up to Oxygen could
also be measured by their energy loss in the TPC. The MUltiple Sampling
Ionization Chamber (MUSIC) was positioned to intercept projectile specta-
tor fragments, and could easily resolve charge for relativistic ions up to gold
and beyond.

Particle production with emphasis on longitudinal and elliptic �ow as well
as two-particle correlations were systematically measured in Au+Au colli-
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sions over the full range of AGS energies and for di�erent centralities. E895
also did a measurement of the Ξ− multiplicity at 6 AGeV near threshold.

E910

The E910 experiment also used the large EOS TPC placed inside the MPS
magnet (see E810, E895) [E910]. With this TPC dE/dx information could
be used for particle identi�cation for p . 2 GeV/c (1/β2 region). Additional
charged particle tracking was done with drift chambers. Particle identi�cation
for higher momenta could be performed using a Cherenkov counter at the
exit of the magnet and a time-of-�ight wall further downstream. The good
tracking capabilities inside the TPC allowed for Λ and K0

S reconstruction.
E910 speci�cally studied p+A collisions in order to investigate multiple

collisions and re-interactions of the projectile nucleon within the target nu-
cleus. In order to investigate particle production, speci�cally strangeness pro-
duction as a function of the number of projectile collisions slow protons and
deuterons measured in the TPC were counted and related to the number
of projectile collisions. Systematic investigations were done using di�erent
energies of proton beams and a variety of targets.

Fig. A.8 Layout of experiment E895. The EOS TPC in the MPS magnet with a typical
4 AGeV Au+Au event is seen as well as the MUSIC detector upstream (not located to
scale).
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Fig. A.9 Layout of E910 [E910].
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A.6 The CERES (NA45) experiment at the CERN-SPS

The experiment, built in the early nineties and upgraded by a radial-drift
TPC in 1998, is mainly known for its observation of enhanced production of
low mass e+e− pairs in heavy ion collisions. Fig. A.10 represents the �nal

Fig. A.10 The �nal setup of the CERES/NA45 experiment at CERN SPS.

setup. The target consists of 13 thin (25 µm) gold disks, separated by 2 mm,
to minimize gamma conversion pairs into the acceptance. Two silicon radial
drift detectors give the charged particle multiplicity and event vertex within
∆z = 0.2 mm (in central Pb+Au) and the angles of individual tracks within
∆θ=0.2 mrad and ∆φ=2 mrad. Two RICH detectors provide electron iden-
ti�cation with a combined e�ciency of about 70%. Finally, the TPC yields
momentum of charged particles within ∆p/p = 2%⊕ 1% · p/GeV and dE/dx
within 9%. Combining rings in the RICHs and dE/dx in the TPC to identify
electrons results in a pion suppression factor of 4000.

The detectors cover polar angles of 8o<θ<14o (2.1< η <2.65) and all az-
imuthal angles and allow to identify electrons (via rings and dE/dx), K0

S , Λ, Λ̄
(via pion-pion and pion-proton decay), K+, K− (via three-pion decay), pho-
tons (via conversions), π0 (via two-photon decay), and pions/protons (partly,
via dE/dx). The collision centrality is determined via charged particle mul-
tiplicity and the reaction plane angle via elliptic �ow (∆Ψ = 30-34o). The
runs are listed below. The typical Pb-beam intensity in 1999/2000 was 106

ions per 4 s spill and the event rate was 400-1000 per spill, depending on
centrality; typical duration of an SPS heavy ion run was 4-5 weeks in a year.
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The highlights of the experiment include, in addition to dilepton spectra
[1-5], papers on strange particle spectra [6], �ow [7], �uctuations [8], and two-
particle correlations [9-11]. Cylindrical symmetry and an acceptance identical
for positive and negative particles proved useful in dilepton (background) and
�ow analyses. The main problems of the dilepton and hadron analyses were
the high background (signal to background of 1/20) caused by unrecognized
conversion and Dalitz pairs and lack of good hadron identi�cation system,
respectively.

year system energy trigger and collected statistics
1992 S+Au 200 AGeV 4 · 106 central, 3 · 106 e+e− pairs
1993 p+Be 450 GeV 107 e+e− pairs
1993 p+Au 450 GeV 3 · 106 e+e− pairs
1995 Pb+Au 158 AGeV 107 central
1996 Pb+Au 158 AGeV 5 · 107 central
1999 Pb+Au 40 AGeV 107 central
2000 Pb+Au 158 AGeV 3 · 107 central
2000 Pb+Au 80 AGeV 106 central
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A.7 The NA49 experiment at the CERN-SPS

NA49 [1] (see Fig. A.11) is a �xed-target hadron spectrometer which was
operated at the CERN-SPS from 1994 to 2002. Its main elements are four
large-volume time-projection chambers (TPC), two of which are operated in-
side the �eld of two superconducting dipole magnets with a total bending
power of 9 Tm. Two time-of-�ight walls are located behind the TPCs to im-
prove kaon identi�cation at mid-rapidity. A zero-degree calorimeter measured
the energy carried by the projectile spectators.

The NA49 experiment covered a large range of hadronic observables:

• spectra and yield of hadrons (π±, p, p,K±,K0
S , Λ, Λ,Ξ

±, Ω±, φ, Λ∗,K∗);
• production of light nuclei (d, d, 3He);
• anisotropic �ow of identi�ed hadrons;
• particle interferometry;
• transverse and forward energy;
• event-by-event �uctuations of particle yield ratios, mean transverse mo-

mentum, net charge and charged multiplicity;
• exotic baryonic resonances (pentaquarks).

Particle identi�cation is achieved by the energy loss measurement of
charged hadrons in the TPC gas. In addition, hadrons are identi�ed by time-
of-�ight in a restricted acceptance range. Weak decays are identi�ed by the
decay topology and invariant mass, resonances by invariant mass.

The event centrality is estimated using the measurement of the projectile
spectator energy in the zero-degree calorimeter. An online centrality trig-
ger is used to select central events. The event plane is determined from the
azimuthal distribution of produced particles.

The NA49 acceptance covers almost the complete forward rapidity hemi-
sphere. The full pt range is accessible. Typical acceptance values are 50 % for
Λ, 40 % for Ξ and 20 % for Ω and φ. The reconstruction and identi�cation

Fig. A.11 The NA49 detector layout
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e�ciency is larger than 95 % for charged hadrons identi�ed by dE/dx; it is
about 70 % in case of identi�cation by time-of-�ight. Typical e�ciencies for
other particles are 75 % for φ, 4-8 % for Λ, 2-5 % for Ξ and 2-3 % for Ω.
The signal-to-background ratio is of the order of 10−2 for resonances and of
the order of unity for hyperons.

The focus of the NA49 data taking were Pb+Pb collisions, both centrality
selected and minimum bias, at various beam energies (20, 30, 40, 80 and
158 AGeV). In addition, ligher collision systems like C+C and Si+Si were
investigated, as well as p+A interactions (C, Al, Pb) and p+p reactions.
Also, pion and deuteron beams were used.

The experiment was operated at beam intensities from 104 - 105 Hz. Typ-
ical event rates were of the order of 1 Hz. In total, about 60 weeks of beam
time were recorded. Table A.2 summarises the event statistics obtained for
various collision systems.

Table A.2 Event statistics recorded by the NA49 experiment for some collision systems
and trigger settings

System Beam energy (AGeV) Trigger Number of events

Pb+Pb 158 central 3,730,000
Pb+Pb 158 min. bias 650,000
Pb+Pb 80 central 305,000
Pb+Pb 40 central 710,000
Pb+Pb 40 min. bias 840,000
Pb+Pb 30 central 440,000
Pb+Pb 30 semi-central 230,000
Pb+Pb 20 central 360,000
Pb+Pb 20 semi-central 310,000
p+p 158 7,900,000
p+Pb 158 2,950,000
p+Al 158 355,000
C+C 158 min bias 560,000
Si+Si 158 min. bias 410,000

The main scienti�c outcomes of the NA49 experiments are [2-8]:

• The initial energy density in central Pb+Pb collisions at top SPS energy
is about 3 GeV/fm3.

• The measured transverse mass spectra can be described by a blast-wave
parametrisation. Hadron-string transport models fail to reproduce the ob-
served transverse spectra.

• From HBT, strong radial �ow is observed, which is largely independent of
the beam energy.

• The measured hadron abundances can be described by statistical models.
The thermal freeze-out occurs on a smooth curve in the T -µB plane which
approaches the hadron-parton phase transition line as predicted by lattice
QCD at top SPS energy.
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• Anomalies in the energy dependence of hadron production (�horn�, �step�,
�kink�) suggest that decon�nement sets in at low SPS energy.

• The yields of strange hadrons per participant nucleon is enhanced in cen-
tral Pb+Pb collisions with respect to p+p. This enhancement is already
fully present in relatively small systems (C+C, Si+Si).

• No distinct event classes are observed in the event-by-event analysis of
mean transverse momentum or the K/π ratio. The �uctuations are close
to the statistical limit as obtained from mixed events. Non-statistical K/π
�uctuations seem to increase when lowering the beam energy.

• A narrow S=-2, Q=-2 baryonic resonance was observed in the Ξ−π− decay
channel in p+p reactions at 158 GeV beam energy.

Due to its large acceptance, the NA49 detector allows to extract hadron
yields in full phase space, in contrast to most other heavy-ion experiments.
The track measurement in the large TPCs gives rise to a high track re-
construction e�ciency, excellent momentum resolution and good resolution
of secondary decay vertices. On the other hand, the rather slow detector re-
sponse of the TPCs limits the event rates considerably. The precision of track
reconstruction in the TPCs is not su�cient for the detection of displaced ver-
tices from open charm decays. NA49 does not cover leptonic observables due
to the lack of devices for electron or muon identi�cation.
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A.8 The NA57 (WA97) experiment at the CERN-SPS

Experimental setup and observables

NA57, the successor of WA97, is a �xed-target experiment at the CERN-
SPS designed for the measurement of strange baryons in Pb+Pb collisions.
Its main element is a silicon telescope consisting of a set of silicon pixel
detectors. WA97 used a combination of silicon pixel and strip sensors, and
a set of lever-arm pad cathode readout multiwire proportional chambers.
Scintillator petals and microstrip multiplicity detectors near the target are
used to estimate the charged particle multiplicity.

Fig. A.12 Layout of the NA57 experiment

Data were taken for p+Be, p+Pb and Pb+Pb collisions at 40 AGeV and
158 AGeV beam energy. beam intensities were about 106 ions/burst or 107

protons/burst resulting in recorded event rates of a few 103 events/burst
(about 2.5 s spill length, 14.4 s machine cycle). The total beamtime was about
one month/year from 1994 - 1996 (WA97) and from 1998 - 2001 (NA57).

Main observables of the NA57 experiment were transverse mass spectra
and yields of strange baryons (Λ, Ξ−, Ω− and their antiparticles) and K0

S as
well as the charged particle multiplicity for normalization. The weakly decay-
ing particles were identi�ed by their decay topology and the invariant mass.
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The charged particle multiplicity was measured by scintillator petals and
used in the online trigger for centrality selection. O�ine, the charged mul-
tiplicity measurement could be complemented by the microstrip multiplicity
detectors. No event plane determination was possible.

The acceptance covered the midrapidity region with a lower cut on trans-
verse momenta of pt>0.4 GeV. The acceptance of course depends on the
decay topology, however, typical values are on the order of 1% for the Λ for
example. Once in the acceptance the reconstruction e�ciency is as high as 75
% - 95 % depending on the event multiplicity. The invariant mass spectrum
of the reconstructed hyperons and K0

S is almost background free.
A clear advantage of the WA97/NA57 setups was the precise tracking and

the clean identi�cation of weak decays by topology. A limitation was the
restriction of their measurement to the midrapidity region and the missing
identi�cation of the decay products.

Results

The number of recorded events is summarized in table A.3

Table A.3 Event statistics recorded by the NA57 experiment.

System Beam energy (AGeV) Number of events
p+be 158 180 · 106

p+Pb 158 290 · 106

Pb+Pb 40 290 · 106

Pb+Pb 158 460 · 106

p+Be 40 170 · 106

WA97/NA57 were the �rst experiments to employ silicon pixel detectors,
106 channels have successfully been operated. This has been an essential
milestone on the way to Si pixel detectors for the LHC experiments.

The main observation of WA97/NA57 was the enhancement of strange
hadron abundances in central Pb+Pb collisions at 160 A GeV/c beam en-
ergy compared to p+Pb and to p+Be. This enhancement grows with the
strangeness of the produced hadrons and amounts up to 20 for Ω-baryons.
Such a pattern had been predicted as a signature of the transition between
hadronic matter and a plasma of quarks and gluons. The enhancements were
found to increase with the number of nucleons participating in the collision,
across the whole explored centrality range, from rather peripheral (about 50
participant nucleons) to central. NA57 has also measured the strangeness en-
hancement pattern in Pb-Pb collisions at 40 A GeV/c beam momentum: the
e�ect is found to be slightly larger than at top energy for central collisions
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and to have a steeper centrality dependence. So far, it has not been possible
to reproduce the WA97/NA57 results within conventional hadronic models
of nucleus-nucleus collisions.

Besides midrapidity yields NA57 also performed an analysis of the trans-
verse mass distributions of strange particles. A study of the hydrodynamic
behaviour of matter emerging from Pb-Pb collisions at the SPS indicates
that a thermal distribution is superimposed to a collective hydrodynamical
expansion at a speed close to 0.5c. This suggests the generation of a very
strong pressure as it would be expected in case of decon�nement due to the
large increase in the number of degrees of freedom. The collective expansion
velocity and the duration of the expansion of the system before the �nal de-
coupling appears to increase with the number of participants. The interest for
evaluating the hydrodynamical conditions for semi-central collisions at SPS
stems from the observation of an azimuthal anisotropy in the momentum
distribution. At RHIC, in semi-central collisions this observation is close to
calculations near the hydrodynamical limit and thus one of the main pillars
for the "perfect liquid" claim.

Recently, NA57 analyzed the centrality dependence of pt spectra of K0
S

and Λ at 158 A GeV/c in terms of the so called "nuclear modi�cation factor"
(RCP). The RCP pattern measured at the SPS is found to be similar to
that observed at RHIC which has been interpreted as due to energy loss in
the medium formed in the collision. The emerging picture, also considering
that the values of the hyperon enhancements measured at RHIC are similar
to those measured at the SPS, is that there does not seem to be evidence
of a qualitative di�erence between the mechanisms at work in strangeness
production in the systems created in heavy-ion collisions at the two machines.
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A.9 The NA60 experiment at the CERN-SPS

Experimental setup

The �xed-target experiment NA60, schematically shown in Fig. 1, consists of
a muon spectrometer and a zero-degree calorimeter, previously used by the
NA50 experiment, that were complemented with two state-of-the-art silicon
detectors in the target region. The muon spectrometer consists of a hadron
absorber made from carbon and iron discs followed by two groups of multi-
wire tracking chambers and trigger stations in front and behind of a toroid
magnet. The zero-degree calorimeter, positioned at the entrance of the hadron
absorber, determines the centrality of the collisions. The target region is
newly instrumented with two detector systems:

1. A radiation hard beam tracker, made from four stations of single-sided
silicon microstrip detectors operated at cryogenic temperatures, placed
on the ion beam in front of the targets. The beam tracker identi�es for
each beam particle impact time and impact point on the target.

2. A highly granular radiation tolerant silicon pixel detector telescope in-
stalled in a dipole magnet downstream of the targets. This vertex spec-
trometer tracks all charged particles in front of the hadron absorber
and determines their momenta independently of the muon spectrometer.
Planes of silicon micro-strip detectors have also been used when running
with proton beams.

Fig. A.13 Schematical view of the NA60 experiment: Beam tracker, targets, vertex spec-
trometer, hadron absorber, zero degree calorimeter, and muon spectrometer.
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Observables, event characterization

Observables: Dimuon mass and transverse momentum spectra;
Charged-particle multiplicity and momenta;
Centrality;
Displaced vertices, open charm;
Low-mass vector mesons (ρ, ω, φ), J/ψ, Drell-Yan.

Particle identi�cation: Muon spectrometer.

Event-plane: Determination using the pixel detector telescope.

Centrality: Determination using the zero-degree calorimeter
and track multiplicity in the vertex spectrometer.

Performance

Acceptance: 3.3<y<4.3 (at low pT), 3<y<4 (high pT, J/ψ).

Signal/background: From no background at high masses (J/ψ and be-
yond) to ≈ 0.1 for central In-In collisions at low
masses.

Running conditions

in year 2002: p+A (Be, In, Pb), 400 GeV beam ("commissioning
run", 5 days, ≈ 3 × 105 dimuon events);
Pb+Pb, 20 and 30 GeV/u, ("SPS-LHC test",
"commissioning run", 10 days, ≈ 2.5 × 107 mini-
mum bias events).

in year 2003: In+In, 158 GeV/u beam (35 days, 2 × 108 dimuon
events).

in year 2004: p+A (U, W, Cu, In, Be, Pb), 158 GeV beam
(3 days, 3 × 104 J/ψ events);
p+A (U, W, Cu, In, Be, Pb), 400 GeV beam
(≈ 70 days, 3 × 105 J/ψ events).
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Results and outcomes

The experiment has provided important new results that have helped to
sharpen our understanding of heavy-ion physics at SPS energies. For In-In
collisions, in the low-mass dimuon sector, a signi�cant broadening of the ρ
meson, without any mass shift, has been observed, ruling out models that
connect hadron masses directly to the chiral condensate. In the intermediate
mass region, between the ρ and the J/ψ, the presence of an excess in the
dimuon yield has been con�rmed and it has been discovered that this excess
is of a prompt nature (i.e. not connected with open charm decays). The study
of the transverse momentum distributions of excess dimuons at low and in-
termediate mass implies that, beyond m = 1 GeV/c2, the yield is dominated
by a thermal-like contribution, mainly of partonic origin. Finally, the J/ψ
suppression has been studied as a function of centrality in In-In collisions.
The onset of the anomalous J/ψ suppression (i.e. suppression beyond the
expectations from cold nuclear matter absorption) has been found to occur
for a very similar number of participant nucleons for both In-In and Pb-Pb
collisions. A signal of J/ψ elliptic �ow has also been observed, concentrated
in semi-peripheral collisions and at transverse momentum values larger than
1 GeV/c.

Publications as of mid 2008 (for an up-to-date list, see http://na60.cern.ch):

1. First measurement of the ρ spectral function in high-energy nuclear col-
lisions; [NA60], Phys. Rev. Lett. 96, 162302 (2006)

2. J/ψ production in Indium-Indium collisions at 158 GeV/nucleon; [NA60],
Phys. Rev. Lett. 99, 132302 (2007)

3. Evidence for radial �ow of thermal dileptons in high-energy nuclear col-
lisions; [NA60], Phys. Rev. Lett. 100, 022302 (2008)

4. Evidence for the production of thermal-like muon pairs with masses above
1 GeV/c2 in 158 AGeV Indium-Indium collisions; [NA60], submitted to
EPJC

Advantages and limitations

The NA60 experiment has been conceived as an upgrade of the NA50 exper-
iment, that studied muon production in p-A and nucleus-nucleus collisions
at the CERN SPS. In that experiment, it was possible to perform a high-
statistics study of dimuon production thanks to an extremely selective trigger
system. The mass resolution was of the order of 100 MeV for the J/ψ and
of ≈80 MeV for the φ and ω. However, there were severe limitations in the
study of the muon pair continuum. At low masses, the pT acceptance was
essentially zero below 1 GeV/c, making it impossible to access the low pT
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region where thermal dimuon production may become sizeable. Furthermore,
in the mass region beyond the φ, the vertexing capabilities did not allow
to distinguish between prompt muon pairs and dimuons coming from open
charm decays.

In NA60, adding a silicon pixel telescope in the target region, it becomes
possible to perform a matching of the muon tracks before and after the hadron
absorber, both in angular and momentum space. This way it is possible to
improve the dimuon mass resolution in the region of the vector mesons ω and
φ from ≈ 80 to 20 MeV/c2, to signi�cantly reduce the combinatorial back-
ground due to π and K decays and to measure the muon o�set with respect
to the interaction vertex. The additional bend by the dipole �eld in the tar-
get region de�ects soft muons into the acceptance of the muon spectrometer,
thereby strongly enhancing the opposite-sign dimuon acceptance at low mass
and low transverse momentum with respect to all previous dimuon experi-
ments. Furthermore, the selective dimuon trigger and the fast readout speed
of the vertex tracker allow the experiment to run at very high luminosities,
leading to an unprecedented level of statistics for low-mass lepton pairs.
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A.10 The WA98 experiment at the CERN-SPS

Experimental setup

The WA98 experimental setup (see �g. A.14) consisted of large acceptance
hadron and photon spectrometers, detectors for photon and charged particle
multiplicity measurements, calorimeters for transverse and forward measure-
ments, and detectors for triggering purposes.

Fig. A.14 The WA98 experimental setup

The photon spectrometer LEDA was located at 21.5m from the target in
two halves above and below the beam plane. It consisted of 10080 lead glass
modules readout by individual phototubes with custom-developed Cockroft-
Walton bases and ADCs, and a monitoring system based on LEDs and pho-
todiodes. Arrays of streamer tubes with pad readout were placed directly in
front of the photon spectrometer as a charged particle veto detector.

The photon multiplicity detector (PMD), a preshower detector covered
the region between the two halves of LEDA at the same distance. The sam-
pling calorimeters MIRAC and ZDC were placed further downstream to reg-
istered the transverse and forward energy, resp. The Plastic Ball consisted
of 655 ∆E − E detectors arranged in a sphere surrounding the target. Just
downstream of the Plastic Ball a circular silicon pad multiplicity detector
(SPMD) was placed at 32.8 cm from the target. It counted charged parti-
cles with ≈ 1000 pads. The charged particle spectrometer was divided into
a negative and a positive tracking arm. Both used the GOLIATH magnet,
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a large aperture dipole magnet positioned directly behind the Plastic Ball
and providing 1.6 Tm bending power. Both arms were complemented with
scintillator time-of-�ight walls positioned behind the chambers.

Trigger and observables

The minimum bias trigger required a valid signal of the beam counters and
a minimum amount of transverse energy measured in MIRAC. For Pb+Pb
collisions it selected a cross section of σmin−bias ≈ 6300 mb. A central trigger
with a higher transverse energy threshold was used to enhance the ≈ 10%
most central collisions. In hadron-induced reactions a high-energy photon
(HEP) trigger based on the sum energy signal of overlapping 4× 4 groups of
towers in the lead-glass calorimeter was used to enhance the sample of high
pT events. The experiment had implemented an interleaved readout, where
the faster detectors could be read out multiple times during the dead time
of slower systems to enhance the statistics, in particular, for high pT photon
measurements.

The WA98 experiment allowed to measure

• the calorimetric transverse energy, and multiplicity, pseudorapidity and
azimuthal distributions of charged particles and inclusive photons close to
mid-rapidity,

• slow target fragments and positive pions at target rapidity, and charged
hadrons at mid-rapidity with particle ID for low transverse momentum,

• and photons, neutral pions and η mesons at mid-rapidity out to high trans-
verse momentum.

The event centrality could be determined from the measurements of trans-
verse energy (preferred method), forward energy and the multiplicity of
charged particles and photons. Reaction plane determination was possible
with the full azimuthal coverage of the PMD and SPMD at mid-rapidity and
of the Plastic Ball at target rapidity.

Performance

Fig. A.15 shows the acceptance ranges of the WA98 detectors for charged
particle multiplicity (SPMD), photon multiplicity (PMD) and calorimetric
energy (MIRAC and ZDC). The detection e�ciencies in the active areas for
charged hadrons and energy were essentially 100%. The PMD had an average
photon counting e�ciency of ∼ 70% with about 15% of the charged hadrons
misidenti�ed as photons.
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Fig. A.15 Acceptance ranges in pseudorapidity for global observables (charged multiplic-
ity, photon multiplicity and calorimetric energy).

Fig. A.16 Acceptances for identi�ed particles as a function of rapidity and transverse
momentum.

Fig. A.16 shows the acceptance for identi�ed particles. The resolution for
tracking was ∆p/p = 0.5% at p = 1.5 GeV/c and σTOF < 120 ps for the neg-
ative arm (Arm 1), and ∆p/p = 1% at p = 2GeV/c and σTOF < 90 ps for the
positive arm (Arm 2). The single photon detection e�ciency of LEDA was es-
sentially 100% above a low energy threshold. However, the energy resolution
of σ/E = 5.5%/

√
E/GeV + 0.8% and particle overlaps in high multiplicity

events lead to distortions of the momentum spectra, which had to be cor-
rected. The contamination of the photon sample from charged hadrons and
(anti-)neutrons was smaller than 10% each for pT > 0.2 GeV/c. The total
conversion probability for photons in material in front of the photon spec-
trometer was 8.6% in the last run period with Pb+Pb collisions (including
target, vacuum exit window, and air). The largest single source of uncer-
tainty of the measurement with LEDA is the absolute energy scale, which
translates to uncertainties on the total cross section measurement of up to
20% at pT = 4− 5 GeV/c.
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Table A.4 Investigated reaction systems with target thickness and collected statistics.

beam energy target and thickness no. of events enhanc.

Pb 158 AGeV Pb 239 or 495 6.7 · 106 (central)
mg/cm2 4.3 · 106 (periph.)

Pb 158 AGeV Nb 217 mg/cm2 0.5 · 106
Pb 158 AGeV Ni 223 mg/cm2 0.55 · 106
p 160 GeV Pb 495 mg/cm2 1.0 · 106 (min.bias)

1.5 · 106 (HEP) ×26
p 160 GeV C 1879 mg/cm2 1.2 · 106 (min.bias)

0.5 · 106 (HEP) ×16

Results

The WA98 experiment focussed on the study of direct photons in heavy ion
collisions. The observation of direct photons in central Pb+Pb collisions at
the SPS from statistical subtraction of decay photons for intermediate and
high pT is the major achievement of the experiment [1]. This was possible
only by keeping the total systematic error on the direct photons below 10%.
This result has led to a reinvestigation of theoretical predictions of photon
production. Most of the high pT direct photons can be explained by state-of-
the-art prompt photon calculations. A thermal component at intermediate
pT is not excluded but cannot yet be proven to be signi�cant. Later, the
�rst measurement of direct photon interferometry in high-energy heavy-ion
collisions was performed [2]. This provided evidence for a direct photon signal
at low pT .

Related studies of neutral meson production have been performed and
resulted in neutral pion spectra out to very high transverse momentum (xT ∼
0.4) in Pb+Pb [3-5], p+Pb and p+C [6] reactions and more limited results
on η meson production [1]. The comparison of these results shows �rst hints
of jet quenching e�ects already at the SPS.

WA98 has also performed the �rst search for disoriented chiral conden-
sates (DCC) in heavy ion collisions by studying the relative �uctuations of
the multiplicities of charged hadrons and photons (dominantly representing
charged and neutral pions) [7]. An upper limit for DCC production was ob-
tained. Elliptic �ow has been studied via target fragments, and unidenti�ed
charged hadrons, photons and identi�ed K and π at mid-rapidity [8,9]. Most
of these results are in line with the general trend of elliptic �ow at the SPS.
Interestingly, kaons show out-of-plane �ow unlike the other particles. Detailed
studies of the scaling of global variables with centrality have been performed
[10,11], showing a stronger increase of these variables than expected from the
wounded nucleon model. A large number of other studies has been performed,
which can not be covered in this summary.
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Advantages and Limitations

The strong asset of the WA98 experiment were the very good photon and
neutral pion detection capabilities. Of crucial importance were the low ma-
terial budget in front of the photon detector including a thin target, and the
excellent performance of the photon spectrometer regarding in particular its
calibration and gain stability.

Furthermore, both centrality and reaction plane measurement capabilities
were very good. The redundant systems for centrality related measurements
allowed a good systematic understanding, such that the observables allowed
centrality cuts as stringent as 1% of the cross section in Pb+Pb. The reaction
plane studies could pro�t from relevant detectors well separated in rapidity
which allows to reduce the in�uence of non-�ow.

The major limitation of the measurements was the available statistics,
in particular for the high pT measurements. Reasons for this were in part
unavoidable, caused e.g. by the choice of a thin target or by the radiation
limits in the experimental area, but also by external circumstances like limited
total amount of beam time.
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A.11 The BRAHMS experiment at RHIC/BNL

Experimental setup

A perspective view of the BRAHMS detector layout is presented in Fig. A.17.
Two rotatable magnetic spectrometers, the Forward Spectrometer (FS) and
the Mid-Rapidity Spectrometer (MRS) are augmented by global detectors:
a two-component multiplicity array surrounding the interaction vertex, the
beam-beam counters (BBC) located 220 cm away from the vertex and close
to the beam pipe and the zero-degree calorimeters (ZDC) 18 m from the
interaction point. The FS contains four dipole magnets for sweeping and
analyzing particles emerging from the reaction in a solid angle of 0.8 msr.
The �rst two tracking detectors are Time Projection Chambers (TPC) which
provide good three-dimensional track recognition and a high degree of back-
ground rejection in a high multiplicity environment; the remaining tracking
detectors are Drift Chambers (DC). Particle identi�cation in the FS is based
on two Time-Of-Flight (TOF) hodoscopes, and two Cherenkov detectors: a
threshold detector and a ring imaging Cherenkov detector. The MRS is a
single dipole magnetic spectrometer with a geometric acceptance of 6.5 msr
and it covers the angular range of between 30◦ and 95◦ . Two TPCs provide
the tracking information in the MRS; particle identi�cation is accomplished
with a highly segmented scintillator TOF wall.

Observables

The BRAHMS detectors are designed to cover the widest possible range in
polar angle relative to the beam direction with precise momentum determi-
nation and good particle identi�cation. Two separate spectrometers, one for
low to medium momenta and one for high momenta (25-30 GeV/c around
2◦), both with comparatively small solid angles, measure and identify charged
pions, kaons and protons.

A left-right coincidence of the ZDC timing signals with a narrow time
overlap of about 5 ns provides a zero level trigger. The BBCs provide the
second zero level trigger input, the start time for the TOF measurements
and the primary collision vertex position to an accuracy of approximately
1 cm. The Multiplicity Array is used to establish overall charged particle
multiplicities. An inner barrel of Si strip detectors and an outer barrel of
plastic scintillator tile detectors measure the energy loss of particles passing
through the array. The detectors are only modestly segmented so they can
provide both a pseudo-rapidity density of charged particles and an event
plane. The Si strip detectors and scintillator tiles give quasi-independent
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measurements of the event-by-event charged particle multiplicities, the latter
being fast enough to be part of the level 1 trigger.

Performance

The rapidity coverage of the entire spectrometer is from y ≈ 0 to y ≈ 4 (for
comparison the beam rapidity is 5.37 at the maximum RHIC collision energy
of 100 GeV/nucl.). The pT coverage is optimized for soft physics, i.e. the
region around the mean pT , starting from about 200 MeV/c and approaching
3-4 GeV/c. Since both spectrometers have small solid angles many polar

Fig. A.17 The BRAHMS detectors in perspective. The spectrometer magnets are denoted
D1-D5, the TOF hodoscopes in the FS are H1 and H2, and the tracking counters T1-T5,
where T1 and T2 are TPCs and T3, T4 and T5 are multi-wire DCs. The two Cherenkov
counters in the FS are C1 and RICH. TPM1 and TPM2 are the tracking chambers of the
MRS, while the TOF system is the TOFW. The global detectors are denoted as BBCs and
multiplicity. The ZDCs are situated beyond the DX beam magnets. The distance between
the front of the two DX beam magnets is 18 m.
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angles and magnetic �eld settings have to be systematically combined in
order to obtain a broad rapidity coverage.

The highly segmented scintillator TOF wall of the MRS provides π/K
separation to momenta of 2 GeV/c and K/p separation to momenta of 3.5
GeV/c (at 3σ). Particle identi�cation in the FS is based on TOF hodoscopes
that achieve a 3σ-separation of π/K and K/p up to momenta of 3.3 and
5.7 GeV/c, respectively, for H1 and to 5.8 and 8.5 GeV/c, respectively, for
H2. The threshold Cherenkov detector, C1 extends the π/K/p identi�cation
behind H1 to 9 GeV/c while the RICH detector allows π/K/p separation in
the high momentum con�guration up to 25 GeV/c.

Running conditions

BRAHMS participated in the RHIC running periods from 2000 until 2006
and took the following data sets:

• 200 GeV

� Au+Au (80M, min. bias and central collisions, 200M sampled min. bias
events) (2001, 2004)

� Cu+Cu (1.75 nb−1, 160M events) (2005)
� d+Au (120M min. bias events) (2003)
� p+p (sampled 2.5 pb−1 min. bias events) (2002, 2003, 2005)

• 62.4 GeV

� Au+Au (18M min. bias events, sampled) (2004)
� Cu+Cu (0.12 nb−1, 25M events) (2005)
� p+p (sampled 0.21 pb−1 min. bias events) (2006)

At full luminosity the Au-Au nuclear collision rate is about 1.2 kHz (2001).
A centrality trigger was implemented to select the 20% most central collisions.
The pp collision rate was 50 kHz. In the later runs in 2003-2006 speci�c
spectrometer and vertex range triggers were implemented allowing to sample
the full luminosity thus enriching the physics data samples. Event rates of
60 Hz with an event size of 60 kbyte have been achieved for AuAu, while pp
runs were taken typically with 120 Hz and 30 kb event size.

Results

Some of the results speci�c to BRAHMS are listed below:

• Pseudo-rapidity density distribution and total multiplicity of charged
particles [3,4,9]: The pseudo-rapidity density at mid-rapidity in central



968 A Overview on heavy ion experiments

Au+Au collisions, normalised to the number of nucleon-pairs exceeds the
one observed in p+p collisions but is surprisingly small when compared to
model predictions.

• Rapidity distribution of identi�ed charged hadrons [2,5,10]: The rapidity
distribution can be described by a Gaussian shape, the width agrees with
predictions based on the Landau model. The rapidity dependence of parti-
cle ratios has been studied for small and large systems at 64 and 200 GeV.
Large K+/π+ and small K−/π− ratios at forward rapidities in central
Au+Au collisions have been observed - values which are similar to those
at the SPS at mid-rapidity (and in 4π) when compared at the same p/p
ratio

• Net proton rapidity distribution [8]: The kinetic energy that is removed
from the beam and which is available for the production of states such as
the sQGP depends on the amount of stopping between the colliding ions.
This value has been determined to be 73% for central Au+Au collisions at
200 GeV. The process of stopping itself is not really understood, not even
for small systems like p+p and d+Au.

• Nuclear modi�cation factor [6,7,11,12]: Due to the pT coverage up to 4
GeV/c suppression e�ects at intermediate transverse momenta could be
studied. The nuclear modi�cation factor for pions changes from a Cronin-
like enhancement at mid-rapidity to a suppression at forward rapidities in
d+Au collisions. This e�ect could be interpreted as an indication of gluon
saturation. In central Au+Au no rapidity dependence of the suppression of
pions was observed. This could be an indication of corona emission of jets
or may be due to interplay between initial (saturation) and �nal (parton
energy loss) state e�ects.

• Transverse Single Spin Asymmetries of π and K in pp collisions [13]: The
high xF coverage allowed measurements of single spin asymmetries at 62
and 200 GeV. Large values are observed for both pions and kaons. In
particular the almost identical asymmetry for K+ and K− is surprising.
These data will contribute to the understanding of the orbital angular
momentum in the proton.

Advantages and limitations of the experimental
approach

The BRAHMS detector is the only detector system at RHIC that can study
both stopping and production of pions, kaons and protons at forward ra-
pidities. The excellent momentum measurement and particle identi�cation
capability at small angles and large momenta has a drawback: the small solid
angle of the spectrometers introduce limitations which result in low statistics
for rare particles (antiprotons at forward rapidities) and restrict correlation
studies, e.g. in HBT the limited spectrometer acceptance restricts the Q-side
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range; resonance (e.g. Λ) studies are practically impossible (with the excep-
tion of a limited acceptance for φ decaying into charged kaons).
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A.12 The PHENIX experiment at RHIC/BNL

The Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) is
located at Brookhaven National Laboratory's Relativistic Heavy Ion Collider
(RHIC). PHENIX is designed for a broad study of (polarized) p-p, p(d)-A,
and A-A collisions to search for and characterize new states of strongly inter-
acting matter as well as to measure the spin structure of the proton. While
rare probes, i.e. electromagnetic probes and phenomena at high transverse
momentum, are considered a priority for the physics program, global observ-
ables and soft identi�ed hadron spectra are measured in PHENIX as well.

Experimental Setup

The PHENIX setup was optimized for rare probe measurements in a lim-
ited acceptance and integrates a large number of subsystems for excellent
tracking and particle identi�cation with a high-bandwidth trigger and data-
acquisition system. At RHIC, this approach is complementary to the main
focus of the STAR experiment which emphasizes the tracking of almost all
charged particles in a large acceptance time projection chamber.

PHENIX uses a set of global detectors to characterize the collisions, a pair
of central spectrometer arms to measure electrons, hadrons, and photons
around mid-rapidity, and a pair of forward spectrometers to measure muons.
The detector setup in its con�guration from the 2007/08 run at RHIC is
sketched in Fig. A.18. The overall design parameters of PHENIX as well
as detailed descriptions of the various subsystems have been published in a
dedicated volume of Nuclear Instruments and Methods in Physics Research
[1].

Fig. A.18 Sketch of the PHENIX setup in its con�guration from the 2007/08 run at
RHIC in beam view (left) and side view (right).
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For event characterization a set of global detectors is used. A pair of Zero-
Degree hadronic Calorimeters (ZDC) measures neutrons from beam frag-
ments downstream of the interaction region. A pair of Beam-Beam Counters
(BBC) covers the full azimuth in pseudo-rapidity intervals ∆η = ±(3.1−3.9)
and measures the time and position of an interaction along the beam direc-
tion via the time of �ight of prompt charged particles. The ZDC and/or BBC
provide interaction triggers and contribute to the centrality measurement for
nuclear collisions. The orientation of the reaction plane is measured with the
BBC and a dedicated Reaction-Plane Detector which covers the full azimuth
in the range ∆η = ±(1.0− 2.8).

An axial magnetic �eld (�eld integral up to 1.15 Tm) is provided for the
central spectrometers parallel to the beam and around the interaction ver-
tex. The central spectrometers cover the pseudo-rapidity range ∆η = ±0.35
and combine a tracking system for charged particles with electromagnetic
calorimetry. The tracking system (∆φ = 90◦ × 2) comprises a pair of Drift
Chambers (DC), which allow for projective tracking of charged particles, and
three sets of Pad Chambers (PC), which add three-dimensional space points
for pattern recognition and tracking in the non-bend plane. A momentum
resolution of σp/p ' 0.7%⊕1.0%p (GeV/c) is achieved, which translates into
an invariant mass resolution of ∆m/m ' 1.0% at m = 1 GeV/c2. A Time
Expansion Chamber (TEC) in one of the spectrometers (∆φ = 90◦) provides
additional tracking and particle identi�cation capabilities.

Particle identi�cation is achieved by a set of dedicated detectors. For
hadron identi�cation two time of �ight (TOF) detector systems are in place
which both provide a time resolution of better than 100 ps, i.e. the scintillator
based TOF-E (∆φ = 45◦) in one spectrometer arm and the multigap resistive
plate chamber based TOF-W (∆φ = 14◦) in the other arm. These detectors
provide a 4σ π/K and K/p separation up to transverse momenta pT of 2.5 and
4.5 GeV/c, respectively. An additional aerogel Cerenkov detector (∆φ = 14◦)
allows to separate pions from kaons in the range 1 < pT < 5 GeV/c. A pair of
CO2 �lled Ring-Imaging Cerenkov detectors (RICH) covering both spectrom-
eters (∆φ = 90◦ × 2) identi�es pions for pT > 5.5 GeV/c and is crucial for
clean electron identi�cation up to momenta of 4.7 GeV/c. To further extend
the pT range of the electron measurement to ' 10 GeV/c the information
from the RICH is combined with the energy and shower shape measured in
the electromagnetic calorimeters for electron candidate tracks. A pion con-
tamination in the electron sample of better than one part in 104 is obtained
over a wide momentum range.

Two electromagnetic calorimeters are used in PHENIX, i.e. a lead-scin-
tillator (PbSc) sampling calorimeter (∆φ = 90◦ + 45◦) with a nominal en-
ergy resolution of 8.1%/

√
E(GeV) ⊕ 2.1% and an intrinsic time resolution

of better than 200 ps for electromagnetic showers, and a lead-glass (PbGl)
Cerenkov calorimeter (∆φ = 45◦) providing a nominal energy resolution of
6%/

√
E(GeV) and a time resolution of better than 300 ps for electromag-

netic showers. The main purpose of the calorimeters is the measurement of
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photons and energetic electrons. The segmentation and position resolution
of the calorimeters is su�cient to resolve the two electromagnetic showers
from the decay π0 → γ + γ up to pT of ≈ 25 GeV/c. At forward rapidities
(∆η = ±(3.1−3.65)), an additional pair of lead-tungstate crystal based muon
piston calorimeters (MPC) covering the full azimuth allows to measure cross
sections and spin asymmetries of neutral pions in d-Au and polarized p-p
collisions.

Two muon spectrometers at rapidities of −2.25 < y < −1.15 and 1.15 <
y < 2.44 cover the full azimuth and are optimized for the measurement of
J/ψ di-muon decays. Both spectrometers comprise a muon tracker (MuTr)
inside a radial magnetic �eld followed by a muon identi�er system to reject
hadron background. In the muon trackers three stations of multi-plane drift
chambers provide precision tracking. The muon identi�ers are made from
alternating layers of steel absorbers and tracking layers of Iarocci streamer
tubes. Typically, the pion contamination in the identi�ed muon sample is
about 3× 10−3.

The trigger and data acquisition systems were optimized for the study
of rare event physics. In addition to minimum bias collision triggers from
the BBC and/or ZDC level-1 hardware and level-2 software trigger system
are in place. Various triggers were implemented, including triggers on the
collision centrality, single electrons or muons above a given energy threshold
or penetration depth into the muon identi�er, respectively, energy deposit in
the calorimeters above a given threshold, or more sophisticated triggers, e.g.

RHIC run year species
√
sNN [GeV] int. luminosity sampled events data volume

1 2000 Au-Au 130 1 µb−1 10× 106 3 TB

2 2001/02 Au-Au 200 24 µb−1 170× 106 10 TB
Au-Au 19 < 1× 106

p-p 200 0.15 pb−1 3.7× 109 20 TB

3 2002/03 d-Au 200 2.71 nb−1 5.5× 109 46 TB
p-p 200 0.35 pb−1 6.6× 109 35 TB

4 2003/04 Au-Au 200 241 µb−1 1.5× 109 270 TB
Au-Au 62.4 9 µb−1 58× 106 10 TB

5 2005 Cu-Cu 200 3 nb−1 8.6× 109 173 TB
Cu-Cu 62.4 0.19 nb−1 0.4× 109 48 TB
Cu-Cu 22.4 2.7 µb−1 9× 106 1 TB
p-p 200 3.8 pb−1 85× 109 262 TB

6 2006 p-p 200 10.7 pb−1 233× 109 310 TB
p-p 62.4 0.1 pb−1 28× 109 25 TB

7 2007 Au-Au 200 813 µb−1 5.1× 109 650 TB

8 2007/08 d-Au 200 80 nb−1 160× 109 437 TB
p-p 200 5.2 pb−1 115× 109 118 TB

Au-Au 9.2 few ×103

Table A.5 Summary of basic running conditions and data samples recorded by PHENIX
until RHIC run 8.
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on electron or muon pair candidates above a given invariant mass. Up to now
a maximum throughput of 8 kHz has been achieved in the data acquisition.

PHENIX has recorded data in all runs at RHIC. The colliding species and
energies per nucleon-nucleon pair, as well as the size of the recorded data
sets and the number of total collisions sampled by the level-1 and/or level-2
triggers are summarized in Tab. A.5.

Main results and publications

As multi-purpose experiment with a focus on rare probes PHENIX has con-
tributed signi�cantly to the characterization of the medium produced in rela-
tivistic nucleus-nucleus collisions at RHIC as a form of dense partonic matter
[2]. A selection of results from the heavy-ion program demonstrates the broad
spectrum of observables accessible by PHENIX:

• global observables: PHENIX has systematically studied the centrality
and

√
sNN dependence of the charged particle pseudo-rapidity density

dNch/dη and the transverse energy dET /dη in Au-Au collisions [3].
• identi�ed hadrons: PHENIX has measured π±, K±, p, and p̄ spectra

in Au-Au collisions at
√
sNN = 130 [4] and 200 GeV [5]. An anomalously

large (anti)proton yield was observed at intermediate pT [4,5]. The elliptic
�ow of hadrons was measured at various energies [6,7] and a quark number
scaling of the azimuthal anisotropies was observed [8].

• high pT probes: PHENIX has observed a substantial suppression of neu-
tral pions and charged particles at high pT [9] in Au-Au collisions which
is absent in d-Au collisions [11]. This indicates partonic energy loss in the
medium produced in nucleus nucleus collisions at RHIC [10]. Direct pho-
tons from hard scattering processes have been measured in p-p [12] and
Au-Au collisions [13]. Away-side di-jet induced azimuthal correlations of
hadron pairs have been observed to be signi�cantly modi�ed in nuclear
collisions [14].

• heavy �avor: PHENIX has measured electrons from semileptonic heavy-
�avor decays in Au-Au collisions which show that the total charm yield
scales with the number of binary collisions [15]. The nuclear modi�ca-
tion of electron spectra at high pT , observed together with a substantial
azimuthal anisotropy of electron emission, indicates a strong interaction
of heavy �avor with the medium produced in Au-Au collisions, which
can be characterized as an almost perfect �uid with partonic degrees of
freedom [16,17]. In addition, PHENIX has systematically measured J/ψ
production in p-p [18], d-Au [19], Cu-Cu [20], and Au-Au [21] collisions
at
√
sNN = 200 GeV. Medium e�ects in cold and hot matter leave their

footprint on the centrality, pT , and rapidity dependence of J/ψ production
in nuclear collisions at RHIC [22].
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• electromagnetic probes: PHENIX has measured correlated di-electron
production in p-p [23] and Au-Au [24] collisions at

√
sNN = 200 GeV.

In particular, a signi�cantly enhanced low-mass pair yield is observed in
Au-Au collisions compared to the expectation from hadronic sources and
relative to the binary collision scaled p-p reference [24,25].

Further information about PHENIX as well as a complete record of all
publications can be found at http://www.phenix.bnl.gov.
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A.13 The PHOBOS experiment at RHIC/BNL

The PHOBOS experiment is the smallest in size of the four heavy-ion collision
experiments at RHIC. It has been designed to perform comprehensive stud-
ies of global parameters of ultra-relativistic heavy-ion collisions with almost
complete coverage of the solid angle. The multiplicity of charged particles can
be measured over the pseudorapidity interval −5.4 < η < 5.4. At midrapidity
special focus was set on the measurement and identi�cation of low pt particles.
The detector system has been mainly used for charged particle multiplicities,
spectra, two-particle correlations, and collective �ow characteristics.

Experimental Setup

The PHOBOS setup as depicted in �gure A.19 and described in detail in [1]
consists of four subsystems: a Multiplicity array, a Vertex detector, a two-
arm Spectrometer including time-of-�ight walls, and several trigger detectors
which also determine the centrality of the collisions. The detector is rather
compact; almost all elements are located within 1 m of the beam line with the
�rst detectors located in the closest proximity (appr. 10 cm) to the interaction
region. A Be beampipe with a wall thickness of only 1 mm was chosen in order
to minimize the e�ect of particle decays and multiple scattering in material
near the collision region, which is especially important at low pt.

The Multiplicity array consists of single layer silicon detectors used to
measure the number and angular distribution of charged particles over a
pseudorapidity range of |η| ≤ 5.4. It consists of a central, octagon-shaped
barrel of 1.1 m length and 9 cm diameter around the beampipe covering |η| ≤
3.2 and six ring detectors at distances of ±1.13 m, ±2.35 m, and ±5.05 m from
the interaction point along the beam axis extending the coverage to |η| ≤ 5.4.
Above and below the interaction region additional double layers of �nely
segmented Si sensors are used for precise vertex determination. For collisions
that take place within ±10 cm of the nominal center of the apparatus, the
vertex position can be determined with an accuracy of better than 0.2 mm
along the beam line. The geometrical acceptance of these Si detectors is
depicted in �g. A.20. Apart from the opening for the Spectrometer arms
these detectors provide almost complete coverage for |η| ≤ 5.4.

The Spectrometer consists of two arms of 15 silicon layers each located of
either side of the beam axis. This subsystem provides tracking and particle
identi�cation of roughly 2% of the charged particles emitted in a typical inter-
action. It covers a span of appr. 0.7 units of pseudorapidity for a given vertex
location with a total coverage of approximately 0 ≤ η ≤ 2. The orientation
of the spectrometer was designed to allow tracking of very low pt particles,
i.e. from 30 MeV/c on. Particle identi�cation is achieved using the energy
loss in the Si layers as well as additionl time-of-�ight information from two
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Fig. A.19 Schematic layout of the PHOBOS detector. The top yoke of the magnet is not
shown [1].

Fig. A.20 The geometrical accep-
tances of the Ring (light), Octagon
(medium) and Inner Vertex (dark)
detectors for particles emitted from
the nominal interaction point are
shown as a function of η and φ [1].

arrays of scintillator TOF counters with photomultiplier tubes (Hamamatsu
R5900). The combined π/K separation reaches up to 1.4 GeV/c, the one for
p/K up to 3.0 GeV/c.

With these detectors the PHOBOS apparatus makes thus extensive use
of silicon pad detector technology. Although the pad sizes and shapes vary
greatly among the di�erent components, a common AC-coupled, single sided,
silicon pad design was used for all sensors.

For trigger detectors PHOBOS employs paddle counters from BC-400 plas-
tic scintillators as primary event trigger, Cherenkov counters to produce the
interaction vertex trigger, and a zero degree calorimeter which is common
to the other RHIC experiments as minimum bias trigger and for centrality
selection.
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The PHOBOS data aquisition is capable of accepting data from 150,000
silicon and 2000 scintillation detector channels at an event rate of 200 Hz, and
sending the data over a Gigabit network to the RHIC central data storage
system at a sustained rate of 30 MB/s. The detector was successfully com-
missioned and used to measure Au+Au, p+p, d+Au and Cu+Cu collisions
at RHIC from the �rst run in 2000 until Run 5 in 2005.

Main results and publications

As the PHOBOS experiment is focussed on global observables and multiplic-
ities. Amongst its main outcome are charged particle pseudorapidity distri-
butions over 11 units in η for all RHIC energies and collisions systems, see
e.g. the �rst RHIC publication [2] and an overview of the �rst 5 RHIC years
in [3]. Detailed analysis of elliptic �ow data, including the study of correla-
tions and �uctuations of the initial source eccentricity were performed [4-6].
PHOBOS also contributed identi�ed particle spectra extending the measured
pt-spectra from the other RHIC experiments to lowest pt [7]. Studying two-
particle correlations with a high transverse momentum trigger particle, not
only a broadening of the away-side azimuthal correlation ("jet quenching")
is observed compared to p+p, but also an additional correlation on the trig-
ger particle side extended over ∆η sim4 [8]. Overall, the measured values
of charged particle pseudorapidity density and elliptic �ow were found to be
independent of energy over a broad range of pseudorapidities when e�ectively
viewed in the rest frame of one of the colliding nuclei, a property described
as "extended longitudinal scaling". The centrality and energy dependence of
several observables were found to factorize to a surprising degree [3].

Further information about PHOBOS as well as a complete record of all
publications can be found at http://www.phobos.bnl.gov/.
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A.14 The STAR experiment at RHIC/BNL

The Solenoidal Tracker At RHIC (STAR) is one of the two large experiments
at the Relativistic Heavy Ion Collider at BNL. The experiment started taking
data in 2000 and is running since then.

Experimental Setup

STAR was designed primarily for measurements of hadron production over
a large solid angle, featuring detector systems for high precision tracking,
momentum analysis, and particle identi�cation at the center of mass (c.m.)
rapidity. The large acceptance of STAR makes it particularly well suited for
event-by-event characterizations of heavy ion collisions and for the detection
of hadron jets. The detector was build, unlike PHENIX, to measure the max-
imum information content from the abundant probes in a single heavy ion
collisions rather than rare probes. Therefore its capabilities in photons and
leptons are limited. The layout of the STAR experiment is shown in Fig. A.21.
All detector components are described in detail in a dedicated NIM volume
[1].

A room temperature solenoidal magnet with a uniform magnetic �eld of
maximum value 0.5 T provides momentum for charged particles. A Silicon
Vertex Tracker (SVT) close to the interaction allows precision localization of
the primary interaction vertex and identi�cation of secondary vertices from
weak decays of strange and charmed hadrons. The SVT is arranged in three
cylindrical layers at distances of approximately 7, 11 and 15 cm from the
beam axis. A 4th layer of Silicon Strip Detectors (SSD) has been added to
the inner tracker in 2002. The silicon detectors cover a pseudo-rapidity range
η = ±1 with complete azimuthal symmetry (φ = 2π).

At the heart of STAR is the world's second largest Time Projection Cham-
ber (behind the new ALICE-TPC), which has been used reliably and success-
fully for the past eight years. The TPC enables charged particle tracking and
particle identi�cation in a volume from 50 to 200 cm radially from the beam
axis. The TPC is 4 m long and it covers a pseudo-rapidity range η = ±1.8 for
tracking with complete azimuthal symmetry (φ = 2π). The TPC contributes
to particle identi�cation using ionization energy loss, with an energy loss res-
olution (dE/dx) of 7%. The combined momentum resolution of the SVT and
TPC reach a value of dp/p = 0.02 for a majority of the tracks in the TPC.
The dp/p resolution improves as the number of hit points along the track
increases and as the particle's momentum decreases.

To extend the tracking to the forward region, STAR features a radial-drift
TPC (FTPC) covering η = ± 2.5-4, also with complete azimuthal coverage
and symmetry. A full-barrel electromagnetic calorimeter (EMC) was installed
over a period of years together with an endcap electromagnetic calorimeter
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Fig. A.21 Schematic of STAR in its complete con�guration as of 2007, beam view (left)
and side view (right)
.

(EEMC) yielding a coverage of -1 < η < 2 and φ = 2π. This system allows
the measurement of the transverse energy of events, and trigger on and mea-
sure high transverse momentum photons, electrons, and electromagnetically
decaying hadrons. The EMCs include shower-maximum detectors to distin-
guish high momentum single photons from photon pairs resulting from π and
η meson decays. The EMCs also provides prompt charged particle signals
essential to discriminate against pileup tracks in the TPC, arising from other
beam crossings falling within the 40 µs drift time of the TPC, which are
prevalent at RHIC pp collision luminosities (> 1032 cm−2 s−1).

In the early years of STAR particle identi�cation at large momenta has
been achieved over a small solid angle for identi�ed single-particle spectra at
mid-rapidity using a Ring Imaging Cherenkov detector which covered η<±0.3
and φ=0.11π. A new Time-Of-Flight (TOF) detector covering η ±1 over the
full azimuth is one of two main upgrades to STAR, which will be completed
in the next few years. The other device is the so-called Heavy Flavor Tracker
(HFT) which replaces the SVT in an attempt to reconstruct the hadronic
decays of charm and bottom hadrons. The HFT is based on active pixel
sensor technology and will improve the positions resolution in the SVT by
about a factor 5 down to below 10 micron.

The STAR trigger system is a 10 MHz pipelined system with di�erent
trigger levels which is based on input from fast detectors to control the event
selection (level 0) for the much slower tracking detectors. In particular STAR
has a 3rd level trigger which performs complete online reconstruction of the
events in a dedicated CPU farm also providing an online display (Fig. A.22)
for visual inspection of individual events in real time. The level 3 trigger can
process central Au+Au collisions at a rate of 50 Hz including simple analysis
of physics observables such as particle momentum and rate of energy loss.

The fast detectors that provide input to the trigger system are a central
trigger barrel (CTB) at η < 1 and zero-degree calorimeters (ZDC) located in
the forward direction at Θ < 2 mrad. The CTB surrounds the outer cylinder
of the TPC, and triggers on the �ux of charged-particles in the midrapidity
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Fig. A.22 STAR online display for
a typical central Au+Au collision.

region. The ZDCs are used for determining the energy in neutral particles
remaining in the forward directions. Each experiment at RHIC has a com-
plement of ZDCs for triggering and cross-calibrating the centrality triggering
between experiments.

STAR's data volume for a single event is considerably larger than PHENIX's
and it utilizes signi�cantly slower detector components (drift detectors), in
terms of readout speed. In particular the TPC limits STAR's bandwidth in
terms of data volume and readout speed. Therefore the initial event collection
speed in STAR was 1 Hz with an average data volume of 20 MB for a central
AuAu collision. Since then the TPC readout electronics has been upgraded,
the DAQ and Trigger frameworks have been optimized and STAR's latest
setup is running at a few hundred Hz. The �nal goal for STAR is to run all
detector components at 1kHz, a goal that should be achievable within the
next two years pending certain further improvements to the data compacti-
�cation in the data acquisition.

STAR has recorded data in all eight runs at RHIC since 2000. The collid-
ing species and energies per nucleon-nucleon pair, as well as the size of the
recorded data sets and the number of total collisions sampled are summarized
in Tab. A.6.

Main results and publications

The main publications of STAR deal mostly with hadronic and global ob-
servables, see [2] for a summary on results leading to the announcement of
the discovery of a strongly coupled QGP in 2005 often referred to as a perfect
liquid. STAR collects and reconstructs most of the hadronic particle emission
from heavy ion collisions, due to its almost complete pseudo-rapidity cover-
age and its high resolution vertexing capabilities which enable reconstruction
of short lived hadronic resonances, as well as strange and potentially heavy
quark hadrons. More speci�c highlights of the STAR pool of publications can
be characterized as follows:
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RHIC run year species
√
sNN [GeV] sampled events

1 2000 Au-Au 130 2× 105

2 2001/02 Au-Au 200 10× 106

Au-Au 19 5× 104

p-p 200 8× 106

3 2002/03 d-Au 200 31× 106

p-p 200 50× 106

4 2003/04 Au-Au 200 60× 106

Au-Au 62.4 18× 106

p-p 200 13× 106

5 2005 Cu-Cu 200 75× 106

Cu-Cu 62.4 40× 106

Cu-Cu 22.4 4× 106

p-p 200 250× 106

6 2006 p-p 200 400× 106

p-p 62.4 50× 106

7 2007 Au-Au 200 100× 106

8 2007/08 d-Au 200 1.2× 109

p-p 200 300× 106

Au-Au 9.2 1× 106

Table A.6 Summary of basic running conditions and data samples recorded by STAR
from 2000-2008.

• directed and elliptic �ow: STAR has measured the directed (v1) and
elliptic �ow (v2) parameters as well as higher order harmonics for charged
particles and identi�ed particles, including resonances, all the way up to
the Ω. These measurements have established evidence for near ideal hydro-
dynamic behavior of the partonic phase. In addition the quark scaling be-
havior at intermediate pT proves the partonic nature of the collective phase
and gives evidence for recombination as a prime hadronization mechanism
at RHIC energies [3-12].

• identi�ed hadrons: A detailed analysis of the identi�ed spectra in STAR
yields strong evidence for radial �ow with expansion velocities in excess
of 0.6c for the bulk matter, plus evidence for recombination for matter at
intermediate pT [13-15]. Source sizes measured through HBT are surpris-
ingly small though [16-19]. Simultaneous analysis of hadronic resonances
and stable particles sets constraints on the partonic and hadronic life-
times at RHIC [20,21]. Strangeness enhancement and the behavior of the
φ-meson in the context of hadron production has been measured exten-
sively [22-27].

• high pT probes: STAR has measured jet quenching in charged and iden-
ti�ed particle spectra to a level that is only achievable in a decon�ned par-
tonic system. The disappearance of the high momentum away-side jet com-
ponents in di-jet correlation measurements was an early highlight at RHIC
which again con�rmed the partonic nature of the medium. Measurements
of the quenching strength as a function of reaction plans proved the an-
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ticipated path length dependence of radiative energy loss. Punch-through
measurements of very high away-side jets quanti�es the surface bias of the
leading hadron correlation method and it constrains the measurements
of the in-medium modi�cation of the fragmentation process, plus the de-
termination of transport coe�cients and gluon densities at RHIC. Several
high momentum correlation structures (e.g. the same-side ridge) have been
discovered at RHIC which suggest enhanced interactions between the jet
and the partonic medium [28-34].

• heavy �avor: Heavy �avor quenching at RHIC is still not well understood
but it gives rise to the possibility of enhanced collisional energy loss, plus
it constrains the measurements of the shear viscosity (η/s) to values near
the quantum limit and far away from the pQCD limit (i.e. sQGP) [35,36].
Separate measurements of fully reconstructed D- and B-mesons will be one
of the highlights of future heavy ion measurements in STAR [37].

• �uctuations and correlations: STAR has an extensive program of �uc-
tuation and correlation measurements. Although strong evidence for criti-
cal �uctuations has not been found, recent correlation measurements seem
to hint at transitional behavior at a given energy/particle density in mid-
central heavy ion collisions at RHIC [38-41].
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A.15 The ALICE Experiment at the CERN LHC

ALICE (A Large Ion Collider Experiment) is a dedicated heavy ion experi-
ment at the CERN LHC, designed to address the physics of strongly interact-
ing matter and the quark-gluon plasma at extreme values of energy density
and temperature in nucleus-nucleus collisions. The most stringent design con-
straint is to cope with the extreme particle multiplicity anticipated in central
Pb-Pb collisions (up to dNch/dy=8000). The detector has been built by a
collaboration including currently over 1000 physicists and engineers from 105
institutes in 30 countries. Its overall dimensions are 16 × 16 × 26 m3 with
a total weight of approximately 10000 t. The experimental setup is shown
in Fig. 1. A solenoid magnet with an inner length of 12.1 m and a radius of
5.75 m, inherited from the L3 experiment at LEP, provides a �eld of 0.5 T
at the nominal current of 30 kA. The �eld uniformity is better than 2%. The
solenoid houses the full azimuthal acceptance central barrel detectors ITS,
TPC, TRD, and TOF, as well as several special purpose smaller detector
systems.

Fig. A.23 The ALICE experiment at the CERN LHC. See the text for the description of
subdetectors.

The tasks of the Inner Tracking System (ITS) are to localize the primary
vertex with a resolution better than 100 µm, to reconstruct the secondary
vertices from the decays of hyperons and D and B mesons, to track and
identify particles with momentum below 200 MeV/c, and to improve the
momentum and angle resolution for particles reconstructed by the TPC. The
six cylindrical layers of ITS (two pixel, two drift, and two strip detectors) are
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located at radii between 4 and 43 cm, have a resolution in the bending plane
of r∆φ = 12−35 µm, and cover the rapidity range of |η| < 0.9 for all vertices
located within the length of the interaction diamond (σ = 5.3 cm along the
beam direction). The four outer layers have analogue readout and hence can
be used for particle identi�cation via dE/dx. The overall thickness of the ITS
is 8% X0. The expected total radiation dose for the inner layer is 270 krad.

The Time-Projection Chamber (TPC) is the main tracking detector of the
central barrel and provides, together with the other central barrel detectors,
charged-particle momentum measurements with good two-track separation,
particle identi�cation, and vertex determination. The active volume has an
inner radius of about 0.85 m, an outer radius of about 2.5 m, and an overall
length along the beam direction of 5 m and is �lled with 90 m3 of Ne-CO2-N2

[90-10-5]. The drift potential is 100 kV. With a �eld (oriented along the beam
axis) of 400 V/cm the drift velocity is 2.7 cm/µs. The ionization electrons
drift over a distance of up to 2.5 m on either side of the central electrode to
the end plates. Multi-wire proportional chambers with cathode pad readout
are mounted into 18 trapezoidal sectors at each end plate. The TPC covers
−0.9 < η < 0.9 for tracks with full length; short tracks can be detetected
within |η| < 1.5. It is expected that in Pb-Pb runs the TPC can be operated
at central collision rates of up to 300 Hz at which point the space charge due
to the ion feed-back during gate-open time starts to be comparable to the
space charge due to the ionisation in the TPC drift volume itself, resulting
in tracking distortions of the order of a few mm. For proton-proton collision
trigger rates of up to 1 kHz seem realistic. The position resolution in the
bending plane (rφ) is between 400 and 1100 µm, depending on momentum
and drift length. The dE/dx resolution is 5.0-6.8% depending on multiplicity.
The Ne/CO2 has a steep dependence of drift velocity on temperature. For
this reason, the TPC is aiming for a thermal stability with ∆T ≈ 0.1 K
in the drift volume. The CO2 and N2 fractions are kept stable to 0.1%,
necessary to ensure stable drift velocity and gas gain of the readout chambers.
The O2 impurity as achieved with a reduced �ow during commissioning is
extrapolated to be about 1 ppm or lower in the �nal installation in the cavern,
limiting the signal reduction due to attachment for the maximum drift length
of 2.5 m to less than 5%. The TPC thickness is 3% X0.

The Transition Radiation Detector (TRD) will provide electron identi�-
cation in the central barrel for momenta above 1 GeV/c. Electrons passing a
4.8 cm thick polypropylene �bre and Rohacell foam radiator produce X-rays
which are detected in a Xe/CO2 �lled drift chamber with pad readout. The
X-rays, combined with the 30% higher dE/dx of electrons, provide the basis
to distinguish them from pions. Six layers of radiator/readout chamber mod-
ules result in a pion rejection factor of 100. The TRD will, moreover, provide
a fast (6.5 µs) trigger for charged particles with high momentum. The mo-
mentum resolution of TRD in the standalone mode is 3.5-4.7% at 5 GeV/c.
The radiation thickness is 23% X0. The TRD, in conjunction with the ITS
and the TPC, will enable the measurement of light and heavy vector-meson
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resonances and the dilepton continuum in pp and Pb-Pb collisions. Exploit-
ing the excellent impact parameter resolution of the ITS it is furthermore
possible to reconstruct open charm and open beauty in semi-leptonic decays.

The Time-Of-Flight (TOF) detector, based on the multi-gap Resistive
Plate Chamber technology, provides particle identi�cation in the interme-
diate pt region below about 2.5 GeV/c for pions and kaons, up to 4 GeV/c
for protons, with a p/K and K/p separation better than 3σ. The intrinsic
time resolution is about 40 ps and the e�ciency close to 100%. The radiation
thickness is 30% X0.

The High-Momentum Particle Identi�caton Detector (HMPID) is dedi-
cated to inclusive measurements of identi�ed hadrons at pt >1 GeV/c. The
aim is to extend, within 5% of the central barrel acceptance, the range for p/K
and K/p discrimination up to 3 GeV/c and 5 GeV/c, respectively. Identi�ca-
tion of light nuclei and anti-nuclei (d, t, 3He, α) at high transverse momenta
in the central rapidity region can be performed as well. The HMPID is based
on proximity-focusing Ring Imaging Cherenkov (RICH) detectors. The radi-
ator, which de�nes the momentum range covered by the HMPID, is a 15 mm
thick layer of low chromaticity C6F14 (per�uorohexane) liquid with an index
of refraction of n=1.30 at λ= 175 nm, corresponding to βmin = 0.77. The
Cherenkov photons are detected by MWPCs with CsI coated pads.

The PHOton Spectrometer (PHOS) is a high-resolution electromagnetic
spectrometer for low pt direct photon measurements and for study of jet
quenching through the measurement of high-pt π0 and γ-jet correlations.
The high-energy resolution and granularity is provided by using dense scin-
tillator material (lead-tungstate, PbWO4) of 20 X0 with high photo-electron
yield. The two-photon invariant mass resolution at the π0 peak is 3.5%. The
fast scintillator and preampli�er result in a time resolution of 2 ns at energies
above 1.5 GeV. A MWPC with pad readout, placed 5 mm before the calorime-
ter, provides a charged-particle veto (CPV) with an e�ciency of better than
99%. The material budget of the CPV is less than 5% of X0.

The construction of a large ElectroMagnetic Calorimeter (EMCal) began
in 2008 with the aim to enable ALICE to explore in detail the physics of jet
quenching (interaction of energetic partons with dense matter) over the large
kinematic range accessible in heavy-ion collisions at the LHC. The EMCal
is a 20 X0 Pb-scintillator sampling calorimeter with cylindrical geometry,
located adjacent to the ALICE magnet coil at a radius of 4.5 m. It covers
|η| < 0.7 and ∆φ = 107o, and is positioned opposite in azimuth from PHOS.

ACORDE, the ALICE cosmic ray detector, is an array of plastic scintillator
counters placed on the upper surface of the L3 magnet and covering −1.3 <
η < 1.3 and −60o < φ < 60o. It provides a fast (Level-0) trigger signal, for the
commissioning, calibration and alignment of the ALICE tracking detectors,
and it will detect, in combination with the TPC, TRD and TOF, single
atmospheric muons and multi-muon events (so-called muon bundles) thus
allowing the study of high-energy cosmic rays in the energy region of the
knee in the cosmic ray spectrum.
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The Muon Spectrometer covers −4.0 < η < −2.5 and consists of a car-
bon/concrete absorber, a dipol magnet with 0.67 T and 3 Tm, and 10 de-
tection planes with a resolution of 70 µm. With this detector, the heavy
quarkonia J/ψ, ψ′, Υ , Υ ′, Υ ′′ will be addressed via their muon decay chan-
nel. The minimum muon momentum is 4 GeV/c and the system aims at an
invariant mass resolution of 1% at 10 GeV/c2.

The ALICE detector suite is complemented by two Zero Degree Calorime-
ters (ZDC) for centrality and reaction plane angle, a Photon Multiplicity De-
tector (PMD) for γ and charged particle measurement within 2.3 < η < 3.7,
a Forward Multiplicity Detector (FMD) covering −3.4 < η < −1.7 and
1.7 < η < 5.0, two vertex detectors (V0A and V0C) for interaction trig-
ger, and two TOF start detectors (T0) with 50 ps which also provide the
longitudinal event vertex position within 1.5 cm.

The High-Level Trigger (HLT) computer farm, consisting of 1000 multi-
processor machines, will perform fast online processing and provide trigger
for rare signals and/or data compression on the �y.

ALICE will adress the heavy ion reaction dynamics via studies of multi-
plicities, spectra, two-particle correlations, and collective �ow. The Quark-
Gluon Plasma will be probed by heavy �avours, photons, and jets. The QCD
phase transition will be investigated by hadron abundances and by charge
�uctuations, with the corrections for momentum conservation being less im-
portant than at lower energies. Besides running with Pb ions, the physics
programme includes collisions with lighter ions, lower energy running, and
dedicated proton-nucleus runs. ALICE will also take data with proton beams
at the top LHC energy to collect reference data for the heavy-ion programme
and to address several QCD topics for which ALICE is complementary to the
other LHC detectors.
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theory)) 109, 215, 294

hybrid models 623

hybrid star → compact star 166 - 179

hydrodynamics → �uid dynamics

hypernuclei 831

hyperon 49, 725, 743, 875�, 895
Λ 52, 61, 77, 111, 223, 369, 418, 432,

460f, 711�, 741�, 834, 876, 897�, 922
Λ(1405) 418
Ω− 171, 205, 223, 279, 632, 743�, 876,

922

Σ 714, 741�, 821, 897
Ξ 205, 223, 714, 743�, 876, 896, 922

hypersurface 629

I

imaging → source imaging 633, 880f, 883
in-medium potential 425, 702�
instabilities

gravitational instabilities 171

dynamical instabilities 620

invariances → symmetries

isentrops 131�, 224, 263�, 621, 828
isentropic spinodals 263f, 621

J

jet 288, 303, 731

jet quenching 731, 925

Jüttner function 568

J/ψ → charm, charmonium

K

Kadano�-Baym equation 563�
kaon 97, 416�, 428, 700, 706, 729, 756,

797�, 939
antikaon 424, 426�, 701
∼ mass 417, 417

∼ potential 426, 707

∼ production 706

K± 418�, 430, 632, 701�, 729, 740�,
750, 877

K− nucleon scattering 421

Kaplan-Nelson term 416, 430

Klein-Gordon particles 417, 566

Kubo formula 622

L

laboratory cites → experiments

Lagrangian

e�ective Lagrangian 241

QCD Lagrangian 50, 126

chiral Lagrangian 262, 416, 700

Lambda → hyperon

ΛQCD → QCD
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Landau damping 109

Landau-Ginzburg → Ginzburg-Landau

Langevin equation/ force 444�, 559, 610
→ Boltzmann-Langevin

latent heat 15, 619, 631
lattice gauge theory (QCD) 8, 44, 54,

116, 124, 201, 218�, 247, 390, 451,
470, 694�

�nite chemical potential 111, 119, 242

lattice action 134

lattice lattice gauge theory 9
quenched 105, 142, 288, 390, 472, 473

staggered fermion 126�, 138�
Wilson fermion 127

linear cascade model 550

linear-density approximation 95

liquid-gas phase transition 15, 19, 42 68 84
LPM (Landau-Pomeranchuk-Migdal)

e�ect 450, 583, 588

M

Mach angle/ cone 288, 615

many-body collisions 584

many-body models 601

Maxwell construction 262

McLerran-Toimela formula 575

mean-�eld dynamics 417, 649

mean-�eld potential → potential

Meissner mass 57, 192

meson 13
D meson 435, 454 - 482, 797

J/ψ meson → charm, charmonium

K meson → kaon

ω, φ, ρ → vector meson

π meson → pion

σ meson 398

Minkowski space/ metric 51

molecular dynamics

AMD (antisymmetrized ∼) 609

FMD (fermionic ∼) 607

quantum ∼ → QMD

momentum distribution 496, 654, 777

monopoles 287

multiplicity 413, 654, 707f, 740�, 778, 814,
826�, 876, 902�, 922, 962�

N

Nambu-Goldstone phase/ theorem 56f, 587
Navier-Stokes 621

neutron star → compact star 18, 166 - 179
NJL (Nambu�Jona-Lasinio) model 166�,

178, 194 236�, 263, 399, 502
Noether currents/ theorem 571, 587

non-Abelian 50, 289

nuclear matter

baryons in ∼ 411f
equation of state of ∼ 152

experiments probing dense ∼ 699�, 871
pairing gaps in ∼ 173

phase diagram of ∼ 18, 42, 68, 82, 201,
694

mesons in ∼ 369, 372, 387, 430f, 459,
462

O

o�-shell 570, 583

omega meson → vector meson

on-shell 562

OPE (operator product expansion) 354,
456

optical potential → potential

order parameter 57, 92, 227

P

participant 542, 785, 790, 801

particle production 195

partition function 51, 73, 117

grand canonical ∼ 51

path integral 51

Pauli principle/ blocking 425, 559

Pauli matrices 236

penetrating probes 22, 340
perturbative

∼ degrees of freedom 666

∼ expansion 111, 365, 435, 575

∼ QCD 44, 53, 102, 111, 275

phases of matter 15
→ coexistence phase

decon�ned phase → QGP 19
→ hadronic phase

→ nuclear matter

→ Nambu-Goldstone phase

→ plasma phase

quark-gluon plasma → QGP

→ superconducting phase

→ Wigner-Weyl phase

phase equilibrium 67

phase space 406, 602, 712, 744, 892 - 908,
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phase shift 97, 372, 572, 573

phase transition

crossover 16�, 42, 87, 136�, 179, 247�,
828

critical point 15, 42, 89, 91, 133, 134,
201, 645, 694, 828

critical region 282
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�rst order 15�, 66�, 87, 136�, 185, 232,
247, 255, 262�, 280, 400, 822, 828

→ liquid-gas ∼
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phase boundary 15, 72f, 258, 645
phase coexistence 18, 68, 540
phase diagram 15�, 42�, 68, 81�, 90,

121 - 138, 179, 191 - 201, 235, 247,
254, 263, 280, 294f, 501, 619, 693

phase mixture (→ coexistence phase)
16, 66�

second order 76, 77, 87, 247, 280

transition line 42, 121, 133, 213, 280

transition temperature 132, 133, 185,
232

tricritical point 86, 90, 260

φ meson → meson

Φ-derivable approximation 110, 580

→ two particle irreducible

photon

diphoton 398

photon rate 395

single photon 396

pion

pion cloud 369�, 388
pion-decay constant 92, 364

pion mass 135, 138, 231, 280

pion matter 428

Pisarski-Wilczek argument 85

plasma phase 16
polarisation function 563

Polyakov loop 59, 127, 227, 240 - 255, 292

center symmetry 56�
PNJL (Polyakov�Nambu�Jona-Lasinio

model) 235, 237

PQM (Polyakov�quark-meson model)
235, 254�

potential

mean-�eld potential 556

heavy quark potential 128�
optical potential 154f, 573

pressure 15, 66, 97, 101, 104, 110, 128�,
178, 211 - 262, 654

ψ′ → charm, charmonium

pulsar → compact star

Q

QCD (Quantum Chromodynamics)

ChPT → chiral perturb. theory 54, 97,
152, 420

ΛQCD 52, 61, 77

LQCD → lattice ∼

PQCD (perturbative ∼) 3�, 44, 53

∼ action 51

∼ �avor 13, 47

∼ Lagrangian 50, 126

QCDLite 3, 81

∼ phase diagram 42, 81, 88�, 131, 501,
693

∼ sum rules 353�, 430, 455,

phases of ∼ 180

running coupling 53

symmetries of ∼ 56

QGP (quark-gluon plasma) 19, 42, 294,
392, 442, 445, 770 - 801

sQGP (strongly coupled ∼) 285, 291,
296, 300

QL (quantum Langevin) 610

QMD (quantum melecular dynamics) 602

IQMD (isospin ∼) 603, 632, 647,
701�705,

RQMD (relativistic ∼) 604, 632, 647,
701 - 714, 833

UrQMD (ultra-realtivistic ∼) 605, 643�,
658, 695, 715, 741 - 761, 788�, 817 -
906

quantum chromodynamics → QCD

quark

∼ condensate 57, 93�, 255, 357�

quark-gluon plasma → QGP

∼ mass 47, 87, 89, 104, 118, 127�, 137�,
232, 241�, 262, 438�, 503

∼ meson model 247, 275, 280,

∼ number scaling 757, 762, 925

∼ number susceptibility 256, 264, 280

∼ recombination 454

quark matter → QGP 83, 166 - 193,
502�89, 118, 127, 137, 140

∼ star → compact star

quarkonium (→ charm, charmonium, J/Ψ)
470, 493

quasiparticle 17, 190, 213�, 220�, 290
420, 465, 585

R

rare probe 659

rate equation 495, 618, 789, 801

RG (renormalization group) 265, 266, 378

→ �ow equation

resonance 96�, 105, 128, 193, 207, 210�,
291, 372, 386, 405�, 444�, 501, 561,
573, 583, 726, 735, 747

∆ ∼ 111, 220�, 288, 369�, 388, 410�,
479, 503, 573f, 629, 643, 812

meson ∼ 406

baryon ∼ 21, 408, 411
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∼ gas 98�, 128, 210, 222, 726
restoration 87, 89, 365, 429, 446

resummation 108, 294, 436

rho meson → vector meson

rows-on-rows 551

S

Schwinger-Dyson → Dyson

screening 109, 294, 470, 488

selfenergy 429, 432, 370, 451 460�, 508,
556f, 797

imaginary part of ∼ 557

relativistic ∼ 557

semi-classical approximation 627

σ meson 398

source imaging 633

source radii (Rout, Rside, Rlong) 635�,
716

spectators 542, 880�, 886
spectral function 349, 363, 365 - 377, 386 -

426, 460�, 473, 474, 561, 569, 583,
770�

spinodal 68, 261, 262�, 621
isentropic ∼ 263f, 621

spin wave 17
SPT (screened perturbation theory) 109

sQGP (strongly coupled QGP) 285, 291,
296, 300

squeeze-out 651�
staggered fermion 126 - 142

statistical ensembles

microcanonical 65

canonical 51, 70, 196, 198, 276, 480

grand canonical 51, 71, 196, 276, 279

statistical hadronisation 476f, 793, 799
statistical model (→ thermal model) 195,

834, 866, 876, 902

strangeness 142, 198, 206, 415, 417, 725,
728, 747, 816, 833

string models 553, 599

HSD (hadron-string dyn.) 598, 647, 658,
701�, 740 - 750, 788 - 815, 902�, 922

QGSM (quark-gluon-string model) 599,
643�, 659, 750, 761

strong interaction/ force 12, 17
strong charge 14

subthreshold processes 706

sum rules 353

chiral (Weinberg) ∼ 363

QCD ∼ 353�, 430, 455,
TRK (Thomas-Reiche-Kuhn) ∼ 354

superconductor

2SC (two �avor ∼ ) 166 - 192, 501�

CFL (color-�avor locked ∼ ) 4, 83, 184�

CSC (color superconductor) 42�, 114,
168, 178, 180, 181, 187, 193, 392,
501, 505

supernova 160�, 164�, 689

susceptibility 57, 136, 139, 211, 218, 225,
256�, 280�, 819

symmetry 12, 19f,

center ∼ 56�, 238

chiral ∼ 3, 19, 56, 74, 85, 92, 260, 365,
378, 409, 429

explicitly broken ∼ 57

�avor ∼ 49, 183, 429

isospin ∼ 178�, 429, 502

∼ of QCD 47, 56

∼ restoration 87, 89, 365, 429, 446

spontaneously broken ∼ 16, 74

SU(3) ∼ 49, 127, 132, 429f, 545

SU(N) ∼ 227

UA(1) ∼ 57

Z(3) ∼ 58, 238

Z(N) ∼ 231

T

thermal model (→ statistical model) 205,
453, 696, 738, 746�

thermalisation 223, 447, 498, 696

thermodynamic stability 68f

Tolman-Oppenheimer-Volko� (TOV) Eq.
161

trace anomaly 61, 355

transport models 555, 647 - 659, 719 -
762, 786, 799

→ AMPT, ART, BUU, cascade models,
QMD, string models

charmonium transport 485

dynamical spectral function 561, 569,
583

resonance transport 561

transport coe�cient

di�usion 290, 445

→ viscosity

transversality

four transverse 370, 587

four longitudinal 370

transverse mass 724, 729, 749, 751, 773,
797

transverse momentum 223, 406�, 496,
654�, 717�, 734, 757�, 820, 894 -
920, 962

two-body collision 558

two-particle irreducible (2PI) 561, 580
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two-quark condensate → condensate,
di-quark ∼

U

universality class 16, 79, 89, 91

unitary correlation operator method
(UCOM) 608

Urca process 172

V

VDM (vector dominance) 349

vector meson 345, 357, 366, 382, 393,
772, 905, 910 - 922

→ charmonium, J/ψ
ω meson 359, 386,

φ meson 388, 772f, 797, 908, 914

ρ meson 358, 367, 369 - 386, 401, 578f,
727, 908, 916

vector manifestation 378, 394

vertex reconstruction 889

virial limit 572

viscosity 286�

viscous �uid dynamics 621
viscosity-entropy ratio 286

W
Ward-Takahashi identity 587
Weinberg sum rules 363
Weinberg-Tomozawa term 416�, 430
Wigner function 566
Wigner-Weyl phase 56
Wigner transformation 566
Wilczek → Pisarski-Wilczek argument
Wilson coe�cients → OPE 354, 456
Wilson line/ loop 59, 226, 301
Wilson fermions 127
Wilsonian RG approach 266

Y

Yang-Mills theory 58, 227, 286, 397
→ gauge theory
massive ∼ 397
supersymmetric ∼ 286

Z

Z(3), Z(N) → symmetry
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